Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Bis(4-methylphenyl)-N''-(2,2,2trichloroacetyl)phosphoric triamide

Akbar Raissi Shabari,^a* Mehrdad Pourayoubi,^b Hassan Fadaei,^b Marek Nečas^c and Michal Babiak^c

^aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, ^bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and ^cDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic

Correspondence e-mail: a.raissi_shabari@yahoo.com

Received 28 April 2012; accepted 11 May 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.028; wR factor = 0.072; data-to-parameter ratio = 13.6.

The P atom in the title compound, C₁₆H₁₇Cl₃N₃O₂P, is bonded in a distorted tetrahedral geometry with the phosphoryl and carbonyl groups anti with respect to one another. In the crystal, molecules are linked through $(N-H)_2 \cdots O(=P)$ and $N-H \cdots O(=C)$ hydrogen bonds into chains along [001]. The phosphoryl O atom acts as a double hydrogen-bond acceptor.

Related literature

For phosphoric triamides having a C(=O)NHP(=O) skeleton, see: Pourayoubi et al. (2011). For the definition of a double hydrogen-bond acceptor, see: Steiner (2002); Pourayoubi et al. (2012).

Experimental

Crystal data C16H17Cl3N3O2P

 $M_r = 420.65$

•	
organic	compounds
o game	compounds

Z = 4

Mo $K\alpha$ radiation

 $0.60 \times 0.60 \times 0.60 \; \mathrm{mm}$

 $\mu = 0.59 \text{ mm}^-$

T = 120 K

Monoclinic, $P2_1/c$ a = 17.5151 (6) Å b = 10.8638 (4) Å c = 9.8615 (3) Å $\beta = 97.565 \ (3)^{\circ}$ $V = 1860.12 (11) \text{ Å}^3$

Data collection

Oxford Diffraction Xcalibur	6796 measured reflections
Sapphire2 diffractometer	3265 independent reflections
Absorption correction: multi-scan	2820 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.013$
Diffraction, 2009)	
$T_{\min} = 0.955, T_{\max} = 1.000$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$wR(F^2) = 0.072$	independent and constrained
S = 1.04	refinement
3265 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
240 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O1^{i}$ $N2 - H2N \cdots O1^{i}$ $N3 - H3N \cdots O2^{ii}$	0.77 (2) 0.76 (2) 0.75 (2)	2.17 (2) 2.23 (2) 2.31 (2)	2.8953 (19) 2.948 (2) 3.008 (2)	156 (2) 159 (2) 157 (2)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Support of this investigation by the Islamic Azad University, North Tehran Branch, is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5469).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, 051-056.
- Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

supplementary materials

Acta Cryst. (2012). E68, o1813 [doi:10.1107/S160053681202154X]

N,*N*'-Bis(4-methylphenyl)-*N*''-(2,2,2-trichloroacetyl)phosphoric triamide

Akbar Raissi Shabari, Mehrdad Pourayoubi, Hassan Fadaei, Marek Nečas and Michal Babiak

Comment

The structure determination of the title compound, $P(O)[NHC(O)CCl_3][NHC_6H_4(4-CH_3)]_2$ (Fig. 1), was performed as a part of a project on the synthesis of new phosphoric triamides having a C(O)NHP(O) skeleton (Pourayoubi *et al.*, 2011).

The P=O (1.4727 (12) Å) and C=O (1.211 (2) Å) bond lengths are standard for this category of compounds (Pourayoubi *et al.*, 2011). The P atom has a distorted tetrahedral configuration (Fig. 1). The bond angles at the P atom are in the range 102.25 (8) – 118.28 (8)°. The P—N1 and P—N2 bonds (with lengths of 1.6195 (16) Å and 1.6345 (16) Å) are shorter than the P—N3 bond (1.7071 (16) Å). As might be expected the C15—N3 bond distance (1.349 (2) Å) is shorter than the other C—N bond distances.

In the crystal, each molecule is hydrogen-bonded to two adjacent molecules through $N_{C(O)NHP(O)}$ —H···O(C) and (N—H)₂···O(P) hydrogen bonds along the *c* axis with the oxygen atom of phosphoryl group as a double-hydrogen bond acceptor (Steiner, 2002; Pourayoubi *et al.*, 2012).

Experimental

 $CCl_3C(O)NHP(O)Cl_2$ was synthesized from a reaction between phosphorus pentachloride (15.5 mmol) and 2,2,2-trichloroacetamide (15.5 mmol) in dry CCl_4 at 353 K (3 h) and then treated with formic acid 85% (15.5 mmol) at ice bath temperature.

To a solution of $CCl_3C(O)NHP(O)Cl_2$ (1.7 mmol) in dry chloroform (30 ml), a solution of *p*-toluidine (6.8 mmol) in the same solvent (5 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from methanol at room temperature. IR (KBr, cm⁻¹): 3305, 3248, 3029, 2920, 2858, 1714, 1619, 1514, 1433, 1376, 1277, 1234, 1191, 963, 882, 811, 730, 683.

Single crystals were obtained from a solution of the title compound in CH₃OH after slow evaporation at room temperature.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their U_{iso} set to either $1.2U_{eq}$ or $1.5U_{eq}$ (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Figure 1

The molecular structure of the title compound with ellipsoids shown at the 50% probability level.

Figure 2

Partial packing view showing the formation of a chain through $N_{C(O)NHP(O)}$ —H···O(C) and (N—H)₂···O(P) hydrogen bonds along the *c* axis. The dashed lines show the donor···acceptor distances of the hydrogen bonds.

N,*N*'-Bis(4-methylphenyl)-*N*''-(2,2,2- trichloroacetyl)phosphoric triamide

Crystal data	
$C_{16}H_{17}Cl_3N_3O_2P$	b = 10.8638 (4) Å
$M_r = 420.65$	<i>c</i> = 9.8615 (3) Å
Monoclinic, $P2_1/c$	$\beta = 97.565 \ (3)^{\circ}$
Hall symbol: -P 2ybc	$V = 1860.12 (11) \text{ Å}^3$
a = 17.5151 (6) Å	Z = 4

F(000) = 864 $D_{\rm x} = 1.502 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5060 reflections $\theta = 3.3 - 27.7^{\circ}$

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 8.4353 pixels mm⁻¹ ω scan Absorption correction: multi-scan (CrvsAlis RED: Oxford Diffraction, 2009) $T_{\rm min} = 0.955, T_{\rm max} = 1.000$

Refinement

Refinement on F^2

 $wR(F^2) = 0.072$

3265 reflections

240 parameters

direct methods

0 restraints

S = 1.04

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.028$

 $\mu = 0.59 \text{ mm}^{-1}$ T = 120 KPrism, colourless $0.60 \times 0.60 \times 0.60 \text{ mm}$

6796 measured reflections 3265 independent reflections 2820 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.013$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ $h = -20 \rightarrow 8$ $k = -12 \rightarrow 12$ $l = -11 \rightarrow 11$

Secondary atom site location: difference Fourier man Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0371P)^2 + 0.8844P]$ where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles: correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.42010 (3)	0.60382 (4)	0.43562 (4)	0.02457 (13)	
01	0.14643 (7)	0.76151 (12)	0.35677 (12)	0.0207 (3)	
P1	0.17851 (3)	0.74597 (4)	0.50145 (4)	0.01634 (12)	
C1	0.12216 (10)	0.51775 (18)	0.53131 (17)	0.0191 (4)	
N1	0.13973 (9)	0.63843 (15)	0.58334 (15)	0.0190 (3)	
C12	0.46136 (3)	0.60149 (5)	0.72774 (4)	0.02712 (13)	
O2	0.30612 (7)	0.68782 (12)	0.72621 (12)	0.0225 (3)	
C2	0.07280 (11)	0.5003 (2)	0.41018 (18)	0.0246 (4)	
H2	0.0532	0.5692	0.3573	0.030*	
N2	0.17663 (9)	0.86377 (15)	0.60406 (16)	0.0187 (3)	
C13	0.44563 (3)	0.83378 (5)	0.58356 (5)	0.02685 (13)	

C3	0.05233 (11)	0.3820 (2)	0.3671 (2)	0.0287 (5)	
Н3	0.0200	0.3709	0.2829	0.034*	
N3	0.27364 (9)	0.71385 (15)	0.49795 (15)	0.0182 (3)	
C4	0.07772 (11)	0.2797 (2)	0.4435 (2)	0.0292 (5)	
C5	0.12832 (12)	0.2987 (2)	0.5623 (2)	0.0335 (5)	
Н5	0.1480	0.2298	0.6151	0.040*	
C6	0.15074 (11)	0.41629 (19)	0.6055 (2)	0.0276 (5)	
H6	0.1859	0.4270	0.6865	0.033*	
C7	0.22672 (10)	0.96637 (17)	0.60665 (17)	0.0180 (4)	
C8	0.25836 (11)	1.00236 (18)	0.49043 (18)	0.0228 (4)	
H8	0.2465	0.9582	0.4072	0.027*	
C9	0.30726 (12)	1.10297 (18)	0.4972 (2)	0.0258 (4)	
Н9	0.3296	1.1253	0.4180	0.031*	
C10	0.32484 (11)	1.17239 (18)	0.61502 (19)	0.0250 (4)	
C11	0.29305 (12)	1.13365 (19)	0.7299 (2)	0.0280 (5)	
H11	0.3047	1.1781	0.8130	0.034*	
C12	0.24498 (11)	1.03244 (18)	0.72679 (18)	0.0237 (4)	
H12	0.2244	1.0081	0.8072	0.028*	
C13	0.05026 (13)	0.1515 (2)	0.4026 (3)	0.0414 (6)	
H13A	0.0835	0.0908	0.4550	0.062*	
H13B	0.0523	0.1396	0.3047	0.062*	
H13C	-0.0029	0.1410	0.4217	0.062*	
C14	0.37295 (13)	1.2873 (2)	0.6172 (2)	0.0350 (5)	
H14A	0.4040	1.2957	0.7069	0.052*	
H14B	0.3392	1.3590	0.5998	0.052*	
H14C	0.4071	1.2819	0.5462	0.052*	
C15	0.32379 (10)	0.69330 (17)	0.61173 (17)	0.0175 (4)	
C16	0.40963 (10)	0.68105 (17)	0.58949 (17)	0.0192 (4)	
H1N	0.1460 (12)	0.6449 (19)	0.662 (2)	0.023 (6)*	
H2N	0.1638 (12)	0.848 (2)	0.672 (2)	0.026 (6)*	
H3N	0.2878 (12)	0.720 (2)	0.430 (2)	0.027 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0236 (2)	0.0341 (3)	0.0165 (2)	0.0062 (2)	0.00442 (17)	-0.00528 (19)
01	0.0204 (6)	0.0296 (7)	0.0124 (6)	-0.0004 (6)	0.0027 (5)	0.0013 (5)
P1	0.0169 (2)	0.0216 (3)	0.0107 (2)	-0.0005 (2)	0.00235 (17)	0.00029 (18)
C1	0.0155 (9)	0.0273 (10)	0.0154 (8)	-0.0044 (8)	0.0054 (7)	-0.0026 (8)
N1	0.0243 (8)	0.0253 (9)	0.0076 (7)	-0.0037 (7)	0.0025 (6)	-0.0019 (7)
Cl2	0.0263 (3)	0.0359 (3)	0.0180 (2)	0.0092 (2)	-0.00139 (18)	0.00249 (19)
O2	0.0227 (7)	0.0329 (8)	0.0125 (6)	0.0018 (6)	0.0047 (5)	0.0003 (5)
C2	0.0218 (10)	0.0349 (12)	0.0168 (9)	-0.0005 (9)	0.0010 (7)	-0.0019 (8)
N2	0.0224 (8)	0.0230 (9)	0.0118 (7)	-0.0006 (7)	0.0064 (6)	0.0011 (7)
C13	0.0271 (3)	0.0285 (3)	0.0252 (2)	-0.0063(2)	0.00431 (19)	-0.00010 (19)
C3	0.0214 (10)	0.0447 (13)	0.0199 (10)	-0.0068 (10)	0.0015 (8)	-0.0129 (9)
N3	0.0196 (8)	0.0263 (9)	0.0099 (8)	0.0011 (7)	0.0059 (6)	0.0006 (6)
C4	0.0211 (10)	0.0318 (12)	0.0350 (11)	-0.0031 (9)	0.0050 (8)	-0.0110 (9)
C5	0.0296 (11)	0.0267 (11)	0.0411 (12)	-0.0014 (10)	-0.0065 (9)	-0.0007 (10)
C6	0.0271 (11)	0.0277 (11)	0.0254 (10)	-0.0017 (9)	-0.0062 (8)	-0.0013 (8)

supplementary materials

~-		0.0405(0)		a a a a a (a)		
C7	0.0173 (9)	0.0186 (9)	0.0177 (9)	0.0027 (8)	0.0011 (7)	0.0023 (7)
C8	0.0298 (10)	0.0225 (10)	0.0164 (9)	0.0016 (9)	0.0039 (7)	0.0014 (8)
C9	0.0287 (10)	0.0237 (11)	0.0262 (10)	0.0006 (9)	0.0080 (8)	0.0065 (8)
C10	0.0216 (10)	0.0229 (10)	0.0292 (10)	0.0010 (8)	-0.0018 (8)	0.0059 (8)
C11	0.0352 (11)	0.0249 (11)	0.0220 (10)	-0.0029 (9)	-0.0033 (8)	-0.0010 (8)
C12	0.0289 (10)	0.0259 (10)	0.0160 (9)	-0.0006 (9)	0.0025 (7)	0.0020 (8)
C13	0.0329 (12)	0.0363 (13)	0.0537 (15)	-0.0078 (11)	0.0003 (11)	-0.0157 (11)
C14	0.0323 (12)	0.0326 (12)	0.0386 (12)	-0.0074 (10)	-0.0010 (9)	0.0042 (10)
C15	0.0205 (9)	0.0174 (9)	0.0146 (9)	0.0002 (8)	0.0026 (7)	-0.0012 (7)
C16	0.0206 (9)	0.0226 (10)	0.0144 (9)	0.0007 (8)	0.0024 (7)	-0.0014 (7)

Geometric parameters (Å, °)

Cl1—Cl6	1.7644 (18)	C5—C6	1.387 (3)
O1—P1	1.4727 (12)	С5—Н5	0.9500
P1—N1	1.6195 (16)	С6—Н6	0.9500
P1—N2	1.6345 (16)	C7—C12	1.386 (3)
P1—N3	1.7071 (16)	С7—С8	1.393 (2)
C1—C6	1.380 (3)	C8—C9	1.385 (3)
C1—C2	1.392 (2)	C8—H8	0.9500
C1—N1	1.427 (2)	C9—C10	1.385 (3)
N1—H1N	0.77 (2)	С9—Н9	0.9500
Cl2—C16	1.7611 (18)	C10—C11	1.392 (3)
O2—C15	1.211 (2)	C10-C14	1.505 (3)
C2—C3	1.386 (3)	C11—C12	1.383 (3)
С2—Н2	0.9500	C11—H11	0.9500
N2—C7	1.417 (2)	C12—H12	0.9500
N2—H2N	0.76 (2)	C13—H13A	0.9800
Cl3—C16	1.7786 (19)	C13—H13B	0.9800
C3—C4	1.383 (3)	C13—H13C	0.9800
С3—Н3	0.9500	C14—H14A	0.9800
N3—C15	1.349 (2)	C14—H14B	0.9800
N3—H3N	0.75 (2)	C14—H14C	0.9800
C4—C5	1.388 (3)	C15—C16	1.553 (2)
C4—C13	1.510 (3)		
O1—P1—N1	115.74 (8)	C9—C8—C7	119.49 (18)
O1 - P1 - N2	118.28 (8)	C9—C8—H8	120.3
N1—P1—N2	102.25 (8)	C7—C8—H8	120.3
O1—P1—N3	104.64 (7)	C8—C9—C10	122.55 (18)
N1—P1—N3	109.71 (8)	С8—С9—Н9	118.7
N2—P1—N3	105.77 (8)	С10—С9—Н9	118.7
C6—C1—C2	119.16 (18)	C9—C10—C11	116.71 (18)
C6-C1-N1	119.83 (16)	C9—C10—C14	121.72 (18)
C2-C1-N1	120.91 (17)	C11—C10—C14	121.51 (18)
C1—N1—P1	124.64 (12)	C12—C11—C10	122.02 (18)
C1—N1—H1N	116.1 (16)	C12—C11—H11	119.0
P1—N1—H1N	114.9 (16)	C10—C11—H11	119.0
C3—C2—C1	119.68 (19)	C11—C12—C7	120.13 (17)
С3—С2—Н2	120.2	C11—C12—H12	119.9

C1—C2—H2	120.2	C7—C12—H12	119.9
C7—N2—P1	124.35 (12)	C4—C13—H13A	109.5
C7—N2—H2N	114.8 (17)	C4—C13—H13B	109.5
P1—N2—H2N	113.8 (17)	H13A—C13—H13B	109.5
C4—C3—C2	121.81 (18)	C4—C13—H13C	109.5
C4—C3—H3	119.1	H13A—C13—H13C	109.5
С2—С3—Н3	119.1	H13B—C13—H13C	109.5
C15—N3—P1	123.18 (13)	C10-C14-H14A	109.5
C15—N3—H3N	120.2 (17)	C10-C14-H14B	109.5
P1—N3—H3N	116.2 (17)	H14A—C14—H14B	109.5
C3—C4—C5	117.62 (19)	C10-C14-H14C	109.5
C3—C4—C13	121.82 (19)	H14A—C14—H14C	109.5
C5—C4—C13	120.5 (2)	H14B—C14—H14C	109.5
C6—C5—C4	121.3 (2)	O2—C15—N3	124.41 (16)
С6—С5—Н5	119.3	O2—C15—C16	119.89 (15)
С4—С5—Н5	119.3	N3—C15—C16	115.66 (14)
C1—C6—C5	120.31 (18)	C15—C16—Cl2	109.98 (12)
С1—С6—Н6	119.8	C15—C16—Cl1	111.97 (12)
С5—С6—Н6	119.8	Cl2—C16—Cl1	109.34 (10)
С12—С7—С8	119.06 (17)	C15—C16—Cl3	106.17 (12)
C12—C7—N2	119.70 (16)	Cl2—C16—Cl3	109.57 (10)
C8—C7—N2	121.24 (16)	Cl1—C16—Cl3	109.75 (9)
C6—C1—N1—P1	125.17 (17)	P1—N2—C7—C12	-152.11 (15)
C2—C1—N1—P1	-58.6 (2)	P1—N2—C7—C8	27.7 (2)
O1—P1—N1—C1	44.72 (17)	C12—C7—C8—C9	0.0 (3)
N2—P1—N1—C1	174.73 (14)	N2—C7—C8—C9	-179.82 (17)
N3—P1—N1—C1	-73.35 (16)	C7—C8—C9—C10	-1.7 (3)
C6—C1—C2—C3	0.9 (3)	C8—C9—C10—C11	2.3 (3)
N1—C1—C2—C3	-175.35 (16)	C8—C9—C10—C14	-174.99 (19)
O1—P1—N2—C7	-75.36 (16)	C9-C10-C11-C12	-1.3 (3)
N1—P1—N2—C7	156.22 (14)	C14—C10—C11—C12	176.03 (19)
N3—P1—N2—C7	41.39 (16)	C10-C11-C12-C7	-0.3 (3)
C1—C2—C3—C4	2.0 (3)	C8—C7—C12—C11	1.0 (3)
O1—P1—N3—C15	179.94 (15)	N2-C7-C12-C11	-179.19 (17)
N1—P1—N3—C15	-55.29 (17)	P1—N3—C15—O2	4.8 (3)
N2—P1—N3—C15	54.30 (17)	P1—N3—C15—C16	-172.98 (13)
C2—C3—C4—C5	-3.5 (3)	O2-C15-C16-Cl2	23.4 (2)
C2—C3—C4—C13	174.88 (19)	N3-C15-C16-Cl2	-158.68 (14)
C3—C4—C5—C6	2.1 (3)	O2-C15-C16-Cl1	145.21 (15)
C13—C4—C5—C6	-176.3 (2)	N3-C15-C16-Cl1	-36.9 (2)
C2—C1—C6—C5	-2.3 (3)	O2—C15—C16—Cl3	-95.03 (18)
N1—C1—C6—C5	174.01 (18)	N3-C15-C16-Cl3	82.86 (17)
C4—C5—C6—C1	0.8 (3)		. /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N1—H1N····O1 ⁱ	0.77 (2)	2.17 (2)	2.8953 (19)	156 (2)

supplementary materials

$N2-H2N\cdotsO1^{i}$	0.76 (2)	2.23 (2)	2.948 (2)	159 (2)	
N3—H3 <i>N</i> ···O2 ⁱⁱ	0.75 (2)	2.31 (2)	3.008 (2)	157 (2)	

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2.