# From 2-Complexes to Group Theory

#### H. Mirebrahimi\*, F. Ghanei

Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran. h mirebrahimi@ferdowsi.um.ac.ir

#### **Abstract**

In this talk, we introduce a topological interpretation for presentation of groups which is presented by Brent Everit in 2003. In particular, Using simplicial complexes and topological methods, we establishsome results in group theory.

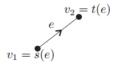
Key words:simplicial complex, fundamental group, covering space, presentation of a group.

#### 1.Introduction

There are several topological interpretations for groups. In this talk, we use the famous onewhose main objects are simplicial complexes. This interpretation is introduced by B. Everit [1]. In section 2 we introduce complexes topologically. Section 3 deals with computing their fundamental groups. Section 4 discusses the relation between complexes and presentations and focuses on the interplay between coverings of complexes and subgroups of finitely presented groups and finally section 5 is about applications of coverings to prove our main theorems in group theory. Note that all the definitions and tools which are used in this paper, come from Everit's works [1], [2] and [3].

#### 2. The topology of complexes

A combinatorial 2-complex K is made up of three sets  $V_K$ ,  $E_K$  and  $F_K$  (vertices, edges and faces), together with maps that describe how the pieces fit together. We have  $s,t:E_K\to V_K$  and  $^{-1}$ :  $E_K\to E_K$  so that  $^{-1}$  assigns each edge to another, called its inverse, and s,t assign start and terminal vertices to e.



We have  $e^{-1} \neq e$ ,  $(e^{-1})^{-1} = e$ ,  $s(e^{-1}) = t(e)$  and  $t(e^{-1}) = s(e)$ . The vertex and edge sets together with these maps form a directed graph called the  $1 - skeleton K^1$  of K. (the vertices alone form  $0 - skeleton K^0$ ).

A path in K is a sequence of edges  $e_1^{\varepsilon_1} \dots e_k^{\varepsilon_k}$ ,  $\varepsilon_i = \pm 1$  with  $t(e_i^{\varepsilon_i}) = s(e_{i+1}^{\varepsilon_{i+1}})$ . This path is closed if  $t(e_k^{\varepsilon_k}) = s(e_1^{\varepsilon_1})$ .

A 2-complex is connected if there is a path between any two of its vertices.

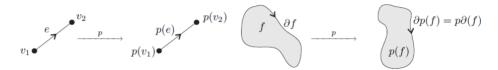
Two paths  $w_1$  and  $w_2$  are cyclic permutations of each other if  $w_1 = e_1^{\varepsilon_1} \dots e_k^{\varepsilon_k}$  then  $w_2 =$ 

 $e_j^{\varepsilon_j} \dots e_k^{\varepsilon_k} e_1^{\varepsilon_1} \dots e_{j-1}^{\varepsilon_{j-1}}$  for some k. A cycle in the 1-skeleton is a set consisting of a path and all of its cyclic permutations.

Finally, to define faces we consider these maps that say how the faces are glued onto the 1-skeleton,  $f^{-1}: F_K \to F_K$  and  $f^{-1}: F_K \to F_K$  a



A map  $p: K_1 \to K_2$  between 2-complexes assigns to each vertex of  $K_1$  a vertex of  $K_2$ , to each edge of  $K_1$  an edge or vertex of  $K_2$  and to each face of  $K_1$  a face, path or vertex of  $K_2$  with these conditions:  $p(e^{-1}) = p(e)^{-1}$ ,  $p(f^{-1}) = p(f)^{-1}$ .



This map is dimension preserving if  $p: V_{K_1} \to V_{K_2}$ ,  $p: E_{K_1} \to E_{K_2}$  and  $p: F_{K_1} \to F_{K_2}$ .

A map is an isomorphism if it preserves dimension and is bijection on the vertex, adge and face set.

#### 3. Fundamental groups of complexes

Two paths  $w_1$  and  $w_2$  are homotopic (written  $w_1 \sim_h w_2$ ) iff there is a finite sequence of these two moves taking one path to the other; the first inserts or deletes a spur: an edge/inverse edge pair of the form  $ee^{-1}$  or  $e^{-1}e$ . The second inserts or deletes the boundary of a face: a  $w \in \partial(f)$  for some face f of K with  $s(w) = t(w) = t(e_i^{\varepsilon_i}) = s(e_{i+1}^{\varepsilon_{i+1}})$ .

If  $w_1$  and  $w_2$  are paths in a 2-complex K with  $t(w_1) = s(w_2)$ ; then let  $w_1w_2$  be the path obtained by juxtaposing these two; by traversing the edges of  $w_1$  and then the edges of  $w_2$ . In particular, if  $w_1 \sim_h w_1'$  and  $w_2 \sim_h w_2'$  then  $w_1w_2 \sim_h w_1'w_2'$ . So we can extend a product on the homotopy classes of paths in K; if  $[w_1]_h$  and  $[w_2]_h$  are two such, where  $t(w_1) = s(w_2)$ , then  $[w_1]_h[w_2]_h \coloneqq [w_1w_2]_h$ .



To get a group from homotopy classes of paths, we need to ensure we can always multiply paths. Let K be a 2-complex and fix a vertex v. Let  $\pi_1(K,v)$  be the set of all homotopy classes of closed paths with start and terminal vertex v.  $\pi_1(K,v)$  together with product  $[w_1]_h[w_2]_h = [w_1w_2]_h$  forms a group with identity  $[v]_h$  and  $[w]_h^{-1} = [w^{-1}]_h$ .

A 2-complex K is called a tree iff the face set of K is empty and  $\pi_1(K)$  is the trivial group.

# 4. Complexes, presentations and subgroups

First we obtain a group presentation for the fundamental group  $\pi_1(K)$  of a complex K. Let K be a connected 2-complex and v a vertex of K. Let T be a connected tree that contains all the vertices of K. Choose an edge  $e_{\alpha}$  from each edge or its inverse in  $K^1 \setminus T$ . Then there are unique paths  $w_{\alpha}$ ,  $\overline{w_{\alpha}}$  without spurs in T, such that  $w_{\alpha}$  connects v to the start vertex of  $e_{\alpha}$  and  $\overline{w_{\alpha}}$  connects v to the terminal

vertex. Let  $x_{\alpha} = w_{\alpha} e_{\alpha} \overline{w_{\alpha}}^{-1}$ , a loop based at v, and  $X = \{x_{\alpha} \mid e_{\alpha} \in K^{1} \setminus T\}$ . Choose  $f_{\beta}$  from each face or its inverse in K. Let  $\partial(f_{\beta}) = e_{\alpha_{1}}^{\varepsilon_{1}} \dots e_{\alpha_{k}}^{\varepsilon_{k}}$  be the boundary label after the edges that are contained in the tree T have been removed. Take  $w_{\beta} = x_{\alpha_{1}}^{\varepsilon_{1}} \dots x_{\alpha_{k}}^{\varepsilon_{k}}$ , a word in  $X \cup X^{-1}$  and  $R = \{w_{\beta} \mid f_{\beta} \text{ is a face}\}$ .

**Theorem 4.1.** < X; R > is a presentation for the fundamental group of K.

**Corollary4.2.** Suppose that *K* is a graph ( $F_K$  is empty), then we can find such a presentation for  $\pi_1(K)$  with  $|E_K| - |V_K| + 1 = 1 - \chi(K)$  generators and no relators.

Now we want to obtain a 2-complex from a group presentation. Let < X; R > be a presentation for a group G. Define a 2-complex K = K < X; R > with a single vertex v. For each  $x \in X$  take an  $e_x^{\pm 1} \in K$  and for each  $w \in R$  an  $f_w^{\pm 1} \in F_K$ . We have  $s, t(e_x^{\pm 1}) = v$ ,  $\partial(f_w) =$  the cyclic permutation of  $e_{x_{\alpha_1}}^{\varepsilon_1} \dots e_{x_{\alpha_k}}^{\varepsilon_k}$  if  $w = x_{\alpha_1}^{\varepsilon_1} \dots x_{\alpha_k}^{\varepsilon_k}$ .

**Theorem 4.3.** < X, R > is a presentation for  $\pi_1(K < X; R >, v)$ .

**Corollary 4.4.** A group is free if and only if it is the fundamental group of a graph.

A map  $p: \widetilde{K} \to K$  of 2-complexes is a covering iff

- 4. *p* preserves dimension;
- 5. If  $p: \tilde{v} \to v$  then p is a bijection from the set of edges in  $\tilde{K}$  with initial vertex  $\tilde{v}$  to the set of edges in K with initial vertex v.
- 6. If f is a face and v a vertex of K, let m(f, v) be the number of times that v appears in the boundary of f. Then for any  $\tilde{v}$  with  $p(\tilde{v}) = v$ , we have  $\sum_{p(\tilde{f})=f} m(\tilde{f}, \tilde{v}) = m(f, v)$ .

Now we express a main theorem;

**Theorem 4.5.** (Subgroup theorem) Let  $p: \widetilde{K} \to K$  be a covering, then  $p_*: \pi_1(\widetilde{K}, \widetilde{v}) \to \pi_1(K, v)$  is injective. Moreover if K is a 2-complex and H a subgroup of  $\pi_1(K, v)$ , then there is a connected 2-complex  $\widetilde{K}$  and a covering  $p: \widetilde{K} \to K$  with  $H \cong \pi_1(\widetilde{K}, \widetilde{v})$ , where  $p(\widetilde{v}) = v$ .

## 5.Main Results

In this section, we use the above tools to prove some famous group theoretical theorems.

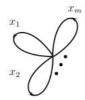
Theorem 5.1. (Nielsen-Schreier theorem) A subgroup of a free group is free.

Proof. If F is free then  $F \cong \langle X; - \rangle$ , hence  $K < X; - \rangle$  is a bouquet of circles. For a subgroup H of F there is a covering  $p: \widetilde{K} \to K < X; - \rangle$ , where the complex  $\widetilde{K}$  must be a graph and  $H \cong \pi_1(\widetilde{K})$ . But the fundamental group of a graph is also free, hence H is free.

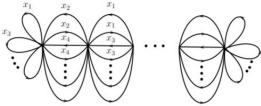
Now we deals with our theorems;

**Theorem 5.2.** For any  $n \ge 2$ , the free group of rank m has a free subgroup of rank nm - n + 1 and index n.

Proof. First we consider the presentation 2-complex K for free group  $G = \langle x_1, ..., x_m; - \rangle$ . So we have



Now we give a covering  $\widetilde{K}$  for K;



which has n vertices and the fiber of each edge has n edges. The fundamental group of  $\widetilde{K}$  is free of rank nm - n + 1. Since the fiber of vertex v has n elements, so the index of  $H \cong \pi_1(\widetilde{K}, \widetilde{v})$  in G is n.

**Theorem 5.3.** If  $G \cong \langle X; R \rangle$  with |X| = m, |R| = k and H a subgroup of G of index n, then the presentation for H has nm - n + 1 generators and nk relators.

Proof. With respect to the proof of last theorem, we must only prove that the presentation of the fundamental group of  $\widetilde{K}$  has nk relators. We know for each  $r \in R$  and each vertex  $v_i$  in  $\widetilde{K}$  (i = 1, ..., n), we have a path starting at  $v_i$  with label r. Now we attach a face to  $\widetilde{K}$  whose boundary label is this path. As there are n vertices in  $\widetilde{K}$ , then for any  $r \in R$  we have n faces in  $\widetilde{K}$ . By existing k relators in k, we have k faces in k and finally, the presentation of the fundamental group of k has k relators.

## References

- [1] B. Everitt, *The Geometry and Topology of Groups*, Notes from lectures given at the Universidad Autonama, Madrid, and the University of York, 2003.
- [2] B. Everitt, *Graphs, free groups and the Hanna Neuman conjecture*, Journal of Group Theory**11(6)**, 885-899, 2008.
- [3] B. Everitt, Galois theory, graphs and free groups, 2006.arXiv:0606326.