
Optimal Operation Management of a Microgrid 

Based on MOPSO and Differential Evolution 

Algorithms  
 

Najme Bazmohammadi 

Ferdowsi University of Mashhad 

Mashhad, Iran 

Ali Karimpour 

Ferdowsi University of Mashhad 

Mashhad, Iran  

Somayye Bazmohammadi  

Semnan University  

Semnan, Iran 

 

 
Abstract—Local aggregation of Distributed Energy Resources 

(DERs), storage devices, controllable and uncontrollable loads is 

known as Microgrid. Microgrid operation management in order 

to reduce both cost and emission simultaneously is a very 

challenging task considering smart utilization of available energy 

resources in a highly constrained environment along with the 

conflicting nature of objectives. This paper aims to optimize the 

operation of an interconnected microgrid which comprises a 

variety of DERs and storage devices in order to minimize both 

cost and emission resulted from supplying local demands. 

Furthermore we will try to achieve an intelligent schedule to 

charge and discharge storage devices that provides the 

opportunity to benefit from market price fluctuations. The 

presented optimization framework is based on Multiobjective 

Particle Swarm Optimization (MOPSO) approach which adopts 

Differential Evolution (DE) algorithm to improve the search 

capability of the developed methodology. Finally results from an 

illustrative case study are provided and analyzed. 

Keywords-Differential Evolution; Microgrid; Multiobjective 

Particle Swarm Optimization; Pareto front. 

I.  INTRODUCTION  

Local energy production is known as Distributed 
Generation. Along with the potential capability to provide 
reliable, efficient and secure electricity, Distributed Energy 
Resources (DERs) offer consumers and electric utilities many 
economical and environmental benefits. Local aggregation of 
distributed energy resources, storage devices, controllable and 
uncontrollable loads is known as Microgrid. Microgrids which 
are referred to as building blocks of the smart grids require a 
central management unit which monitors system status and 
makes the necessary decisions in order to optimize microgrid 
operation aligned with desired objectives while considering 
system constraints and regulatory rules [1]. In [2] the effects of 
utilizing a microgrid central controller to achieve a coordinate 
operation are investigated also [3] describes the role of a 
central controller which aims to optimize the operation of the 
microgrid by managing the production of local DGs and the 
amount of power to be exchanged with the upstream network. 
Minimization of the operating cost or in other words meeting 
the load demand in the most economic way is an important 
objective which has been seeking by researchers as [4]-[5] 
provide methods in order to reduce the operation cost of a 
microgrid containing battery storage. The algorithm proposed 

in [4] is based on particle swarm optimization while [5] utilizes 
a linear programming approach. In recent years, increased 
public awareness for the environmental effects of producing 
electricity, has led to devising new strategies in order to reduce 
emission beside other objectives in optimization scheme. In [6] 
a Mesh Adaptive Direct Search based methodology is proposed 
to determine an optimal operating strategy for minimizing 
microgrid’s cost function taking into account the costs of 
emission as well as the operation cost. 

This paper aims to optimize the operation of an 
interconnected microgrid which comprises a variety of DERs 
in order to minimize both cost and emission objectives 
simultaneously. Furthermore we will try to achieve an 
intelligent schedule to charge and discharge storage devices 
that provides the opportunity to benefit from market price 
fluctuations. Also in order to facilitate the process of decision 
making, microgrid central controller is provided with a set of 
optimal solutions to choose a suitable strategy based on desired 
preferences. The presented optimization framework is based on 
MOPSO approach which adopts Differential Evolution 
algorithm to improve the search capability of the developed 
methodology. In the procedure proposed in this paper emission 
factor of DG sources and upstream network are suitably 
incorporated into the model. Detailed modelling of storage 
devices’ constraints along with utilizing realistic market prices 
and DG bids has made the methodology consistent with actual 
system conditions. The rest of paper is organized as follows. 
The problem formulation is presented in Section II. In Section 
III, a brief description of multiobjective optimization and 
MOPSO is provided. Simulation data and results are presented 
and discussed in Section IV. Finally the conclusion is given in 
Section V. 

II. PROBLEM STATEMENT 

A. Objective Functions 

In this paper the objective of operation management of a 
microgrid is to minimize emitted pollutants and operation cost 
resulted from supplying local demands. However because of 
conflicting nature of these objectives, they cannot be 
minimized simultaneously. So our problem will be a highly 
constrained Multiobjective Optimization Problem. Decision 
variables involve DG units’ production, energy to be requested 



from the main distribution grid and the amount of charging or 
discharging of storage devices during the specified period 
which should be effectively determined in order to achieve 
desired performance. 

1) Minimization of Cost: The objective function for cost 

minimization can be written as 
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In this equation P is a candidate solution in which Pgi(t)  and 

PG(t) are considered as real output power of ith generator and 

the purchased power from the main distribution grid at hour t 

respectively. N denotes the number of generating units in the 

microgrid and T shows the number of hours in optimization 

period. Also BG(t) refers to the energy price of main grid at tth 

hour and Bi(Pgi(t)) is the active-bid of ith unit for providing  

Pgi(t) kilowatt output power, which is assumed to be as follows 

[3] 
 ( ( )) ( )

i ii g i g iB P t b P t c   (2) 

2) Minimization of Emission: The amount of atmospheric 

pollutants such as carbon dioxide CO2, sulphur oxide SOx and 

nitrogen oxide NOx caused by fossil-fuelled units either in 

microgrid or upstream network is considered in evaluating 

emission objective as follows 
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In the above equation EFi,k and EFG,k represent the emission 

factor of the kth pollutant of the ith unit and upstream network 

in g/kWh during hour t respectively. Furthermore M shows the 

number of considered types of pollutants in the analysis. 

B. Objective Constraints 

1) Power balance constraint: According to this constraint 

the total generated power plus amount of energy purchased 

from the upstream network, should cover system’s demand at 

each hour considering amount of charging/discharging of the 

battery bank in that hour. 
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In which PD(t) denotes hourly demand and PB(t) represents 

amount of charging/discharging of the battery bank at tth hour 

which is considered positive as it is charging and negative 

during discharging periods. So during charging periods, 

demand would be increased as extra amount of energy is 

needed in order to charge batteries whereas in discharging 

time, demand decreases as a result of energy provided by 

batteries in that hour. 

 

2) Generation Capacity Constraint: The real output power 

of each DG unit is constrained by its minimum and maximum 

production limits, i.e., 
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For DGs that use renewable energy sources, upper bound will 

be their maximum available power at related hour.  

 

3) Battery constraint: The battery bank which has been 

chosen from lead-acid type is utilized to store energy. 

Considering batteries in optimization plan will result in 

additional constraints which should be satisfied at all times. 

State of Charge (SOC) of the battery bank is calculated at each 

interval using following equation 
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Where ( )SOC t and ( 1)SOC t  denote amount of energy 

stored in the battery at hour t and t-1 respectively and δ 

represents self discharging coefficient. Also ηcharge/ηdischarge is 

the battery charge/discharge efficiency during 

charging/discharging period. ∆t is the time step which is 

assumed 1h in this study. Battery state of charge is constrained 

by its lower and upper limits, i.e., 
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Also there are other constraints that represent the maximum 

allowable energy taken or added to the battery is limited. This 

limitation is due to the maximum permissible 

charging/discharging current to be less than a specified 

percentage of the battery AH capacity [7], [8]. This constraint 

can be written as 

 max
( )

B bP t P  (8) 

Initial SOC is assumed to be SOCs as stated in following 

equation  
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Moreover an additional constraint regarding the battery ending 

state of charge is considered in this paper that ensures more 

than a specified percentage of the battery nominal capacity is 

stored at the end of desired time period. This can be shown as 

below 
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III. MULTIOBJECTIVE OPTIMIZATION 

Many real-world optimization problems involve 
simultaneous optimization of several conflicting objectives. A 
general multiobjective problem can be written as 
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Where fi is the ith objective function, x is a candidate solution 
and Nobj shows the number of goals. Also r and z refer to the 
number of equality and inequality constraints respectively. The 
multiobjective optimization with conflicting objectives leads to 
a set of optimal solutions called non-dominated or Pareto 
optimal set, instead of one optimal solution [9].  

A. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) was developed by Dr. 
Kennedy and Dr. Eberhart in 1995 [10], [11]. PSO is one of the 
most popular optimization algorithms, which was inspired by 
the swarm behavior to find the global optimal solution. In PSO, 
like any other evolutionary algorithm, individuals are 
initialized with random positions. Each potential solution, 
named a particle, is associated with a velocity vector which is 
dynamically adjusted using (13). The particles’ position is then 
modified according to (14). 
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In (13), vi
d
(t) indicates the current velocity of the particle 

and w is known as inertia weight. Moreover c1 and c2 are 
learning coefficients which are used to control the step size 
towards personal best experience (pbesti) and global best 
experience (gbest) respectively. Also rand1 and rand2 are two 
uniformly distributed random numbers within [0, 1] [12-13].  

For extending the single objective optimization to a 
multiobjective one, it would be needed to redefine some of its 
components such as best local and global leader. Furthermore 
an external archive called Repository is required in order to 
store non-dominated solutions which are found during the 
search process.  

B. Proposed Methodology 

In this section the proposed algorithm will be further 
elaborated to form a methodology which is capable of handling 
the multiobjective problem at hand. In this paper Differential 
Evolution is used to improve exploration capability of the 
algorithm and prevent the search process from premature 
convergence. Generally the computational flow of the proposed 
MOPSO with the use of Differential Evolution can be 
described in the following steps:  

Step1 (Initialization): First, the particles are initialized with 
random positions and velocities in the search space. The 
position of each particle can be initialized by randomly 
selecting a value over the dth search space dimension [xd

min
 , 

xd
max

] with uniform probability and the same goes for 
initializing particles’ velocity by limiting them to the range of 
[vd

min 
, vd

max
] in order to prevent particles from going beyond 

the search space. 

Step 2: In this step the objective values are evaluated for all 
particles in population and non-dominated particles are stored 
in repository. Then memory of each particle is initialized with 
its current position and keeps updating through process [14].  

Step 3: While Itrmax has not been reached: 

 Update each particle velocity and position in dth 
dimension using (13) and (14).  

 Check feasibility of all individuals to make sure all 
constraints are met and maintain them in the search 
space in case particles go beyond their legal 
boundaries.  

 Update local leader of each particle according to Pareto 
dominance concept.  

 Update the non-dominated solutions set. Considering 
computational time, the size of archive should be 
limited to a predefined value. If archive size exceeds 
this value, truncate it by removing those individuals 
with the smallest normalized distance to other 
repository members so that stored positions properly 
cover trade-off surface. 

 After updating the attained repository, DE is applied to 
the particles already exist in it according to the 
mutation operator of the DE/rand/1/bin strategy using 
(15) 
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Where F is a real parameter called mutation constant 
and Xr1, Xr2 and Xr3 are three randomly selected 
members from the archive. Following the mutation 
stage, crossover and selection operators are applied to 
the V in order to form the trial vector and determine 
whether the target or trial vector survives to the next 
generation [15]. 

 Select the global leader to guide particles towards less 
crowded regions. In this paper a form of fitness sharing 
as proposed approach in [16] is incorporated which is 
based on the niching technique [17]. In the process, 
sharing distance dij is calculated for all individuals in 
the repository. Comparison of dij with the predefined 

niche radius 
share

 gives the sharing function value  as  
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Using the value of sharing function, a factor called 
niche count is determined for each individual. Then the 
fitness function which is in inverse proportion to the 
amount of the niche count can be evaluated for all 
particles. Finally roulette wheel selection is utilized to 
select the global best particle from the obtained 
repository [16].   

 Update learning coefficients according to (17)-(19) in 
which wmin and wmax are the minimum and maximum 
values of w respectively. Moreover Imax shows the 
maximum number of iterations while I represnts the 
current iteration number.  
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Figure 1.  Daily Load Curve 

 

TABLE I.  INSTALLED DG SOURCES 

Type 
Pmin 

(kW) 

Pmax 

(kW) 

bi 

(€ct/kWh) 

ci 

(€ct /h) 

CO2 

(G/kWh) 

MT 6 30 4.37 85.06 724.6 

FC 3 30 2.84 255.18 489.4 

WT 0 15 10.63 0 0 

PV1 0 3 54.84 0 0 

PV2 0 10 54.84 0 0 
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So the inertia weight keeps balancing between global 
and local search by linearly decreasing with the 
iterations. Furthermore (18)-(19) make c1 to linearly 
decrease from its initial value to its final value and c2 
increases linearly to reach its final value in the last 
iteration.  

 Increment iteration counter. 

Step 4: End While 

IV. NUMERICAL RESULTS  

A. System Description 

In this section a microgrid is considered for illustrating 
proposed model based on the data provided in [3]. The 
microgrid consists of one Microturbine (MT), one Fuel Cell 
(FC), one directly coupled Wind Turbine (WT) and two Photo 
Voltaic units (PVs). Minimum and maximum operating limits 
of the DG sources and related bid coefficients are given in 
TABLE I. Moreover we equipped the case study with a battery 
bank of size 40kWh, where SOCmin and SOCmax are set to 
16kWh and 40kWh respectively and maximum charging and  
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Figure 2.  Typical 24-hour Emission Curve 

 

TABLE II.  HOURLY ENERGY PRICES (€CT/KWH) 

Hour Price Hour Price Hour Price Hour Price 

1 2.264 7 2.301 13 14.986 19 3.516 

2 1.9 8 3.837 14 40 20 4.395 

3 1.398 9 14.986 15 20.1 21 11.712 

4 1.2 10 40 16 19.499 22 5.4 

5 1.153 11 40 17 6 23 3 

6 1.994 12 40 18 4.13 24 2.557 

 

discharging capability of the battery bank is constrained by 
4kW in each time step. Energy price data are given in TABLE 
II [3]. The load profile for a sample weekday is shown in Fig. 1 
and Fig. 2 depicts a typical 24-hour emission curve of the 
upstream network [2]. Moreover normalized available power 
of the WT and PVs during the day is provided in Fig. 3. 

B. Parameter Setting 

The population size has been fixed to 2×D where D is the 
dimension of solution space and wmax and wmin are set to 0.9 
and 0.4 respectively.  c1i=2.5, c1f=0.5, c2i=0.5 and c2f=2.5 are 
also assumed in this paper. For Niching technique, the value 
of σshare is chosen 0.4. 

C. Computational Results 

The simulations were carried out starting from a base case 
(named case A) in which all system demand has to be supplied 
by the upstream network and neither DGs nor storage devices 
exist. Under these assumptions, an operating cost of €469.76 
resulted while the total emission is 2650kg. To evaluate the 
influence of aggregating DG sources and storage devices 
under the coordination of a central microgrid management 
system, three sets of simulations are considered and compared 
with case A. 

Case 1) Microgrid operation management for cost 
minimization 

In this case it is assumed that microgrid central controller 
aims for optimal DG sources production, storage devices 
utilization and the amount of energy to be requested from the 
main grid in order to meet system demand in the most 
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Figure 3.  Normalized RES Hourly Production 

 

TABLE III.  SIMULATION  RESULTS 

Objective Case 1 Case 2 

Cost (€) 407.73 432.41 

Emission (Kg) 2384.6 2233 

 
economic way. Under this assumption total cost is €407.73 
whereas 2384.6kg CO2 is produced which show %13.2 and 
%10 reduction respectively in comparison with the base case 
(TABLE III). Daily scheduling is depicted in Fig. 4. For 
example during 10:00 when 150kWh is demanded by local 
loads (Fig. 1), 65.7kWh is supplied by local DGs and battery 
delivers 4kWh (-4kWh), the remainder energy (80.3kWh) is 
requested from the main grid to cover all demand. RES in the 
figures denotes the aggregation of total energy produced by 
renewable energy sources i.e., WT and PVs.  

It is noticeable that during hours with lower market prices, 
it is preferred buying active power from the upstream network 
and charging batteries while during 9:00-15:00 that the market 
prices are substantially high, we can benefit from supplying 
loads by discharging the battery bank.  

 
Case 2) Microgrid operation management for emission 

minimization  
In this case the strategy with the lowest emission level is 

desired by the microgrid central controller.  Obtained results 
are presented in TABLE III. As it can be seen in this case cost 
and emission are reduced by %8 and %15.7 respectively. It 
should be noted that in comparison with case 1, consumers are 
supplied with greener electricity in expense of more operating 
cost. Also according to the daily scheduling depicted in Fig. 5, 
in this case microgrid is more focused on local production so 
that the algorithm has set the output power of RESs to their 
maximum available power. It is also noticeable that batteries 
have been charged during hours with lower emission levels in 
order to improve grid’s performance by providing their stored 
energy during hours with high emission levels. 
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Figure 4.  Daily Operation (Case 1) 
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Figure 5.  Daily Operation (Case 2) 

 

Case 3) Microgrid operation management for cost and 
emission minimization simultaneously 

In the previous cases, microgrid operation has been 
optimized in two extreme conditions, i.e., achieving the 
minimum cost or minimum environmental impact. In this case 
the problem is handled as a multiobjective optimization 
problem where both cost and emission are optimized 
simultaneously. Among most common multiobjective 
optimization approaches, a frequently used method is to 
combine all objectives to form a single function. In this 
method every objective according to its relative importance is 
weighted using a coefficient. The coefficients could be fixed 
at the beginning of optimization process or altered 
continuously in a range to reach the entire Pareto optimal set 
of solutions. It should be noted that in the former approach the 
preferences of the decision maker or relative importance of 
different goals must be specified in advance and in latter one 
in order to generate for instance 50 non-dominated solutions, 
it is required to apply the algorithm 50 times separately. 
However in a dynamic situation with lack of preference 
information, the desired strategy has to be selected from a pool 
of provided efficient solutions which have been obtained 
through an effective mechanism. 
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Figure 6.  Optimal Pareto front 

 
So to facilitate the process of decision making, microgrid 

central controller should be provided with the true Pareto front 
in order to increase the reliability of the decisions that have to 
be made [18]. Applying the proposed methodology on 
operation management problem in order to minimize cost and 
emission simultaneously, 50 non-dominated solutions that 
well cover the entire Pareto front of the problem have been 
obtained in a single run. Optimal Pareto front is depicted in 
Fig. 6. Results reveal that the proposed methodology preserves 
the diversity of non-dominated solutions over the trade-off 
surface so that the microgrid central controller can choose a 
suitable strategy based on desired preferences.  

V. CONCLUSION 

In this paper a methodology based on Multiobjective 
Particle Swarm Optimization and Differential Evolution 
algorithms has been presented for optimal operation 
management of a microgrid containing various kinds of 
distributed generation resources and storage devices. The 
problem has been formulated in multiobjective optimization 
framework with competing cost and emission goals in a highly 
constrained environment. Simulations were carried out for 
three different cases which show considerable improvements in 
the microgrid performance. Results show that the proposed 
approach is efficient for solving the multiobjective 
optimization problem of a microgrid and providing multiple 
Pareto optimal solutions in a single run, that well cover the 
entire Pareto front and preserves the diversity of non-
dominated solutions over the trade-off surface. In addition it 
can be seen that aggregating multiple individual DGs and 
storage devices under the control of a central management unit, 
provides more opportunity and flexibility in utilizing available 
resources according to desired preferences. Furthermore it has 
been shown that an intelligent schedule to charge and discharge 
storage devices can lead to considerable reduction in cost and 
environmental impacts.   
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