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ABSTRACT

In this paper, a new active contour model called self-affine
snake is proposed which integrates the self-affine mapping
system (SAMS), wavelet transform, and snake model. It inherits
wide capture range from the wavelet transform, both accurate fit
to weak edges and effective reconstruction of boundary
concavities from SAMS, and topological consistency from the
snake model while avoiding their weak points. In self-affine
snake, first, a force vector is computed for every pixel in each
wavelet LL matrix using SAMS with disk domains. Then the
obtained force fields of different wavelet scales are effectively
combined to make the self-affine force filed. Finally, the snake
is deformed using the resultant forces based on the snake
dynamic formulation. Experiment results demonstrate good
performance for self-affine snake compared to the balloon for a
number of synthetic and biomedical benchmark images.

Index Terms- Image shape analysis, wavelet transforms

1. INTRODUCTION

The parametric active contours or snakes are parametric curves
that can move toward desired features, usually edges, within an
image domain under the influence of internal forces coming
from within the curve itself and external forces derived from the
image data [1]. The external forces usually draw the curve
toward desired features while the internal forces hold the curve
together (elasticity forces) and keep it from bending too much
(bending forces). The external forces are divided into two
categories: potential forces defined as the negative gradient of a
potential function and dynamic forces formulated directly using
a force balance formulation [2].

Snake models suffer three key difficulties: i) they should be
usually initialized by an initial contour close to the object
boundary [3], ii) they have difficulties to reconstruct the edge
openings and progress into boundary concavities [4], and iii)
they may likely converge to wrong results for weak edges,
especially, when they lie beside strong edges [5]. However,
most of methods introduced to address the above problems
solve one problem while creating new difficulties. For example,
multiresolution approaches increase the capture range of the
external forces while deciding about how the contour should
move across different resolutions is a challenging difficulty in
such algorithms [4]. The balloon model addresses both the
capturing range and boundary concavity problems using
pressure forces, but they can not be too strong or weak edges
will be overwhelmed [5]. Furthermore, the pressure forces are
not bidirectional, a condition that mandates careful
initialization. Another example is gradient vector flow and its
variations [6-9] which effectively tackle the capturing range and

boundary concavity problems though they may poorly perform
for weak edges [10]. Additionally, they are computationally
intensive due to computation of forces for almost all image
pixels [11].

Considering the above difficulties, some researchers
proposed several contour extraction algorithms that inherently
differ from snakes. Ida and Yoko have been introduced a highly
accurate method to approach and fit a roughly drawn line to the
object contour using self-affine mapping systems [12]. The
contractive self-affine mapping system has been typically used
to produce fractal figures [13]. In an earlier work [14], Ida et al
showed that edges attract mapping points during iterations of
the map when they are initially set near them. They have
utilized this attraction phenomenon to extract self-similar curves
instead of a smooth curve like that in snakes. Ida's approach, in
spite of significant strengths including accurate fit to boundaries
and wide capture range, has some weak points. It sometimes
abnormally deforms the contour due to fractal behaviors [12].
The authors addressed this drawback by defining the contour as
a topologically-consistent parametric curve in an earlier work
[15].

This work is an attempt to tackle the difficulties of both
snake and Ida's algorithm by keeping their strengths while
avoiding their weak points. In this paper, we propose a new
parametric active contour model called self-affine snake which
integrates the self affine mapping system (SAMS), wavelet
transform, and snake model. Self-affine snake inherits wide
capture range from the wavelet transform, both accurate fit to
weak edges and effective reconstruction of boundary
concavities from SAMS, and topological consistency from
snakes.

This paper is organized as follows: in sections 2 and 3, the
self-affine mapping system and snake model are reviewed,
respectively. Section 4 presents the proposed self-affine snake.
Experiment results are given in section 5. Finally, section 6 is
devoted to concluding remarks.

2. SELF-AFFINE MAPPING SYSTEM

2.1 Contractive self-affine maps

Consider an image having the support GcR2 with intensity g(x)
for all xe G. The contractive map mi with domain MicG
(i=I,...1) is defined as follows:
mi (x) = ri (X - Xi) + (Ti + Xi), rj<1 (1)
where x5i is the center point of Mi. The above equation
translates Mi by vector z=[si,ti] and expands it by ri to form
domain Wi=mi(Mi). A contractive self-affine model is defined as
{Mi,mi,ui} where:
ui (z) = piz + qi, z = mi(x), ° < pi <1 (2)
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Figure 1. A self-affine model with I=5 square domains.

2.2 Extracting self-affine maps

Extracting self-affine models includes two steps. First, some Mi
are allocated. The allocation method depends on the application
of self-affine model. Then, a search is performed to indicate the
parameters of maps including ri, si, ti, pi, and qi using a block
matching algorithm [13]. For each self-affine map, the block
matching algorithm changes the value of one parameter in each
step and then, a matching cost is evaluated as follows:

C = XE=-M *gx) g(mi (X))l 3

After checking all situations, the best set of values with the
minimum cost is selected. Figure 1 illustrates a self-affine
model with square domains, setting I=5 and ri=1/2. As shown,
the texture in each larger block (MV) is almost similar to that in
the corresponding smaller block (W).

2.3 Extracting self-affine contours

To extract self-affine contours by Ida's algorithm, the square
domains Wi are firstly initialized along an initial contour such
that each domain almost covers half of each adjacent domain
(see left image in Figure 2). Then, the self-affine maps attached
to these domains are extracted using the block matching
algorithm explained in Section 2.2. Finally, each point on the
contour is mapped in each step by the surrounding self-affine
maps. The distances between the contour points and object
boundary reduces to half in each mapping. Hence, the contour
fits the object boundary after a few mappings [12].

To increase the capture range in Ida's algorithm, primary
domains are selected enough large. Once the algorithm
converges, all domains are initialized again with half size along
the resultant contour. After extracting the self-affine maps
attached to the new domains, the mapping process is repeated
anew. Figure 2 shows the results of Ida's algorithm for a flower
image.

3. PARAMETRIC SNAKES

A traditional snake is a curve x(s)=[x(s),y(s)], se [0,1] that
moves in the spatial domain of an image to minimize the energy
functional [ 1 ]:

E = f[x'(s)2 + i|xt(s)2 ]+Eext (x(s))ds (4)

where x'(s) and x"(s) are the first and second derivatives of x(s)
with respect to s and the weighting parameters a and f8 control
the snake tension and rigidity, respectively. The external energy
function Eext derived from the image takes on smaller values at
interested features such as object boundaries. A snake that
minimizes E must satisfy the Euler equation given by:
a X (S) - x(s)(S)- VEext = 0 (5)
Defining F(1") = ax'(s) - ,X(4) (s) and F(P) = -VEext, we have

int ~~~ ~ ~~~~~~extex

the following force balance equation:
+F(P) =0 (6)

e 2. 1 he initial contour and square domains (lett),,
final contour obtained by Ida's algorithm (right).

Figure 3. Block diagram of the proposed self-affine snake.

where the internal force Fint discourages stretching and bending
while the external potential force F(P) pushes the snake toward
the desired image features. A solution to (6) is found by setting
the left hand side of (6) equal to the derivative of the snake x
with respect to time:
Xt (S, t) = oc x"(s)-,8 X(4) (S)-_VEext (7)
When the solution x(s,t) stabilizes, the term xt(s,t) vanishes and
we achieve the solution of (6).

Several researchers directly formulate the snake using a
force balance equation in which the standard external potential
force F(P) is replaced by a more general external force F(g) as
follows [2, 11]:

F )+F>= 0 (8)
where F(9) is usually a combination of potential and (non-
potential) dynamic forces.

4. PROPOSED APPROACH

The proposed self-affine snake algorithm integrates the snake
model, SAMS, and wavelet transform to keep their strengths
and avoid their weak points. As shown in Figure 3, the
algorithm consists of five steps: i) computing wavelet
transform, ii) extracting self-affine maps in each scale, iii)
computing forces for each scale, iv) combining the forces of
different scales to make self-affine forces, and v) converging the
snake model using the obtained forces.

4.1 Computing wavelet transform

Ida's algorithm uses square domains with different sizes to
increase the capture range. Instead, extracting the self-affine
maps with small domain size in different scales of an image can
obviously reduce the computational cost. Hence, we compute
the discrete wavelet transform of the input image in n
consecutive scales using compactly supported biorthogonal
spline wavelets for which symmetry and exact reconstruction
are possible with FIR filters [16].

4.2 Extracting self-affine maps

After computing the wavelet coefficients, a self-affine map is
extracted for each pixel of LL submatrix in each scale. In other
words, each pixel is attached to a self-affine map. As shown in
Figure 4, we use circular domains for their symmetry in all
directions. The domain MAh corresponded to the pixel x=(x,y) is
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a circle with radius ofR pixels and centre at x. The parameters
of all self-affine maps are extracted by the block matching
algorithm (see Section 2.2). In order to reduce the
computational intensity of the block matching algorithm, the
parameters rXy, Px,y and qxy are set equal to 1/2, 1, and 0,
respectively. Also, the range of variations of parameters s.y and
t.y are defined as [x-R/2,x+R/2] and [y-R/2,y+R/2], respectively,
for domain Mx<y

4.3 Computing forces for each scale

The block matching algorithm computes the best translation
vector zxy=[sxy,txy] which minimizes the matching cost between
domains Mxy and Wxy. Considering this fact that the object
boundaries attract the self-affine maps [14], -x,y may give the
best direction to move the active contour at pixel x=(x,y).
Hence, we define the forces of the m-th wavelet scale as
follows:

(x, =x y K LHm (x, y)| + |HLm (x, y)| (9)m X>T max(lLHm (x, y)| + |HLm (x, y)|)
where Tm is the translation vector given by the block matching

algorithm for pixel (x,y) in LL submatrix of the m-th wavelet
scale. Furthermore, LHm and HLm indicate LH and HL
submatrices of the m-th wavelet scale. According to (9), forces
are scaled by the normalized gradient amplitude.

4.4 Combining forces

To compute the proposed self-affine forces, the forces of
different wavelet scales should be effectively combined. We use
a weighted superposition for this aim. The self-affine force is
computed for pixel x=(x,y) in the image domain as follows:

S(A.(XIY) =GSN(X (Y) 12 ( X Y) (10)

where F(P) is given by:

(PFGS (X, Y)-~()(,Y = axFG(PsN(x, y)
FGSN(X,Y) Xmax)GSN(x,y)

0

1g,; ' )>0 (11)
maOrthi(x,y)

Ortherwise

where FGN (X, Y) - -V(- |V[G (X,y) * g(x, y)]2) indicates
Gaussian potential forces [2] that are used in order to improve
the boundary localization performance of self-affine forces.

4.5 Converging snake model

The resultant self-affine forces are then used to move the active
contour toward the object boundary according to the dynamic
snake formulation (see Eq. 8).

In all demonstrated experiments in this paper, self-affine
forces are computed for all image pixels to make a complete
force field. However, they can be equivalently computed only
for pixels on the current curve in each step. It means that the
computational intensity of self-affine snake can be significantly
decreased by this manner.

4.6 Number of wavelet scales

According to (10), the capture range of self-affine forces is
increased by increasing the number of wavelet scales, n.
Generally, in order to capture the snake from distance L, the
number of wavelet scales is simply given by:
2n xR > L => n > log2(L/R) (12)

Figure 4. Two illustrations of circular domains used in self-
affine snake. Textures in the larger and smaller circles are

similar for each pair.

5. RESULTS AND DISCUSSION

We performed a large number of experiments to study the
performance of the proposed self-affine snake algorithm. In all
experiments, R and 0 were set to 5 and 0.2, respectively. We
first note that for all experiments, the traditional potential forces
such as Gaussian forces were too weak to overpower the
internal forces and the snake shrank at the centre of the figure.
Furthermore, self-affine snake in contrast to Ida's algorithm was
usually topologically-consistent in all experiments due to the
parametric definition of curve (results not shown).

Figure 5 illustrates the self-affine forces for a synthetic
image with openings at top and bottom. The convergence of
self-affine snake for this image compared to a balloon model
with an outward pressure force is shown in Figure 6. The self-
affine forces are bidirectional and they provide an adequate
wide capture range. Furthermore, self-affine snake could
effectively progress into boundary concavities and it
reconstructed the subjective boundaries at the top and bottom as
well. Clearly, the pressure forces caused the balloon model to
bulge outward through the openings at top and bottom and
hence, the subjective contours were not reconstructed well.
Figure 7 and 8 demonstrate similar results for a cell image with
weak boundaries close to the strong edges of the cell centre.
Figure 9 shows the convergence of self-affine snake with three
different initializations for a magnetic resonance (MR) image of
left ventricle of a human heart. As shown, self-affine snake
effectively converged to subjective contours for all of them.

6. CONCLUDING REMARKS

In this paper, a new active contour model called self-affine
snake was proposed. It integrates the wavelet transform, self-
affine mapping system, and snake model to keep their strengths
while avoiding their drawbacks. Although self-affine snake
demonstrated good performance for parametric active contours
in this paper, we expect that it has applications in geometric
active contours as well. How this can be achieved is an open
problem and further research is necessary to this end.
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Figure 5. The proposed self-affine forces (right) for a synthetic
64x64-pixel image (left) with openings at top and bottom.

Figure 6. Convergence of self-affine snake with two different
initializations (left and middle) for the image shown in Figure 5-

left compared to a balloon model with an outward pressure
force (right).

Figure 7. The proposed selt-attine torces (right) tor a 104x9z-
pixel cell image (left) with weak boundaries close to strong

edges.

Figure x. Convergence ot Selt-attine snake (right) tor the
image shown in Figure 7-left compared to a balloon model with

an outward pressure force (left).

rigure Y. i ne prUpUseu se11-a11111i iUorcs VlUp-ieii) lUl a
160x 160-pixel MR image of left ventricle of a human heart and

convergence of Self-affine snake with three different
initializations.
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