
2

Paper No.    9 9 6 0 2 7                                                    
An ASAE Meeting Presentation

 MODELING THE DYNAMIC BEHAVIOUR OF AXI-SYMMETRICAL

FRUITS USING THE DISCRETE ELEMENT METHOD

by
H. Abbaspour-fard and J.F. Favier

Biological Systems Engineering Group
University of Newcastle

Newcastle upon Tyne, UK

Written for Presentation at the
1999 ASAE/CSAE-SCGR Annual International Meeting

Sheraton Centre
Toronto, Canada

July 19-21, 1999

Summary:

A new Discrete Element (DE) method has been developed to model the dynamic
behaviour of an assembly of axi-symmetrically shaped fruits. In the new method,
which we term the “multi-element” method, model fruits (taken here to also include
vegetables, grains and nuts) are comprised of overlapping spheres whose centres
are fixed in position relative to each other along the major axis of symmetry of the
fruit. Element spheres are inscribed in the real fruit shape such that the diameter of
the spheres varies with the fruit surface contour. Contact detection between two
neighbouring model fruits is achieved using standard DE methods for two single
spheres. The method thus takes advantage of the speed and accuracy of contact
detection associated with standard DE schemes employing single spheres. The
scheme is well suited to numerical modelling of post-harvest operations such as
hopper filling and emptying, conveying, sorting and object manipulation where the
produce are discrete entities with relatively round smooth surfaces.
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Introduction

The discrete element method (DEM) is a numerical scheme for modelling the
dynamic behavior of a particulate assembly at the particle length scale. Each particle
is considered as a discrete, homogeneous rigid body and Newtonian mechanics are
used to determine the translational and rotational motion of each particle in the
assembly over a discrete time step. Inter-particle forces are calculated based on the
relative velocity of contacting particles (or particle-wall) and assumption of a small
“virtual” overlapping contact. Particle velocity and position at the end of a time step
are obtained through numerical integration of the computed accelerations. The
method is explicit since, using the principle of causality, disturbances cannot
propagate from any particle further than its immediate neighbours. Resultant forces
on any particle at any time increment are determined solely by interactions with
contacting neighbours. Change in the configuration of an assembly is therefore a
function of the physical properties of the particles (stiffness, damping, surface
properties) and the microstructure or fabric of the assembly. There is no theoretical
limit on the number of particles in an assembly and simulations of the bulk behavior
of real particulate systems are usually constrained by available computing speed.
Simulations of assemblies containing up to 65000 2-D and 10000 3-D circular
elements have been reported (Hryciw et al, 1997, Thornton and Kafui, 1997). A
substantial proportion of the computation time is taken up in detection of contacts
between particles. The method of contact detection employed is largely dependent
on the particle shape. The fastest scheme is that associated with spheres where
contact is determined directly from the distance between particle centres.

Although contact detection and computation time are very important, the
critical objective in DE modeling is accurate simulation of the behavior of an
assembly of real particles. The influence of particle shape on the predicted behavior
is less well documented than the relationship between shape and the efficiency of
contact detection. The most common element shapes used in DE models are circular
discs (e.g. Cundall and Strack, 1983) or spheres (e.g. Ning et al, 1997). While
spherical elements have the great advantage of computational simplicity, they also
possess an inherent tendency to rotate; a feature which has been thought to be one
of major sources of deviation in the simulation of non-spherical granular material (Lin
and Ng, 1995). The less spherical the real particles, the greater the degree of
interlocking which limits their ability to rotate. In addition, normal contact forces do
not contribute to the moment acting on a spherical element as each normal contact
force always acts through the centre of the element. This has the effect of weighting
the rotational effect of the contact force vector towards the tangential component.
These two inherent attributes of circular or spherical particles will contribute to a
degradation in the accuracy of simulations of the behavior of particles which deviate
to any significant degree from purely spherical.

DE models using non-spherical particle shapes have been developed
including ellipses (Ting et al. 1993), ellipsoids (Lin and Ng, 1997), superquadric
functions (Hogue, 1998), polygons and polyhedra (Hart et al, 1988). All of these
shape representations are significantly more computationally expensive than circular
or spherical shapes and, with the exception of polygons, have had limited application
in DE modeling. We present here a new, computationally efficient method of
modeling non-spherical, axi-symmetrical particles using overlapping spheres. The
approach, which we term the “multi-element” method, employs the same constitutive
laws and principles for contact detection as usually employed for systems of single
spheres.
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Multi-element particle model

Model particles are constructed of spheres whose centres are located on the particle
axis of symmetry. Spheres may overlap and may vary in diameter along the length of
the axis of symmetry. The surface of a particle is approximated by inscribing spheres
such that the surface of each sphere is tangent to the surface of the particle at the
point of contact. The position of each element sphere is fixed relative to the other
elements within a particle. The following is a summary of the main constitutive
equations of the model. Derivation of the equations is given in Favier et al (1999).
 Consider two particles, each comprised of two spherical elements of the same
diameter, in contact at point c as shown in Fig 1 (only two dimensions are shown but
the theory is developed for three dimensions). The global position of each particle is
determined at its centroid by its global position vector rp(G). The relative position
vector between the particle centroid and the centre of an element sphere dps is
known a priori because the position of each sphere within a particle is determined in
advance. The position of contact point, c, on each element sphere relative to the
particle centroid is

(1)

where rpsc is calculated from the global co-ordinate of the centre of the contacting
spheres and subscripts p and s refer to particle and sphere respectively. Contact
detection between two multi-element particles is based on detection of contacts
between their element spheres. Contact is detected if the distance between the
centres of the two contacting element spheres is equal to or less than the sum of
their radii. Any suitable method may be used to optimise the search for contacts as
are standard in DE codes employing single spheres except that in this case contacts
are determined particle by particle rather than independently for each sphere.

(2)rp(G)

rps

c.g.

dps

rpsc

lpc

Sphere centre

Contact point, c

Particle centroid, c.g.

X

Y

axes of particle symmetry

where fps is the sum of the contact forces
acting on an element sphere transferred to
the centre of the sphere, ftpsc is the
tangential component of a contact force, S
is the total number of element spheres
within the particle and C is the total number
of contacts on an element sphere.

The total moment acting on the particle is
comprised of the moments due normal and
tangential forces acting on the element
spheres. Through a process of transferral
of moments acting on the spheres to the
centroid of the particle the total moment
acting on the particle is

Fig 1. Schematic of contact
between two multi-element axi-
symmetrical particles, each
comprising two element spheres
of the same diameter
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The total out-of-balance force acting on the particle is the vectorial sum of contact
forces acting on its element spheres

(3)

Once the total force and moment acting on a particle have been determined,
Newton’s second law of motion is used to calculate the translational and rotational
accelerations of a particle. Using a central difference scheme and explicit numerical
integration, and assuming accelerations and velocities during a certain time-step
remain constant, the translational and rotational velocity of the particle are then
computed

                         (4)

                     (5)

where mp is the particle mass. Due to the non-sphericity of the particles it is
necessary to consider the mass moment of inertia when calculating the rotational
acceleration of a particle. This requires transformation of the local rotational
acceleration to the global reference frame which is achieved by rotation of the inertia
tensor of the particle as discussed in Favier et al (1999). Using (5) and integrating
over the time-step the new position of the particle is

                  (6)

Finally the position and rotational velocity of the element spheres are determined by
calculation of the direction cosines. The absolute velocity of the centre of an element
sphere with respect to the global axes is

   (7)

The magnitude of dps which locates the centre of sphere s with respect to the particle
centroid, is fixed but its direction will be changed due to particle rotation. The vector
can be written in terms of its unit vector n as

      
(8)

An approximation is required due to the discrete form of differentiation of the unit
position vector. In order for this vector to remain of unit length after a rotation it is
normalised by its magnitude. The global position vector of sphere s is then  

(9)

where dps(new)  is the normalised local position vector. The algorithm applies to each
element sphere in a particle which may contain any number of spheres. Completion
of the update of the position and velocity of each element sphere completes the
calculation cycle for a particle over a single time-step.
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Experimental validation of the model

The model was validated numerically and experimentally. The numerical validation
involved comparison between analytical and model calculations of contact forces with
multi-element particles at rest and sliding along an inclined surface. Since DEM
algorithms for spheres are well established, this type of numerical validation is
designed to expose systematic errors in the programme. The results showed that the
code was able to closely emulate the analytical results, e.g. weight of particle at rest.
While numerical validation provided evidence that the model was properly formulated
it could not demonstrate that the physical model employed was adequate to predict
the dynamic behavior of a non-spherical “multi-element” particle.

Materials and Methods

Experiments were conducted on 1:1 scale between experiment and simulation
using approximately identically shaped particles in each. Experiments consisted of
vertical displacement of an assembly of two-element particles through a narrowing
orifice so that particles translated and rotated. The experimental rig comprised a flat
V-shaped hopper with walls made of perspex delivering in to a flat column in which
moved a motorised piston as shown in Fig 2. The walls were spaced just greater than
the diameter of an element sphere which constrained particle movement to two-
dimensions. Preliminary tests showed that particle rotation about their major axis was
minimal during an experiment. Ten particles each comprised of two 45 mm diameter
spheres overlapped by 25% of their diameter were used in each experiment. The
spheres were pool balls made from phenolic resin machined flat at the point of
overlap and glued together. The physical properties of the spheres are given in Table
1. The particle-particle static coefficient of friction was determined by determining the
angle at which a block of three particles began to slide over another identical block.
The particle-wall coefficient of friction was determined by sliding a block of particles
over a sheet of perspex. The coefficient of restitution was determined by dropping a
sphere from on to a rigidly fixed hemi-sphere and measuring the rebound height. The
coefficient of restitution was then calculated from

e = (h/H)1/2 ….(10)

where H is the drop height and h is the rebound height. The value shown for e in
Table 1 is the mean of 30 replicates.

Table 1: Physical properties of experimental particles

Mass 142  g
Element sphere diameter 45 mm
Static coefficient of friction (particle-particle) 0.357
Static coefficient of friction (particle-wall) 0.351
Coefficient of restitution 0.85
Poisson’s ratio 0.35
Elastic modulus 6.89 GPa

In each experiment the particles were placed in the same position and
orientation as that of numerical model. The particle assembly was moved at a
controlled rate by moving the supporting piston downwards. The velocity of the piston
was 4.6 cm/s in all experiments. The piston, drive and drive motor were mounted on
a separate frame to that of the hopper to reduce transfer of vibration from the motor
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to the hopper. A typical arrangement of particles at the start of an experiment is
shown in Fig 2a.. The movement of particles was recorded with a camcorder at a
frequency of 50 frames/s. Each frame was extracted from the video file and analysed
to determine the particle co-ordinates and orientation. Each experiment was repeated
five times. Two sets of experiments were carried out. In the first experiment particles
were placed in the same position at the start of each run. The objective was to
determine how closely the movement of each particle could be replicated, i.e. how
sensitive to initial position was the subsequent behavior. In the second set of
experiments the arrangement of the particles (assembly microstructure) was
preserved but different particles were placed in each position in an experiment.

A numerical simulation was carried out using the measured physical
properties using an identical hopper and piston geometry. The velocity of the piston
used in the simulation was the same as that in the experiments. Simulations were
repeated with the same initial assembly microstructure but using different values for
inter-particle friction coefficient to test the influence of this parameter.
 
Results and discussion

The tracks of the particle centroids in the two experiments with identical initial
assembly structure and particle positions are shown in Fig 3. The tracks for each
particle were very similar which shows that the method of assembly construction
resulted in close replication of assembly behavior. This result also suggested that in
order to introduce a variation in the behavior of the assembly the positions of the
particles should be alternated within the same assembly structure. This was because
the experimental particles all differed in size and shape by a small amount (due to
differences in the amount of overlap and positioning of element spheres) while the
simulated particles were all identical. Differences in the size and shape of the real
particles were not easily measurable but were implicit in the method of manufacture.

Simulations with particle friction coefficients (µ) of 0.0, 0.1, 0.2, and 0.35
(equal to the static coefficient of friction between particles) resulted in the trajectories
shown in Fig 4. It can be seen that while the behavior of some particles was
replicated the movement of others (e.g. particle 9) was quite different.  Comparison
with Fig 3 shows that the trajectories for a high coefficient of friction (µ = 0.35) and
frictionless condition (µ = 0.0) are in poor agreement with the experiment. The closest
match was for trajectories using a value of µ of 0.1. This is in accord with the
commonly observed difference between dynamic and static friction coefficient. The
magnitude of the difference between the measured value and the value giving the
closest match between experiment and simulation is not relevant here (given the very
small numbers of replicates and the ignoring of the potential influence of other
parameters) but it does suggest that dynamic rather than static friction coefficients
should be used in DE models of particle flow.

Examples of the change in the orientation of particles is shown in Fig. 5. The
plots show the most divergent curves and the simulated curve for a poor match
(particle 1), a reasonable match (particle 9) and a good match (particle 10) between
the experimental and simulated curves. The simulated curves were all based on a
value of friction coefficient of 0.1. The translation of these particles is shown in Fig. 6
which includes all experimental replicates. Again the worst match is for particle 1 and
the best for particle 9. The quality of the match between the experimental and
simulated tracks for the remaining particles was between these two extremes.

Consideration of both the particle translation and change in particle orientation
shows that on the whole the match between experiment and simulation was very
good given the noise introduced by physical replication of the particle assembly, the
variation in physical particle geometry, the relatively long distance over which each
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could evolve and the limited exploration of the sensitivity to the magnitude of model
parameters. It can therefore be concluded that, at least on a coarse scale, the
physical principles and numerical approximations in the DE model are validated by
the experimental results. Although the particle shape tested represented the most
simple possible multi-element shape the principle should apply for more complex
shapes.

Simulations

Examples of shapes which can be represented using the axi-symmetrical multi-
element method are shown in Fig 7. It can be seen that a wide range of shape
representation is possible including ellipsoid, cylindrical, and irregular axi-symmetric.
The degree of surface fitting depends on the number of element spheres used to
create a particle. Increasing the number of element spheres per particle will reduce
proportionally the overall number of particles which can handled within a particular
simulation using a given level of computing power. The choice of number of element
spheres will therefore depend on the application and the desired approximation to
actual particle shape. The degree of approximation to the particle surface will govern
the magnitude of the error in calculation of the contact force vectors. These errors
have been estimated to be below 5% for many particle shapes when the average
specific sphere density (i.e. the average number of spheres occupying a length equal
to the mean sphere diameter) is greater than five.

Examples of the consolidation and flow of multi-element objects are shown in
Fig 8. They show the potential offered by the multi-element method for discrete
element modeling of assemblies of smooth surfaced objects with much greater
irregularity in shape than was previously possible.

Conclusions

A new method of modeling the dynamic behavior of axi-symmetrical fruits has been
summarised. The method is termed the multi-element approach and uses
overlapping spheres to represent fruit surface contour. The use of spheres to
represent a particle takes advantage of the computational speed and accuracy of
contact detection for spheres which should make the method comparable or superior
in computational efficiency to alternative schemes for representing non-spherical
objects. The method offers a powerful alternative to the use of instrumented spheres
for determination of impact forces on fruits in handling systems. It can be used to
study the mechanical behavior of fruits and vegetables during post-harvest
operations with the objective of improving the design and performance of handling
machinery. The model predicts normal and tangential contact forces on fruits within
bulks during handling and can therefore be used to increase understanding of
conditions leading to bruising and abrasion of produce.
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Fig 2  Section of experimental apparatus showing three images from (a) the start, (b) during,
and (c) the end of an experimental run.
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Fig. 3 Tracks of the centroids of particles in two experiments using an identical
arrangement of particles
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Fig. 4 Tracks of particle centroids from simulations using different coefficients of
inter-particle friction.
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Fig 5 Change in particle orientation in experiment and simulation
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Fig 6  Particle trajectories in experiment and simulation
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Fig 7 Examples of multi-element axi-symmetrical fruit shapes (a) tapered (30
element spheres), (b) irregular (12 element spheres), (c) cylindrical (20
element spheres), (e) 1.3:1 ellipsoid (18 element spheres) and (f) 2:1 ellipsoid
(28 element spheres).

Fig 8 Examples of multi-element particle assemblies after random positioning and
deposition under a gravity field; (a) 200 two-element particles, (b) 200 twenty-
element cylindrical particles, and (c) 100 twelve-element tapered particles.
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