
This article was downloaded by: [Ferdowsi University]
On: 11 October 2012, At: 19:23
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Statistical Computation and
Simulation
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gscs20

Testing normality based on new entropy
estimators
Ehsan Zamanzade a & Nasser Reza Arghami a
a Department of Statistics, Ferdowsi University of Mashhad,
Mashhad, Iran

Version of record first published: 08 Jul 2011.

To cite this article: Ehsan Zamanzade & Nasser Reza Arghami (2012): Testing normality based on
new entropy estimators, Journal of Statistical Computation and Simulation, 82:11, 1701-1713

To link to this article:  http://dx.doi.org/10.1080/00949655.2011.592984

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gscs20
http://dx.doi.org/10.1080/00949655.2011.592984
http://www.tandfonline.com/page/terms-and-conditions


Journal of Statistical Computation and Simulation
Vol. 82, No. 11, November 2012, 1701–1713

Testing normality based on new entropy estimators

Ehsan Zamanzade* and Nasser Reza Arghami

Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran

(Received 12 December 2009; final version received 28 May 2011)

In this paper, we first introduce two new estimators for estimating the entropy of absolutely continuous
random variables. We then compare the introduced estimators with the existing entropy estimators, includ-
ing the first of such estimators proposed by Dimitriev and Tarasenko [On the estimation functions of the
probability density and its derivatives, Theory Probab. Appl. 18 (1973), pp. 628–633]. We next propose
goodness-of-fit tests for normality based on the introduced entropy estimators and compare their powers
with the powers of other entropy-based tests for normality. Our simulation results show that the introduced
estimators perform well in estimating entropy and testing normality.
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1. Introduction

Suppose a random variable X has a distribution function F(x) with an absolutely continuous
density function f (x). The entropy H(f ) of the random variable is defined by Shannon [1] to be

H(f ) = −
∫ ∞

−∞
f (x) log f (x) dx. (1)

There are several areas in statistics, the area of goodness-of-fit testing in particular, that use the
concept of entropy as a key element. Many researchers have been concerned with the problem
of estimating entropy of continuous random variables. Dimitriev and Tarasenko [2] proposed
estimator using kernel density estimation, while Vasicek [3], Ebrahimi et al. [4] and Correa
[5] directly obtained non-parametric entropy estimators. Many researchers have shown interest
in developing entropy-based goodness-of-fit tests including Vasicek [3], Arizono and Ohta [6],
Dudewicz and van der Muelen [7], Mudholkar and Lin [8], Ebrahimi et al. [9], Bowman [10],
Lund and Jammalamadaka [11], Esteban et al. [12], Park and Park [13], Choi et al. [14], Goria
et al. [15], Yousefzadeh and Arghami [16], Mahdizadeh and Arghami [17], Alizadeh Noughabi
and Arghami [18] and Zamanzade and Arghami [19], most of which use Vasicek’s [3] version of
entropy estimator because of its simplicity and surprisingly relative precision.
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1702 E. Zamanzade and N.R. Arghami

Dimitriev and Tarasenko [2] propose to estimate the entropy of an absolutely continuous random
variable by

HD = −
∫ ∞

−∞
log(f̂ (x))f̂ (x) dx,

where f̂ (x) is the kernel density estimation of f (x), which is given by the formula

f̂ (Xi) = 1

nh

n∑
j=1

k

(
Xi − Xj

h

)
, (2)

where h is a bandwidth and k is a kernel function which satisfies∫ ∞

−∞
k(x) dx = 1

and is usually a symmetric probability density function.
Vasicek’s estimator is based on the fact that Equation (1) can be expressed as

H(f ) =
∫ 1

0
log

{
d

dp
F−1(p)

}
dp.

The estimate was constructed by replacing the distribution function F by the empirical distribution
function Fn, and using a difference operator instead of the differential operator. The derivative of
F−1(p) is then estimated by a function of the order statistics.

Assuming that X1, . . . , Xn is a random sample, the estimator is given by

HVmn = 1

n

n∑
i=1

log
{ n

2m
(X(i+m) − X(i−m))

}
, (3)

where X(1) ≤ X(2) ≤ · · · ≤ X(n) are order statistics based on a random sample of size n, the window
size m is a positive integer smaller than n/2 and X(i) = X(1)i < 1 or X(i) = X(n)i > n.

Ebrahimi et al. ’s [4] entropy estimator was obtained by modifying the denominator of
Equation (3) in order to assign smaller weights to observations in Equation (3) that are replaced
by X(1) and X(n). Their proposed entropy estimator is

HEmn = 1

n

n∑
i=1

log

{
n

cim
(X(i+m) − X(i−m))

}
,

where

ci =

⎧⎪⎨
⎪⎩

1 + i−1
m , 1 ≤ i ≤ m,

2, m + 1 ≤ i ≤ n − m,

1 + n−i
m , n − m + 1 ≤ i ≤ n.

They carried on a simulation study to show that their estimator has smaller bias and smaller mean
squared error than Vasicek’s [3] and Dudewicz and Van der Meulen’s [7] estimators.

Correa [5] proposed another modification of Vasicek’s [3] estimator, which produces smaller
MSEs, by rewriting Equation (3) as

HVmn = −1

n

n∑
i=1

log

{
F̂n(X(i+m)) − F̂n(X(i−m))

X(i+m) − X(i−m)

}
,

and noting that inside the brackets in the above equation is the estimate of the slope of the straight
line that joins points (X(i+m), F̂n(X(i+m))) and (X(i−m), F̂n(X(i−m))). He estimated this slope by local
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Journal of Statistical Computation and Simulation 1703

linear regression on {X(i−m), . . . , X(i+m)}, using all of 2m + 1 points instead of using only the two
end points.

He considered the relation:

F̂n(xj) = α + βxj + ε, j = m − i, . . . , m + i,

and estimated the slope β by its least square estimator; thus, he introduced his estimator of
entropy as

HCmn = 1

n

n∑
i=1

log

{∑i+m
j=i−m(X(j) − X̄(i))(j − i)

n
∑i+m

j=i−m(X(j) − X̄(i))2

}
,

where

X̄(i) = 1

2m + 1

i+m∑
j=i−m

X(j).

Van Es [20] introduced the bias-corrected entropy estimator defined by

HEsmn = 1

n − m

n−m∑
i=1

(
n + 1

m
log(X(i+m) − X(i))

)
+

n∑
k=m

1

k
+ log(m) − log (n + 1) ,

and established its asymptotic normality.
In Section 2 of this paper, we first introduce two new entropy estimators which are based

on another approximation for F(X(i+m)) − F(X(i−m)), i = 1, . . . , n, and then we compare our
proposed estimators with entropy estimators proposed by Dimitriev and Tarasenko [2], Vasicek
[3], Van Es [20], Ebrahimi et al. [4] and Correa [5]. In Section 3, we introduce goodness-of-fit tests
for normality based on the proposed entropy estimators and then compare their powers with the
powers of other entropy-based tests of normality. Section 4 contains some concluding remarks.

2. New entropy estimators

In this section, we first introduce new entropy estimators and then compare their performances
with those of the leading competitors.

2.1. Introduction of the estimators

Suppose X1, . . . , Xn is a random sample from an unknown absolutely continuous distribution F
with a probability density function f (x). To obtain our first entropy estimator, we note that H(f )
can be approximated by its sample mean, thus we have

H(f ) = −
∫ ∞

−∞
f (x) log f (x)

= −E(log f (x))

≈ −1

n

n∑
j=1

log f (x(i)),

where ‘≈’ indicates approximate equality. Using Vasicek [3] difference operator, we have

f (x(i)) ≈ F(x(i+m)) − F(x(i−m))

x(i+m) − x(i−m)

,
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1704 E. Zamanzade and N.R. Arghami

where x(1) ≤ x(2) ≤ · · · ≤ x(n) are order statistics based on a random sample of size n, the window
size m is a positive integer smaller than n/2; thus, we have

H(f ) ≈ 1

n

n∑
j=1

log

(
x(i+m) − x(i−m)

F(x(i+m)) − F(x(i−m))

)
.

Here, F(x(i+m)) − F(x(i−m)), i = 1, . . . , n, is taken to be the area, under the curve of f , between
x(i+m) and x(i−m). We can approximate this area by

F
(
x(i+m)

) − F
(
x(i−m)

) =
k2(i)−1∑
j=k1(i)

(
f (x(j+1)) + f (x(j))

2

)
(x(j+1) − x(j)),

where

k1(i) =
{

1 if i ≤ m,

i − m if i > m,

k2(i) =
{

i + m if i ≤ n − m,

i − m if i > n − m.

Now values of f (x(i)) can be estimated by a kernel density estimator (2).
Therefore, we can estimate the entropy H(f ) of an unknown continuous probability density

function f by

HZ1mn = 1

n

n∑
i=1

log{bi},

where

bi = X(i+m) − X(i−m)∑k2(i)−1
j=k1(i)

(
f (X(j+1))+f (X(j))

2

)
(X(j+1) − X(j))

,

f̂ (Xi) = 1

nh

n∑
j=1

k

(
Xi − Xj

h

)
,

where k is chosen to be the standard normal density function and the bandwidth h is chosen to

be the normal optimal smoothing formula, h = 1.06sn−1/5, where s(=
√

1/n
∑n

i=1 (Xi − X̄)2) is
the sample standard deviation (SD) [21].

To obtain our second estimator, we note that, in the first estimator we do not use equal number
of points for computing bi’s. Thus, it seems reasonable to use weights proportional to the number
of points used in deriving bi’s. Therefore, HZ1mncan be modified to give

HZ2mn =
n∑

i=1

wi log{bi},

where

wi =

⎧⎪⎪⎨
⎪⎪⎩

m+i−1∑n
i=1 wi

if 1 ≤ i ≤ m,
2m∑n
i=1 wi

if m + 1 ≤ i ≤ n − m,
n−i+m∑n

i=1 wi
if n − m + 1 ≤ i ≤ n,

i = 1, . . . , n.

are weights proportional to the number of points used in computation of bi’s.
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Journal of Statistical Computation and Simulation 1705

The following theorem which states that the scale of the random variable X has no effect on
the accuracy of HZ1mn and HZ2mn in estimating H(f ), can easily be proved by following the line
of argument in Ebrahimi et al. [4].

Theorem 1 Let X1, . . . , Xn be a sequence of iid random variables with entropy HX(f ) and let
Yi = cXi, i = 1, . . . , n, where c > 0. Let HZiX

mn and HZiY
mn, i = 1, 2, be entropy estimators for

HX(f ) and HY (g), respectively. (here g is the probability distribution function of Y = cX). Then
the following proprieties hold:

(i) E(HZiY
mn) = E(HZiX

mn) + log c, i = 1, 2,

(ii) Var(HZiY
mn) = Var(HZiX

mn), i = 1, 2,

(iii) MSE(HZiY
mn) = MSE(HZiX

mn), i = 1, 2.

2.2. RMSE comparisons of entropy estimators

In this subsection, we report the results of a simulation study which compares the performances of
the introduced entropy estimators with the estimators proposed by Dimitriev and Tarasenko [2],
Vasicek [3], van Es [20], Correa [5] and Ebrahimi et al. [4] in terms of their standard deviation
(SDs) and their root mean square errors (RMSEs). For selected values of n, N = 10, 000 samples
of size n were generated from normal, exponential and uniform distributions which are the same
three distributions considered by Ebrahimi et al. [4] and Correa [5].

Since Dimitriev and Tarasenko [2] make no mention of selecting the kernel function and the
value of h in their kernel estimator, we used the standard normal density as the kernel and its
corresponding optimal value of h which is equals to h = 1.06sn−1/n.

The optimal choice of m (which results in the minimum value of RMSE for given n) is still an
open problem. We use a heuristic formula proposed by Grzegorzewski and Wieczorkowski [22]
for choosing m subject to n, namely

m = [√n + 0.5],
for choosing m and computing RMSE and SD of the m-spacing entropy estimators.

Tables 1– 3 contain the RMSE values (and SDs) of the seven estimators at different sample
sizes for each of the three considered distributions.

We observe that the proposed estimators compare favorably with the five competitors; in the
case of the normal distribution, the proposed estimators perform well in comparison with other m-
spacing entropy estimators and in the case of the exponential distribution, the proposed estimators
and the entropy estimator proposed byVan Es [20] are quite competitive, but our entropy estimators

Table 1. Root mean square error and bias of the estimators of the entropy of the standard normal distribution.

RMSE(SD)

n m HD HVmn HEmn HEsmn HCmn HZ1mn HZ2mn

5 2 0.400 (0.400) 0.994 (0.425) 0.666 (0.425) 0.509 (0.452) 0.793 (0.418) 0.494 (0.407) 0.493 (0.407)
10 3 0.257 (0.247) 0.618 (0.269) 0.408 (0.269) 0.366 (0.283) 0.470 (0.271) 0.303 (0.255) 0.310 (0.255)
15 4 0.213 (0.198) 0.474 (0.211) 0.294 (0.211) 0.318 (0.220) 0.348 (0.213) 0.222 (0.193) 0.232 (0.192)
20 4 0.186 (0.168) 0.373 (0.179) 0.247 (0.179) 0.276 (0.185) 0.265 (0.182) 0.190 (0.170) 0.205 (0.169)
30 5 0.156 (0.134) 0.282 (0.144) 0.186 (0.144) 0.243 (0.148) 0.194 (0.146) 0.148 (0.135) 0.165 (0.135)
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1706 E. Zamanzade and N.R. Arghami

Table 2. Root mean square error and bias of the estimators of the entropy of the exponential distribution with mean one.

RMSE(SD)

n m HD HVmn HEmn HEsmn HCmn HZ1mn HZ2mn

5 2 0.633 (0.581) 0.930 (0.559) 0.651 (0.559) 0.596 (0.586) 0.743 (0.554) 0.575 (0.573) 0.576 (0.575)
10 3 0.522 (0.394) 0.570 (0.360) 0.404 (0.360) 0.392 (0.373) 0.435 (0.361) 0.391 (0.383) 0.389 (0.383)
15 4 0.482 (0.320) 0.421 (0.284) 0.308 (0.284) 0.310 (0.290) 0.328 (0.290) 0.327 (0.306) 0.321 (0.305)
20 4 0.454 (0.267) 0.356 (0.242) 0.263 (0.242) 0.274 (0.250) 0.272 (0.247) 0.300 (0.261) 0.286 (0.260)
30 5 0.426 (0.219) 0.276 (0.198) 0.201 (0.187) 0.227 (0.201) 0.208 (0.197) 0.266 (0.209) 0.245 (0.208)

Table 3. Root mean square error and bias of the estimators of the entropy of the uniform distribution one (0,1).

RMSE(SD)

n m HD HVmn HEmn HEsmn HCmn HZ1mn HZ2mn

5 2 0.404 (0.331) 0.774 (0.346) 0.450 (0.446) 0.407 (0.407) 0.566 (0.336) 0.330 (0.327) 0.330 (0.326)
10 3 0.324 (0.175) 0.455 (0.167) 0.235 (0.167) 0.216 (0.216) 0.295 (0.169) 0.179 (0.176) 0.180 (0.178)
15 4 0.296 (0.130) 0.343 (0.110) 0.159 (0.110) 0.155 (0.155) 0.208 (0.112) 0.137 (0.123) 0.136 (0.127)
20 4 0.283 (0.107) 0.274 (0.087) 0.133 (0.087) 0.126 (0.121) 0.157 (0.088) 0.125 (0.100) 0.121 (0.105)
30 5 0.263 (0.081) 0.210 (0.059) 0.096 (0.059) 0.086 (0.086) 0.110 (0.061) 0.112 (0.073) 0.104 (0.078)

are better in small sample sizes. In the case of the uniform distribution our estimators outperform
all competitors in most cases. We also observe that the proposed estimators are approximately
equivalent but HZ1mn is slightly better than HZ2mn.

3. Testing normality

Normal distribution is the most important distribution in statistics and has a predominant presence
in statistical inference. Many statistical techniques are based on the assumption that the data come
from this well-known, Bell-shaped distribution. Consequently, the results of these techniques can
be completely unreliable if the normality assumption is violated. Thus it becomes very important
to check this assumption in an appropriate and efficient way and that is why goodness-of-fit
techniques, especially for normal distribution, have attracted the attention of many researchers in
statistical inference.

Vasicek [3] showed that his entropy-based normality test achieves higher powers, as compared
with (then) best normality tests, namely, Anderson and Darling [23] and Shapiro and Wilk [24]
tests.

Many researchers have been interested in testing normality including Vasicek [3], Arizono and
Ohta [6], Esteban et al. [12], Choi et al. [14], Goria et al. [15], Farrell and Rogers-Stewart [25],
Yazici and Yolacan [26], Meintanis [27] Romão et al. [28], Cardoso de Oliveira and Ferreira [29],
Paul and Zhang [30] and Alizadeh Noughabi and Arghami [31].

In this section, we first introduce a goodness-of-fit test based on the proposed entropy estimators
of Section 2 for testing normality and then we compare the powers of the introduced tests with
the tests based on the entropy estimators proposed by Dimitriev and Tarasenko [2] , Vasicek [3] ,
Van Es [20], Ebrahimi et al. [4] and Correa [5].

3.1. Introduction of the test statistics

A well-known theorem of information theory [1, p. 55] states that among all continuous
distributions that possess a density function f , and have a given variance σ 2, the entropy H(f ) is
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Journal of Statistical Computation and Simulation 1707

maximized by the normal distribution. Based on this property, following Vasicek [3], we introduce
the following statistics for testing normality:

TZ1mn = exp{HZ1mn}
σ̂

,

TZ2mn = exp{HZ2mn}
σ̂

,

where

σ̂ =
√√√√1

n

n∑
i=1

(Xi − X̄)2.

Small values of TZ1mn and TZ2mn can be regarded as a symptom of non-normality and therefore
we reject the hypothesis of normality for small enough values of TZ1mn and TZ2mn.

It is worth mentioning that it is obvious that the above test statistics are scale and location
invariant.

Unfortunately, the test statistics TZ1mn and TZ2mn are too complicated to allow deriving their
exact distributions under normal hypothesis and therefore we obtain their critical values by means
of Monte Carlo simulation. Tables 4 and 5 give respectively, the exact critical values (non-
asymptotic) of the test statistics TZ1mn and TZ2mn, for various sample sizes by Monte Carlo
simulations with 10,000 repetitions.

3.2. Power comparisons

Ebrahimi et al. [4] showed the following relationship between their estimator and the estimator
proposed by Vasicek [3]

HEmn = HVmn + 2

n

{
m log(2m) + log

(m − 1)!
(2m − 1)!

}
.

Thus for a fixed sample size n and fixed m, the test based on Vasicek’s [3] and Ebrahimi et al.’s [4]
entropy estimators have the same power. Therefore, we only compare the tests based on TZ1mn

Table 4. Critical values of the TZ1mn statistic for α = 0.05.

m

n 1 2 3 4 5 6 7 8 9 10

5 3.176 3.290
6 3.195 3.302 3.392
7 3.250 3.320 3.389
8 3.290 3.354 3.425 3.482
9 3.320 3.374 3.444 3.498
10 3.348 3.403 3.472 3.516 3.559
15 3.486 3.523 3.583 3.620 3.638 3.652 3.664
20 3.577 3.604 3.648 3.690 3.712 3.717 3.717 3.719 3.723 3.728
25 3.641 3.660 3.700 3.739 3.772 3.789 3.788 3.787 3.782 3.775
30 3.703 3.724 3.765 3.792 3.821 3.833 3.845 3.845 3.839 3.834
40 3.768 3.777 3.805 3.835 3.854 3.879 3.892 3.896 3.895 3.893
50 3.810 3.817 3.837 3.867 3.892 3.912 3.928 3.935 3.940 3.947
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1708 E. Zamanzade and N.R. Arghami

Table 5. Critical values of the TZ2mn statistic for α = 0.05.

m

n 1 2 3 4 5 6 7 8 9 10

5 3.143 3.312
6 3.144 3.288 3.415
7 3.185 3.292 3.402
8 3.210 3.301 3.417 3.503
9 3.233 3.309 3.420 3.510
10 3.254 3.321 3.427 3.512 3.576
15 3.388 3.406 3.474 3.546 3.601 3.642 3.672
20 3.479 3.480 3.520 3.576 3.627 3.666 3.689 3.707 3.721 3.736
25 3.548 3.538 3.561 3.610 3.649 3.691 3.723 3.737 3.750 3.756
30 3.615 3.596 3.617 3.642 3.680 3.717 3.738 3.761 3.772 3.783
40 3.682 3.660 3.675 3.687 3.716 3.740 3.759 3.783 3.797 3.805
50 3.732 3.707 3.712 3.721 3.738 3.760 3.781 3.799 3.817 3.828

and TZ2mn with the tests based on the following test statistics

TD = exp{HD}
σ̂

,

TVmn = exp{HVmn}
σ̂

,

TEsmn = exp{HEsmn}
σ̂

,

TCmn = exp{HCmn}
σ̂

,

where σ̂ =
√

(1/n)
∑n

i=1 (Xi − X̄)2.
It is obvious that all of the above test statistics are location and scale invariant, and we reject

the hypothesis of normality for small enough values of TD, TVmn, TEsmn and TCmn.
For power comparisons, we compute the powers of the tests based on statistics

TD, TVmn, TEsmn, TCmn, TZ1mn and TZ2mn by means of Monte Carlo simulations under 20 alter-
natives. The alternatives can be classified into four groups, according to their supports and the
shapes of their densities. From the point of view of applied statistics, natural alternatives to normal
distribution are in groups I and II. For the sake of completeness, we also consider groups III and
IV. This gives additional insight in understanding the behaviour of the new test statistics TZ1mn

and TZ2mn. Esteban et al. [12], in their study of power comparisons of several tests for normality,
suggest classifying the alternatives into the following four groups:

Group I: Support = (−∞, ∞), symmetric.

• Student’s t with 1 degree of freedom (i.e. the standard Cauchy);
• Student’s t with 3 degrees of freedom;
• Double exponential with parameters μ = 0 (location), σ = 1 (scale);
• Logistic with parameters μ = 0 (location), σ = 1 (scale).

Group II: Support = (−∞, ∞), asymmetric.

• Gumbel with parameters α = 0 (location) and β = 1 (scale);
• Skew normal (SN) with parameters μ = 0 (location), σ = 1 (scale) and α = 2 (shape);
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• Skew double exponential (SDE) with parameters α = 1, β = 2 and μ = 0 (location) (mixture
exponential distribution with meanβ = 2 , and the negative of an exponential distribution with
mean α = 1).

Group III: Support = (0, ∞).

• Exponential with mean 1;
• Gamma with parameters β = 1 (scale) and α = 2 (shape);
• Gamma with parameters β = 1 (scale) and α = 1/2 (shape);
• Lognormal (LN) with parameters μ = 0 (scale) and σ = 1 (shape);
• Lognormal (LN) with parameters μ = 0 (scale) and σ = 2 (shape);
• Lognormal (LN) with parameters μ = 0 (scale) and σ = 1

2 (shape);
• Weibull with parameters β = 1 (scale) and α = 1

2 (shape);
• Weibull with parameters β = 1 (scale) and α = 2 (shape).

Group IV: Support = (0, 1).

• Uniform;
• Beta (2, 2);
• Beta (0.5, 0.5);
• Beta (3, 1.5);
• Beta (2, 1).

Unfortunately, the powers of the proposed tests depend on the window size and the alternative
distribution and therefore it is not possible to determine the best value of m, for which the tests
attain maximum power under all alternatives. Therefore we used the values of m for which the
aforementioned tests attain good (not best) powers for all alternative distributions. These values
of m are tabulated in Table 6.

Tables 7– 10 contain the results of 10,000 simulation (of samples size 10, 20 and 40) per case
to obtain the power of the proposed tests and those of the competing tests, at a significance level
α = 0.05. The bold type in these tables indicates the statistic achieving the maximal power.

Table 7 shows that the test based on TZ2mn consistently has the greatest power among entropy-
based tests for all alternative distributions in group I and all considered sample sizes.

Table 8 indicates that although the tests based on TZ2mnand TD are quite competitive but the
test TD is slightly better.

It is evident from Table 9 that the tests based on TVmn, TD and TZ1mn can be the best test for
different sample sizes. For small sample size (n = 10), the test based on TVmn is the best, for
moderate sample size (n = 20), the test based onTD has the greatest power and for large sample
size (n = 40), the test based on TZ1mn performs better than the others.

It is worth mentioning that the differences among the power of tests based on TVmn, TD and
TZ1mn in group III are not considerable.

Table 6. Proposed values of m for testing normality for different values of n.

n m

n ≤ 8 1
9 ≤ n ≤ 15 2
16 ≤ n ≤ 35 3
36 ≤ n ≤ 60 4
61 ≤ n ≤ 80 5
81 ≤ n ≤ 100 6
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Table 7. Power comparisons for normality tests based on TD, TV , TEs, TC , TZ1 and TZ2 statistics for sample sizes n = 10, 20 and 40 under the alternatives in group I with α = 0.05.

Sample size n = 10 n = 20 n = 40

Alt TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2

t(1) 0.583 0.442 0.591 0.409 0.632 0.638 0.872 0.737 0.871 0.687 0.885 0.900 0.991 0.960 0.987 0.949 0.988 0.993
t(3) 0.201 0.091 0.167 0.083 0.212 0.216 0.371 0.165 0.330 0.138 0.377 0.402 0.612 0.289 0.541 0.249 0.561 0.622
DE 0.163 0.065 0.140 0.057 0.177 0.181 0.304 0.091 0.271 0.070 0.309 0.344 0.533 0.197 0.451 0.158 0.476 0.568
Logistic 0.087 0.051 0.074 0.047 0.089 0.091 0.134 0.051 0.114 0.043 0.133 0.147 0.210 0.053 0.160 0.048 0.166 0.211
Average 0.258 0.216 0.243 0.149 0.277 0.281 0.420 0.261 0.396 0.234 0.426 0.448 0.586 0.374 0.534 0.351 0.547 0.598

Table 8. Power comparisons for normality tests based on TD, TV , TEs, TC , TZ1 and TZ2statistics for sample sizes n = 10, 20 and 40 under the alternatives in group II with α = 0.05.

Sample size n = 10 n = 20 n = 40

Alt TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2

Gumbel(0,1) 0.154 0.101 0.113 0.097 0.145 0.144 0.310 0.198 0.195 0.185 0.294 0.282 0.530 0.399 0.355 0.394 0.528 0.492
SN(0,1,2) 0.071 0.058 0.062 0.053 0.068 0.066 0.102 0.073 0.073 0.076 0.099 0.096 0.149 0.099 0.097 0.102 0.144 0.140
SDE(0,1,2) 0.216 0.117 0.178 0.111 0.220 0.223 0.423 0.225 0.353 0.201 0.424 0.436 0.693 0.420 0.586 0.385 0.659 0.693
Average 0.147 0.092 0.117 0.087 0.144 0.147 0.278 0.165 0.207 0.154 0.272 0.271 0.457 0.306 0.346 0.293 0.443 0.441
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Table 9. Power comparisons for normality tests based on TD, TV , TEs, TC , TZ1 and TZ2 statistics for sample sizes n = 10, 20 and 40 under the alternatives in group III with α = 0.05.

Sample size n = 10 n = 20 n = 40

Alt TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2

Exp(1) 0.394 0.416 0.330 0.404 0.359 0.353 0.790 0.846 0.646 0.836 0.745 0.688 0.980 0.996 0.943 0.995 0.984 0.960
Gamma(2) 0.222 0.179 0.158 0.173 0.209 0.205 0.507 0.457 0.322 0.443 0.459 0.416 0.801 0.832 0.613 0.825 0.825 0.751
Gamma(1/2) 0.631 0.782 0.679 0.786 0.581 0.572 0.959 0.992 0.955 0.991 0.947 0.915 0.999 1 0.999 1 999 0.999
LN(0,1) 0.565 0.552 0.485 0.542 0.524 0.516 0.909 0.927 0.825 0.919 0.895 0.865 0.997 0.998 0.989 0.998 0.997 0.993
LN(0,2) 0.869 0.938 0.892 0.936 0.846 0.840 0.997 0.999 0.997 0.999 0.996 0.994 1 1 1 1 1 1
LN(0,1/2) 0.249 0.181 0.176 0.171 0.229 0.228 0.517 0.404 0.360 0.386 0.470 0.445 0.788 0.740 0.619 0.733 0.801 0.757
Weibull(1/2) 0.813 0.931 0.876 0.926 0.784 0.776 0.995 1 0.997 0.999 0.994 0.987 1 1 1 1 1 1
Weibull(2) 0.076 0.075 0.064 0.071 0.074 0.073 0.148 0.132 0.089 0.133 0.123 0.110 0.251 0.267 0.126 0.276 0.267 0.199
Average 0.477 0.503 0.457 0.501 0.450 0.445 0.727 0.719 0.648 0.713 0.703 0.677 0.852 0.854 0.786 0.853 0.859 0.832

Table 10. Power comparisons for normality tests based on TD, TV , TEs, TC , TZ1 and TZ2 statistics for sample sizes n = 10, 20 and 40 under the alternatives in group IV with α = 0.05.

Sample size n = 10 n = 20 n = 40

Alt TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2 TD TV TEs TC TZ1 TZ2

Uniform 0.028 0.167 0.061 0.170 0.030 0.026 0.084 0.442 0.076 0.438 0.099 0.028 0.343 0.846 0.160 0.854 0.480 0.126
Beta(2,2) 0.025 0.082 0.037 0.086 0.025 0.023 0.028 0.131 0.027 0.135 0.028 0.013 0.070 0.257 0.028 0.288 0.095 0.015
Beta(1/2,1/2) 0.080 0.512 0.238 0.489 0.078 0.060 0.408 0.914 0.460 0.902 0.442 0.145 0.912 0.999 0.882 0.999 0.973 0.726
Beta(3,1/2) 0.065 0.108 0.064 0.110 0.061 0.058 0.129 0.224 0.069 0.225 0.114 0.079 0.262 0.492 0.118 0.512 0.316 0.158
Beta(2,1) 0.093 0.173 0.092 0.182 0.081 0.076 0.221 0.438 0.131 0.432 0.200 0.130 0.472 0.825 0.289 0.832 0.574 0.315
Average 0.058 0.208 0.098 0.207 0.055 0.048 0.174 0.429 0.152 0.426 0.176 0.079 0.411 0.683 0.295 0.696 0.487 0.268

D
ow

nl
oa

de
d 

by
 [

Fe
rd

ow
si

 U
ni

ve
rs

ity
] 

at
 1

9:
23

 1
1 

O
ct

ob
er

 2
01

2 



1712 E. Zamanzade and N.R. Arghami

In group IV, the results are not in favour of the proposed tests, TVmn and TCmn give the best
powers and the differences between their powers are negligible.

4. Conclusion

In this paper, we showed by simulation, that our two entropy estimators compare favourably with
their competitors in terms of RMSE.

We also considered normality tests based on the introduced entropy estimators and compared
them with the leading competitors.

Based on these comparisons, the following recommendations can be formulated for the
application of the studied tests for testing normality in practice.

1. Use TZ2mn against the alternative distributions that are symmetric and have support on
(−∞, ∞).

2. Use one of the TZ2mn or TD against the alternative distributions that have support on (−∞, ∞).
3. Use one of the TZ1mn, TD or TVmn against the alterative distributions that have support on

(0, ∞).
4. Use TVmn or TCmn against the alterative distributions that have support on (0,1).
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