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Abstract In this paper, a novel scheme for nonlin-
ear displacement-dependent (NDD) damper is intro-
duced. The damper is attached to a simple mass-
spring-damper vibration system. The vibration system
equipped with a NDD damper is mathematically mod-
eled and the nonlinear governing differential equation
of the system is derived. To obtain the displacement
of the system, the approximate analytical solution of
the governing equation is elaborated using the multi-
ple scales method. The advised approximate analyti-
cal algorithm is performed for several case studies and
is also verified by the numerical fourth-order Runge–
Kutta method. In addition, the performance of the
NDD damper is analyzed and compared with the per-
formance of the traditional linear damper. It is found
that the proposed NDD damper scheme along with
the multiple scales method is not only feasible for vi-
bration reduction but also yields satisfactory response
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performance rather than the existing traditional linear
damper.
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1 Introduction

In many applications, vibration may cause discomfort,
disturbance, damage, and sometimes destruction of the
system or the structure. A general method for reduc-
ing these effects is adding a viscous damper to the vi-
bration system. Many of viscous dampers have a con-
stant damping coefficient; however, variable dampers
have already found their way to commercial applica-
tions [1, 2].

In point of view of controllability, variable dampers
can be classified as passive, active, and semiactive
[3–7]. Passive dampers have fixed properties which are
determined and preset according to the design goals
and intended application [8]. Active dampers are op-
erated by using an external power which in most cases
is provided by hydraulic actuators [9–11]. The main
disadvantages of active dampers are their high power
consumption, size, heavy weight, and cost. Semiactive
dampers are a compromise between the active and pas-
sive dampers [12].

Despite the higher performance of active and semi-
active dampers, passive dampers are still the most
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widely used ones [2]. Although there are many types
of passive dampers, the passive variable damper
has been recently developed. Among the passive
variable dampers, those with stroke and displace-
ment/position sensitivity have been studied in sev-
eral works. Venkatesan and Krishnan [13] presented
the application of dual-phase damping to a simple
shock mount wherein the damping coefficient was a
function of relative displacement between the founda-
tion and the mounted mass. Haque et al. [14] carried
out an analysis of displacement sensitive dual-phase
dampers by transforming the displacement sensitive
coefficient into a velocity sensitive coefficient. Hun-
dal [15] analyzed an impact absorber consisting of a
linear spring in parallel with a hydraulic damper with
two-stage variable area orifice. Fukushima et al. [16]
suggested that dampers should have a stroke depen-
dent characteristic, such that for a given velocity a
longer stroke would give a greater force. However,
the force in the stroke sensitivity cannot be identi-
fied directly with the actual position of the piston in
the cylinder [1]. The effect of the rubber mounting
bushes in introducing some stroke sensitivity to the vi-
bration systems has been investigated in [17–19]. Lee
and Moon [20, 21] reported on tests of a displacement
sensitive damper with a longitudinally grooved pres-
sure cylinder to relax the damping around the central
position. In this method, machining the grooves would
require a thicker basic cylinder wall than would other-
wise be used, as this is usually only about one millime-
ter [1]. Application of displacement sensitive dampers
has also some history on aircraft landing gear, motor-
cycles, and cars. The displacement sensitive schemes
for landing gears utilize positive recoil control or two
and three level position dependent damping [22]. In
a motorcycle front fork, a short and blunt rubber as a
needle causes the damper orifice to get closed which
allows weaker springing with improved ride quality
pressure [1]. The displacement sensitive damper sug-
gested for vehicle suspension application follows the
idea of using a long tapered needle entering an orifice
in the piston [1, 23]. This type of damper is merely
limited to employing a tapered needle and is not math-
ematically modeled.

Some researchers have recently investigated thor-
oughly the nonlinear dampers [7, 24, 25]. For instance,
Farjoud et al. [24] presented a nonlinear model of
monotube hydraulic dampers with an emphasis on the
effects of shim stack on damper performance. Also,

Guo et al. [25] studied the force and displacement
transmissibility of nonlinear viscous damper based vi-
bration isolation.

In this paper, a novel scheme for Nonlinear Displace-
ment-Dependent (NDD) damper is proposed. The nov-
elty of this work is that the proposed NDD damper
scheme takes the advantage of the special geometric
shape rather than the tapered needle. The geometric
shape is defined by introducing two parameters which
includes a large variety of shapes. In contrast with the
discussed dampers in the literature review, in the pro-
posed NDD damper, the damping coefficient and the
damping force are continuous and smooth functions of
displacement. Furthermore, in this paper, the nonlin-
ear governing differential equation of a mass-spring-
damper system equipped with the NDD damper is de-
rived. To obtain the displacement of the system, the
approximate analytical solution of the governing equa-
tion is elaborated using the multiple scales method
(MSM).

The rest of the paper is organized as follows. Sec-
tion 2 describes the mechanism of the proposed NDD
damper. In Sect. 3, the mathematical model of the
NDD damper in a mass-spring-damper system is for-
mulated. The approximate analytical solution of the
system is obtained in Sect. 4. Some numerical exam-
ples are presented in Sect. 5, and the results are an-
alyzed and discussed in Sect. 6. Finally, Sect. 7 con-
cludes the paper.

2 The NDD damper mechanism

A simple viscous damper consists of a moving pis-
ton having one or some orifices inside a cylinder filled
with a viscous fluid (Fig. 1). Velocity of the piston and
the damping force are related linearly as follows:

F = c
du

dt
(1)

where c is the damping coefficient.
Assuming the piston has one orifice, by taking ad-

vantage of the Hagen–Poiseuille equation for the lam-
inar flow, c can be obtained by

c = λ

[(
D

d

)2

− 1

]2

(2)

where D and d are the cylinder diameter and the open-
ing fluid gap diameter, respectively. Also, λ = 8πμL
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Fig. 1 Schematic of a simple viscous damper

in which, μ denotes for dynamic viscosity of the fluid
and L is the piston width.

For a set of selected parameters D,d , and L, the
damping coefficient has a constant value. The mecha-
nism can be designed to make the linear damper into
nonlinear and displacement-dependent. To this end, a
function in Cartesian r–u coordinates is considered
as

u = nrs (3a)

or

r =
(

u

n

) 1
s

. (3b)

A solid cone shaped part can be generated by rotat-
ing the interior region of the aforementioned function
around the u-axis. Now the cone shaped part must get
assembled into the linear damper, so that the origin of
coordinates is located on the center of the piston open-
ing. The cone shaped part must be fixed to make the
fluid travel through its outer surface and the inner sur-
face of the orifice (Fig. 2). According to Fig. 2, dur-
ing the motion of the piston, the opening fluid gap is
changed and the damping coefficient is consequently
varied. Therefore, the ordinary linear damper with a
constant damping coefficient is converted to the non-
linear damper with a variable displacement-dependent
damping coefficient.

3 Mathematical formulation of the NDD damper

For the designed displacement-dependent damping
mechanism shown in Fig. 2, the opening fluid gap di-
ameter is equal to d − 2r .

Fig. 2 Schematic of the designed nonlinear displacement-de-
pendent damper

Therefore, it is needed to substitute d − 2r for d

into Eq. (2) as follows:

c = λ

[(
D

d − 2r

)2

− 1

]2

. (4)

Substituting for r from Eq. (3b) leads to

c = λ

[
γ 2

(
1

1 − βu( 1
s
)

)2

− 1

]2

(5)

where β = 2

d·n( 1
s )

and γ = D
d

.

Due to the fact that the damper stroke is small,
Eq. (5) can be expanded and simplified by the follow-
ing Taylor series expansion:

1

1 − βu( 1
s
)
= 1 + βu( 1

s
) + O

(
u2). (6)

Thus, Eq. (5) can be expressed as

c = α1 + α2|u|( 1
s
) + α3|u|( 2

s
) + α4|u|( 3

s
) + α5|u|( 4

s
).

(7)

For the case of n = 1 and s = 1
2 , Eq. (7) will be rewrit-

ten as follows:

c = α1 + α2u
2 + α3u

4 + α4u
6 + α5u

8. (8)

The parameters αi in Eq. (8) are given in Appendix A.
The governing differential equation of a simple

mass–spring–damper system without any external
force is as follows:

ü + c

m
u̇ + ω2u = 0. (9)
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For a linear damper with constant damping coefficient,
the free oscillation response of the system is as fol-
lows [26]:

u(t) = e−ζωt

[
u0 cos

(√
1 − ζ 2ωt

)

+ u̇0 + ζωu0√
1 − ζ 2ω

sin
(√

1 − ζ 2ωt
)]

(10)

where u0, u̇0 , and ζ are initial displacement, initial
velocity, and damping ratio, respectively. Besides, the
damping force and the total force transmitted to the
base can be calculated by the following equations:

Fdamping = c
du(t)

dt
, (11)

FTransmitted = cu̇ + ku. (12)

In order to achieve the governing differential equation
of a basic mass–spring system equipped with NDD
damper, c from Eq. (8) must be replaced into dimen-
sionless form of Eq. (9) as follows:

d2u

dt̂2
+ u = −ε

(
1 + β1u

2 + β2u
4 + β3u

6 + β4u
8)du

dt̂
.

(13)

In which t̂ = ωt, ε = λ(γ 4−2γ 2+1)
mω

and βi = αi

mωα1
·

A perturbation technique by adding a small term
to the mathematical description (ε in this paper) can
be used to find an approximate solution to the gov-
erning differential equation (13) for the case of uti-
lizing the designed NDD damper. The parameter ε is
directly proportional to λ and, accordingly, to the fluid
viscosity. It is also dependent to γ . Hence, increasing
the viscosity or increasing γ , causes increasing ε, and
strength of nonlinearity in Eq. (13), successively.

The shape parameters, i.e., n and s, effect on β as
β = 2

d·n( 1
s )

and on the damping coefficient c (as given

by Eq. (5)). Accordingly, the dimensionless form of
the governing equation of the vibration system utiliz-
ing the NDD damper is affected by these shape param-
eters (see Eq. (13)). It should be noted that the values
of the shape parameters n and s do not have any ef-
fect on ε, which describes the strength of nonlinearity
of the governing equation. Since the main focus of this
work is to introduce a novel scheme for NDD dampers,
the shape parameters have been selected as a fixed set

for a general application as a mass–spring–damper vi-
bration system. Nevertheless, the couple of the values
of these parameters can be optimized according to the
design goal and intended particular application.

In the following section, the procedure of employ-
ing multiple scales method as a perturbation technique
is illustrated to solve Eq. (13).

4 Multiple scales method

The underlying idea of multiple scales is to consider
the response to be a function of multiple independent
variables or scales, instead of a time variable [27, 28].
For this aim, new independent variables must be intro-
duced according to

Tn = εnt̂ for n = 0,1 and 2. (14)

The asymptotic approximate solution of Eq. (13) can
be represented in the form

u = u0(T0, T1, T2) + εu1(T0, T1, T2)

+ ε2u2(T0, T1, T2) + O
(
ε3). (15)

The first and second derivatives with respect to t̂ are in
the following form:

d

dt̂
= D0 + εD1 + ε2D2,

(16)
d2

dt̂2
= D0 + 2εD0D1 + ε2(D2

1 + 2D0D2
)

where Dn = ∂
∂Tn

.
Substituting Eq. (15) and Eq. (16) into Eq. (13) and

equating coefficients of each power of ε to zero, leads
to

D2
0u0 + u0 = 0, (17)

D2
0u1 + u1

= −2D0D1u0
(
1 + β1u

2
0

+ β2u
4
0 + β3u

6
0 + β4u

8
0

)
D0u0. (18)

D2
0u2 + ω2u2

= −2D0D1u1 − 2D0D2u0 − D2
1u0

− (
1 + β1u

2
0 + β2u

4
0 + β3u

6
0 + β4u

8
0

)
D0u1
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− (
1 + β1u

2
0 + β2u

4
0 + β3u

6
0 + β4u

8
0

)
D1u0

− (
2β1u0u1 + 4β2u

3
0u1 + 6β3u

5
0u1

+ 8β4u
7
0u1

)
D0u. (19)

The general solution of Eq. (17) can be expressed as

u0 = A(T1, T2)e
iT0 + Ā(T1, T2)e

−iT0 . (20)

Substituting for u0 from Eq. (20) into Eq. (18) gives

D2
0u1 + ω2u1 = −i

[
Δ1eiT0 + Δ2e3iT0 + Δ3e5iT0

+ Δ4e7iT0 + Δ5e9iT0 + CC
]

(21)

in which, Δi
′s are given in Appendix A and CC stands

for complex conjugate.
Omitting the terms that produce secular terms leads

to solvability for the first-order approximation, there-
fore, the coefficients of e±iT0 should be vanished; that
is,

Δ1 = 0. (22)

The solution of Eq. (21) can be written in the form

u1 = B(T1, T2)e
iT0 + 1

8
iΔ2e3iT0 + 1

24
iΔ3e5iT0

+ 1

48
iΔ4e7iT0 + 1

80
iΔ5e9iT0 + CC. (23)

In order to solve Eq. (22), one let

A = 1

2
a(T1, T2)e

iφ(T1,T2). (24)

Substituting Eq. (24) and its conjugate and derivatives
into Eq. (22) leads to

−
(

∂a

∂T1
+ ia

∂φ

∂T1

)
= 1

256

(
128a + 32β1a

3 + 16β2a
5

+ 10β3a
7 + 7β4a

9). (25)

Separating real and imaginary parts in Eq. (25) results
in

∂φ

∂T1
= 0, (26a)

∂a

∂T1
= − 1

256

(
128a + 32β1a

3 + 16β2a
5

+ 10β3a
7 + 7β4a

9). (26b)

Hence, φ = φ(T2) and a(T1, T2) can be solved by in-
tegration from Eq. (26b).

To determine the second-order approximation to
u,u0 , and u1 from Eq. (20) and Eq. (23) must be sub-
stituted into Eq. (19) as follows:

D2
0u2 + u2 = Q(T1, T2)e

iT0 + Q̄(T1, T2)e
−iT0

+ NST (27a)

where NST stands for Non-Secular Terms and

Q(T1, T2) = −i
(
B + β1A

2B̄ + 2β1AĀB + 4β2A
3ĀB̄

+ 6β2A
2Ā2B + 15β3A

4Ā2B̄

+ 20β4A
3Ā3B + 56β4A

5Ā3B̄

+ 70β4A
4Ā4B

) − D2
1A − 2iD1B

− 2iD2A − (
1 + 2β1AĀ + 6β2A

2Ā2

+ 20β3A
3Ā3 + 70β4A

4Ā4)D1A

− (
β1A

2 + 4β2A
3Ā + 15β3A

4Ā

+ 56β4A
5Ā3)D1Ā + q(T1, T2) (27b)

in which q(T1, T2) is given in Appendix A. Secular
terms will be eliminated if Q = 0. To solve Eq. (27b)
with Q = 0, one let

B = 1

2
ibeiφ. (28)

Substituting for A and B from Eqs. (24) and (28) into
Eq. (27b) with Q = 0 and separating real and imagi-
nary parts yields

i

(
1

8
β1a

3 ∂φ

∂T1
+ 1

2
a

∂φ

∂T1
− 1

8
β1a

3 ∂φ

∂T1
+ ∂a

∂T1

∂φ

∂T1

+ 1

2
a

∂2φ

∂T 2
1

− b
∂φ

∂T1
+ ∂a

∂T2

)
+

(
−1

8
β1a

2b − 1

2
b

+ 3

8
β1a

2 ∂a

∂T1
+ 1

2

∂a

∂T1
+ 1

2

∂2a

∂T 2
1

− 1

2
a

(
∂φ

∂T1

)2

− ∂b

∂T1
− a

∂φ

∂T2
− 1

256
β2

1a5
)

= 0. (29)

Substituting Eq. (26a) in the real and imaginary parts
of Eq. (29) gives

∂a

∂T2
= 0 → a = a(T1), (30)
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2
∂b

∂T1
+

(
1 + 1

4
β1a

2
)

b

= −2a
dφ

dT2
+ d2a

dT 2
1

+
(

1 + 3

4
β1a

2
)

da

dT1

− 1

128
β2

1a5. (31)

With the help of Eq. (26b), Eq. (31) can be expressed
as

2
∂b

∂T1
+ 2

b

a

da

dT1
= −2a

(
dφ

dT2
+ 1

16

)

+
(

1

4
+ 7

16
β2a

2
)

da

dT1
. (32)

Thus,

d

(
b

a

)
= −

(
dφ

dT2
+ 1

16

)
dT1 +

(
1

8a
+ 7

32
β1a

)
da.

(33)

Integrating Eq. (33) leads to

∫
d

(
b

a

)
= −

(
dφ

dT2
+ 1

16

)
T1

+
∫ (

1

8a
+ 7

32
β1a

)
da. (34)

The coefficient of T1 in Eq. (34) must vanish. There-
fore,

φ = − 1

16
T2 + φ0 (35)

where φ0 is a constant. Thus, to an error of O(ε2), the
expansion of u to second approximation in Eq. (15) is

u = a(t̂) cos

[
t̂

(
1 − 1

16
ε2

)
+ φ0

]

− ε

[
1

4
Λ1 sin 3

[
t̂

(
1 − 1

16
ε2

)
+ φ0

]

+ 1

12
Λ2 sin 5

[
t̂

(
1 − 1

16
ε2

)
+ φ0

]

+ 1

24
Λ3 sin 7

[
t̂

(
1 − 1

16
ε2

)
+ φ0

]

+ 1

40
Λ4 sin 9

[
t̂

(
1 − 1

16
ε2

)
+ φ0

]]
(36)

where Λi
′s are given in Appendix A.

Equation (36) represents the approximate analytical
solution of Eq. (13). a(t̂ ) is the asymptotic function
for which the initial condition is a(t̂ )|t̂=0 = a0. The
constants φ0 and a0 can be calculated by applying the
initial conditions of the system.

5 Numerical examples

The system characteristics such as mass, spring stiff-
ness, viscosity, orifice diameter, etc. affect the values
of the parameters (ε,β1, β2, β3, β4); and consequently
the parameters (Λ1,Λ2,Λ3,Λ4) in approximate ana-
lytical solution via Eq. (36). Table 1 exhibits the se-
lected values for the numerical examples in this paper.

For instance, with the selected values for the
first case, i.e., (k = 1000 N m−1, m = 20 kg, μ =
0.0490 Pa s, D = 20 cm, d = 4 cm), the amount of

Table 1 The selected values and the affected parameters for the numerical examples for n = 1 and s = 1
2

Case Selected values* Affected parameters**

m

(kg)
k

(N m−1)
μ

(Pa s)
u0
(m)

v0
(m s−1)

clin
(N s m−1)

ω

(rad s−1)
λ ε β1 β2 β3 β4

1 20 1000 0.049 0 0.9 7.1 7.07 0.012 0.05 208.3 16059 5.42 × 105 6.78 × 106

2 20 1000 0.147 0 0.9 21.2 7.07 0.036 0.15 208.3 16059 5.42 × 105 6.78 × 106

3 20 1000 0.294 0 0.9 42.5 7.07 0.072 0.3 208.3 16059 5.42 × 105 6.78 × 106

4 20 1000 0.490 0 0.9 71 7.07 0.12 0.5 208.3 16059 5.42 × 105 6.78 × 106

5 15 3 × 106 2.34 0.1 15 73 447 0.59 0.01 208.3 16059 5.42 × 105 6.78 × 106

* For all cases, d = 4 cm,D = 20 cm and L = 1 cm

** The parameters βi are affected by n, s and γ
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the affected parameters are computed as (cLinear =
7.1 N m s−1, ω = 7.07 rad s−1, λ = 0.012326, ε =
0.05, β1 = 208.3, β2 = 16059.0, β3 = 5.425 × 105,
β4 = 6.782 × 106). Substituting these parameters into
Eq. (26b) and Eq. (36) and applying the initial values
(u0 = 0 and u̇0 = 0.9 m s−1 for this case), one can
easily obtain

a(t) = 5000√−1.302 × 109 + 2e0.355t+21.079
(37)

and

u(t) = a cos(7.0700t + φ0) − (
46551.6a9

+ 4787.8a7 + 188.9a5 + 3.27a3)
× sin(21.210t + 3φ0) − (

1108.3a9 + 88.67a7

+ 2.1a5) sin(35.350t + 5φ0) − (
193.9a9

+ 8.87a7) sin(49.490t + 7φ0) − (
16.625a9)

× sin(63.630t + 9φ0). (38)

For this case, the analytical solution of the simple
mass–spring–damper system with the linear damper,
is evaluated using Eq. (10) as follows:

u(t) = 0.1273e−0.1775t sin(7.0688t). (39)

6 Results and discussion

In order to verify the accuracy of the solution (36), the
numerical integration using the fourth-order Runge–
Kutta method is applied. Figure 3(a) shows the com-
parison between the approximate analytical solution
(38) and the numerical results obtained by Runge–
Kutta method for the case (1). It can be seen that
the approximate analytical solution is nearly identical
to the results obtained by Runge–Kutta method. This
comparison is carried out for the other cases given

in Table 1 as well as case (1); and is illustrated in
Figs. 3(b), 3(c), and 3(d). According to Fig. 3, as the
value of ε rises, the error between the approximate an-
alytical and the exact numerical solutions of Eq. (13)
grows. This is due to the properties of the multiple
scales method, whereas the value of ε must be small.
Thus, the approximate analytical solutions are satis-
factory for each case. In addition, Fig. 3 exhibits the
responses of the system with the NDD damper and the
system with the traditional linear damper, for differ-
ent values of ε. The amplitude of the system with the
NDD damper compared to the system with the linear
damper is reduced in all cycles. The amount of vibra-
tion amplitude reduction for the case 1 with ε = 0.05,
is 4.5 % in the first cycle, 16.2 % in the second cy-
cle, 21.5 % in the third cycle, and 24.5 % in the fourth
cycle. Table 2 shows the percentage of amplitude re-
duction in the other cases. It can be seen that for the
higher values of ε, and hence the stronger nonlinear-
ity; the percentage of the amplitude reduction in each
cycle is more. Therefore, Table 2 clearly demonstrates
the NDD damper performance in reducing the ampli-
tude of the vibration system.

Figure 4 illustrates the damping force versus time
for systems with the linear and the NDD damper. It
clarifies the performance of the NDD damper from
another point of view; and explains why the ampli-
tude of the system with the NDD damper has been
reduced. According to Eq. (11), damping force equals
damping coefficient multiply by velocity. The damp-
ing coefficient of the linear damper is constant, so its
damping force curve is sinusoidal. As mentioned ear-
lier, the damping coefficient of the NDD damper is
displacement-dependent, and as a result, the damping
force curve of the NDD damper acts differently. It is
observed that Fig. 4 can be divided into two zones;
one with high and effective damping force and the
other with low and ineffective damping force. The
time that takes the curve of the NDD damper to pass
through the effective zone is much longer than the

Table 2 The percentage of
amplitude reduction in each
cycle

Case ε Cycle

1 2 3 4 5 6

1 0.05 4.5 16.2 21.5 24.5 26.4 27.6

2 0.15 8.9 25.3 28.9 30.0 30.5 30.7

3 0.30 11.4 29.4 30.9 31.1 31.1 31.1

4 0.50 12.3 31.4 31.8 31.8 31.8 31.8
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Fig. 3 Comparison
between the approximate
analytical solution and the
numerical solution of
Eq. (13) and the analytical
solution of the system with
the linear damper for
(a) ε = 0.05 (b) ε = 0.15
(c) ε = 0.30 (d) ε = 0.50:

approximate
analytical solution of the
system with the NDD
damper; numerical
solution of the system with
the NDD damper;

analytical
solution of the system with
the linear damper
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Fig. 4 Comparison
between the damping force
of the NDD damper
obtained by multiple scales
and Runge–Kutta methods
and the damping force of
the linear damper for
(a) ε = 0.05 (b) ε = 0.15
(c) ε = 0.30 (d) ε = 0.50:

damping force
of the NDD damper
obtained by MSM;
damping force of the NDD
damper obtained by the
Runge–Kutta method;

damping
force of the linear damper
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Fig. 5 Comparison
between the damping force
of the NDD damper versus
displacement obtained by
the multiple scales and the
Runge–Kutta method and
the damping force of the
linear damper versus
displacement for
(a) ε = 0.05 (b) ε = 0.15
(c) ε = 0.30 (d) ε = 0.50:

damping force
of the NDD damper
obtained by MSM;
damping force of the NDD
damper obtained by
Runge-Kutta method;

damping
force of the linear damper
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curve corresponding to the linear damper, because the
curve of the NDD damper attains a maximum and
then descends, while the other is decreasing and leaves
this zone quickly. On the contrary, the curve of the
NDD damper has a steep slope in the ineffective zone,
while the curve slope of the linear damper is rela-
tively gentle in this zone. This means that the curve
of the linear damper stays in the ineffective zone for a
longer time than the curve corresponding to the NDD
damper. Moreover, according to the curve of damp-
ing force versus displacement shown in Fig. 5, and
due to the fact that the area under force-displacement
curve represents the work done, the NDD damper pro-
vides more energy dissipation capacity than the linear
damper.

These all implies that for the aforementioned cases
the NDD damper produces more effective force of op-
posite direction than the linear damper, so more energy
dissipation occurs, particularly in the first cycle during
the use of the NDD damper.

In addition, it is worthwhile to note that after a long
period of time, the damping force related to the NDD
damper get closer to the damping force related to the
linear damper, because of the reduction of the ampli-
tude which causes the drastic weakening of nonlinear
terms in Eq. (13), as depicted in Figs. 4 and 5.

The scheme can be challenged by raising a question
about the necessity of application of the NDD damper,
while a simple linear damper with a higher damping
coefficient is capable of reducing the amplitude of the
vibration system. This can be exemplified by increas-

ing the damping coefficient of the linear damper in or-
der to achieve the behavior similar to the case that the
NDD damper is used with ε = 0.15, as demonstrated
in Fig. 6. The amount of the increased damping coeffi-
cient is specified as 33 N m s−1. For this damping co-
efficient value, the force transmitted to the base versus
time, before and after increasing the damping coeffi-
cient, is shown in Fig. 7. As can be seen in Fig. 7, com-
pared to the system with the NDD damper, increasing
the damping coefficient in the system with the linear
damper causes a considerable increase in the initial
transmitted force. By decreasing the initial transmitted
force, the initial impact applied to the system equipped
with the NDD damper is also diminished. This feature
shows the main advantage of the NDD damper com-
pared with the traditional linear damper.

Case (5) of Table 1 characterizes the NDD damper
performance when used in a high-frequency system.
In Fig. 8, the approximate analytical solution of this
case is verified by forth-order Runge–Kutta method.
Figure 9 shows the comparison between the displace-
ment of the system with the NDD damper and the sys-
tem with the linear damper. For this case, the amounts
of vibration amplitude reductions are computed as
15.03 % in the 10th cycle, 19.50 % in the 20th cycle,
21.53 % in the 30th cycle, 23.15 % in the 50th cycle,
23.33 % in the 70th cycle, and 23.37 % in the 100th
cycle. Therefore, the use of the NDD damper scheme
in high-frequency systems is also advantageous com-
pared with the traditional linear damper.

Fig. 6 Comparison of the amplitude of the system using the
NDD damper with ε = 0.15 and the amplitude of the simple
mass–spring–damper system with increased damping coeffi-
cient: approximate analytical solution of the system

with the NDD damper; numerical solution of the sys-

tem with the NDD damper; analytical solution
of the system with increased linear damping coefficient
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Fig. 7 Comparison of the
transmitted force of the
system using the NDD
damper with ε = 0.15
obtained by the multiple
scales and Runge–Kutta
methods with the damping
force of the linear damper
(a) before increasing the
linear damper coefficient
(b) after increasing the
linear damper coefficient:

damping force
of the NDD damper
obtained by MSM;
damping force of the NDD
damper obtained by the
Runge–Kutta method;

damping
force of the linear damper

Fig. 8 Comparison
between the approximate
analytical and the exact
numerical solutions of case
(5) with ε = 0.01 for the
system with the NDD
damper:
approximate analytical
solution; exact
numerical solution

As mentioned before, the area under force-dis-
placement curve of a damper represents the amount
of the dissipated energy. Figure 10 illustrates the com-
parison between the force-displacement curve of the
NDD and the linear dampers. According to this figure
in each cycle, the area under force-displacement curve
of the NDD damper is larger than the corresponding
area of the linear damper. Thus, the more reduced am-

plitude of the high-frequency system equipped with
the NDD damper is caused by the more energy dissi-
pated by this damper.

7 Conclusions

The performance of a nonlinear displacement-depend-
ent (NDD) damper was studied. The NDD damper



A novel scheme for nonlinear displacement-dependent dampers 433

Fig. 9 Comparison
between the approximate
analytical solution of case
(5) using the NDD damper
with ε = 0.01, and the
analytical solution of the
system of case (5) with the
linear damper:
approximate analytical
solution of the system with
the NDD damper;
analytical solution of the
system with the linear
damper.

Fig. 10 Comparison of the
force-displacement curve of
the NDD damper obtained
by multiple scales and the
Runge–Kutta method for
the case (5) with ε = 0.01
with the force-displacement
curve of the linear damper:

damping force of
the NDD damper obtained
by MSM; damping
force of the NDD damper
obtained by Runge–Kutta
method;
damping force of the linear
damper

mechanism was elaborated and the nonlinear govern-
ing differential equation describing a mass–spring–
damper system equipped with the NDD damper was
derived. Moreover, the free response of the system
was obtained by the method of multiple scales as
the approximate analytical approach, and then veri-
fied by numerical fourth-order Runge–Kutta method
for several case studies. The simulation results demon-
strated that the proposed NDD damper scheme along
with the multiple scales method was not only able
to achieve satisfactory response performance but also
was feasible for vibration reduction in both low- and
high-frequency systems. For the initial conditions un-
der which the large amplitude is produced, the NDD
damper was shown to have superior performance in
reducing vibrations rather than the traditional linear
damper. Furthermore, it should be mentioned that al-
though increasing the damping coefficient in the sys-
tem equipped with the traditional linear damper can
reduce the amplitude of vibration as well as using the

NDD damper, the initial transmitted force is consider-
ably increased.

Appendix A

α1 = (
γ 4 − 2γ 2 + 1

)
λ,

α2 = (
4γ 4 − 4γ 2)λβ,

α3 = (
6γ 4 − 2γ 2)λβ2, (40)

α4 = (
4γ 4)λβ3,

α5 = (
γ 4)λβ4,

Δ2 = β2A
3 + 3β3A

4Ā + 9β4A
5Ā2

+ 28β5A
6Ā3,

Δ3 = β3A
5 + 5β4A

6Ā + 20β5A
7Ā2, (41)

Δ4 = β4A
7 + 7β5A

8Ā,

Δ5 = β5A
9,
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q(T1, T2) = 1

8
β2

1A3Ā2 + β1β2A
4Ā3

+ 23

12
β2

2A5Ā4 + 15

4
β1β3A

5Ā4

+ 14β2β3A
6Ā5 + 14β1β4A

6Ā5

+ 1205

48
β2

3A7Ā6 + 154

3
β2β4A

7Ā6

+ 13013

40
β2

4A9Ā8, (42)

Λ1 = 3.708 × 105a9 + 3.8146 × 104a7

+ 1.505 × 103a5 + 26.041a3,

Λ2 = 2.65 × 105a9 + 2.1193 × 104a7

(43)
+ 5.018 × 102a5,

Λ3 = 9.2718 × 104a9 + 4.2385 × 103a7,

Λ4 = 1.3245 × 104a9.
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