

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Editors: W.T.A. Harrison, H. Stoeckli-Evans, E. R. T. Tiekink and M. Weil

N,N'-Dibenzyl-N''-(2-chloro-2,2-difluoroacetyl)phosphoric triamide

Mehrdad Pourayoubi, Mojtaba Keikha, Jerry P. Jasinski and Amanda C. Keeley

Acta Cryst. (2012). E68, o3009

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section E: Structure Reports Online is the IUCr's highly popular open-access structural journal. It provides a simple and easily accessible publication mechanism for the growing number of inorganic, metal-organic and organic crystal structure determinations. The electronic submission, validation, refereeing and publication facilities of the journal ensure very rapid and high-quality publication, whilst key indicators and validation reports provide measures of structural reliability. The journal publishes over 4000 structures per year. The average publication time is less than one month.

Crystallography Journals Online is available from journals.iucr.org

organic compounds

 $\mu = 0.34 \text{ mm}^{-1}$

 $0.35 \times 0.22 \times 0.12$ mm

9633 measured reflections

5460 independent reflections 4909 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.025$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dibenzyl-N"-(2-chloro-2,2difluoroacetyl)phosphoric triamide

Mehrdad Pourayoubi,^a* Mojtaba Keikha,^a Jerry P. Jasinski^b and Amanda C. Keelev^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001. USA

Correspondence e-mail: pourayoubi@um.ac.ir

Received 23 July 2012; accepted 18 September 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.051; wR factor = 0.122; data-to-parameter ratio = 20.8.

In the title molecule, $C_{16}H_{17}ClF_2N_3O_2P$, the N-H unit of the C(=O)NHP(=O) fragment adopts a syn orientation with respect to the P=O group. The two F atoms and the Cl atom of the ClF₂C group are disordered over two sets of sites with refined occupancies of 0.605 (6) and 0.395 (6). In the crystal, molecules are linked via N-H···O=C hydrogen bonds and the $(N-H\cdots)(N-H\cdots)O=P$ group into chains along [010].

Related literature

For related structures with a P(=O)[NHC(=O)CClF₂] fragment, and for reference values of P=O, C=O and P-N bond lengths and P-N-C bond angles, see: Pourayoubi et al. (2011); Raissi Shabari et al. (2011); Pourayoubi & Saneei (2011). For the double hydrogen-bond acceptor capability of the phosphoryl O atom in phosphoramidates, see: Pourayoubi et al. (2012). For the synthesis of the starting material, $CClF_2C(=O)NHP(=O)Cl_2$, see: Iriarte *et al.* (2008).

Experimental

Crystal data C16H17ClF2N3O2P $M_r = 387.75$ Monoclinic, P21

a = 12.9734 (5) Å b = 4.9900 (2) Å c = 13.7750 (4) Å $\beta = 96.482 \ (3)^{\circ}$ V = 886.06 (6) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

1.66
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
$T_{\min} = 0.890, \ T_{\max} = 0.960$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.122$	independent and constrained
S = 1.09	refinement
5460 reflections	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
263 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e} \text{ Å}^{-3}$
18 restraints	Absolute structure: Flack (1983),
	with 2216 Friedel pairs
	Flack parameter: 0.06 (11)

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1^i$	0.88 (2)	2.30 (3)	3.092 (3)	151 (3)
$N2 - H2N \cdot \cdot \cdot O1^{i}$	0.86 (2)	2.05 (2)	2.867 (3)	158 (3)
$N3 - H3N \cdots O2^{ii}$	0.86 (2)	2.01 (2)	2.854 (3)	166 (3)

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004).

MP thanks Ferdowsi University of Mashhad for a Research University Grant (No. 15144/2). JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5506).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Iriarte, A. G., Erben, M. F., Gholivand, K., Jios, J. L., Ulic, S. E. & Védova, C. O. D. (2008). J. Mol. Struct. 886, 66-71.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, 051-056.
- Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, 0665.
- Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.
- Raissi Shabari, A., Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, 0663-0664
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o3009 [doi:10.1107/S1600536812039712]

N,N'-Dibenzyl-N''-(2-chloro-2,2-difluoroacetyl)phosphoric triamide

Mehrdad Pourayoubi, Mojtaba Keikha, Jerry P. Jasinski and Amanda C. Keeley

Comment

In the previous studies, the structures of some compounds with a $P(O)[NHC(O)CClF_2]$ fragment have been investigated; for example, [4-CH₃-C₆H₄NH]₂P(O)[NHC(O)CClF₂] (Pourayoubi, Tarahhomi *et al.*, 2011), [(C₆H₅CH₂)(CH₃)N]₂P(O) [NHC(O)CClF₂] (Raissi Shabari *et al.*, 2011) and [(CH₃)₂CHNH]₂P(O)[NHC(O)CClF₂] (Pourayoubi & Saneei, 2011). Here, the structure determination of the title compound (Fig. 1) is reported.

Atoms F1, F2 and Cl1 were refined as disordered over two sets of sites with occupancies of 0.605 (6) and 0.395 (6). The N—H unit of the C(O)NHP(O) fragment adopts a *syn* orientation with respect to the phosphoryl group. The P atom is bonded in a distorted tetrahedral environment as has been noted for other phosphoric triamides. The P=O, C=O and P—N bond lengths and P—N—C bond angles are within the expected values (Pourayoubi, Tarahhomi *et al.*, 2011; Raissi Shabari *et al.*, 2011; Pourayoubi & Saneei, 2011).

In the crystal, the O atom of P=O group acts as a double-hydrogen bond acceptor (Pourayoubi *et al.*, 2012) and molecules are linked by N—H···O=C hydrogen bonds and $(N-H···)_2O=P$ group, into a linear arrangement along the *b* axis (Fig. 2).

Experimental

CIF₂CC(O)NHP(O)Cl₂ was prepared according to the literature method reported by Iriarte *et al.* (2008).

To a solution of $ClF_2CC(O)NHP(O)Cl_2$ (0.473 g, 1.92 mmol) in dry chloroform (25 ml), a solution of benzylamine (0.823 g, 7.68 mmol) in the same solvent (5 ml) was added at 273 K. After 6 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from CH₃CN at room temperature.

Refinement

H atoms H1N, H2N and H3N were located in a difference Fourier map and were refined with $U_{iso}(H) = 1.2U_{eq}(N)$, giving N—H distances of 0.88 (2) or 0.86 (2) Å. The other H atoms were placed in calculated positions with 0.95 Å for CH, 0.99 Å for CH₂ and with $U_{iso}(H) = 1.2U_{eq}(C)$. F atoms F1 and F2 and chlorine Cl1 are disordered over two sets of sites with occupancies of 0.605 (6) and 0.395 (6).

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *enCIFer* (Allen *et al.*, 2004).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are given at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii. The atoms of the minor component of disorder are labeled with suffix 'A'.

Figure 2

Crystal packing of title compound viewed approximately along the *a* axis. The N—H…O hydrogen bonds are shown by dashed lines. H atoms not involved in hydrogen bonding have been removed for clarity.

N,*N*'-Dibenzyl-*N*''-(2-chloro-2,2-difluoroacetyl)phosphoric triamide

Crystal data	
$C_{16}H_{17}ClF_2N_3O_2P$	F(000) = 400
$M_r = 387.75$	$D_{\rm x} = 1.453 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 3176 reflections
a = 12.9734 (5) Å	$\theta = 3.3 - 32.2^{\circ}$
b = 4.9900 (2) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 13.7750 (4) Å	T = 173 K
$\beta = 96.482 \ (3)^{\circ}$	Block, colourless
V = 886.06 (6) Å ³	$0.35 \times 0.22 \times 0.12 \text{ mm}$
Z = 2	

Data collection

Oxford Xcalibur (Eos, Gemini) diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1500 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010) $T_{\min} = 0.890, T_{\max} = 0.960$	9633 measured reflections 5460 independent reflections 4909 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 32.2^{\circ}, \theta_{min} = 3.3^{\circ}$ $h = -18 \rightarrow 19$ $k = -7 \rightarrow 6$ $l = -9 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.122$ S = 1.09 5460 reflections 263 parameters 18 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.3968P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.55$ e Å ⁻³ $\Delta\rho_{min} = -0.71$ e Å ⁻³ Absolute structure: Flack (1983), with 2216 Friedel pairs Flack parameter: 0.06 (11)

Special details

Experimental. IR (KBr, v, cm⁻¹): 3253, 1718, 1457, 1419, 1282, 1215, 1139, 1073, 977, 873, 735 and 688.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.51645 (5)	0.70594 (13)	0.19236 (4)	0.01939 (13)	
Cl1	0.2161 (2)	0.5360 (8)	0.3959 (2)	0.0795 (10)	0.605 (6)
F1	0.3784 (5)	0.5030 (15)	0.4995 (4)	0.086 (2)	0.605 (6)
F2	0.3555 (5)	0.8763 (7)	0.4479 (3)	0.073 (2)	0.605 (6)
Cl1A	0.3973 (4)	0.6102 (13)	0.5203 (3)	0.0829 (18)	0.395 (6)
F1A	0.2518 (6)	0.4471 (17)	0.4089 (7)	0.066 (3)	0.395 (6)
F2A	0.2775 (5)	0.8461 (12)	0.3861 (5)	0.058 (2)	0.395 (6)
01	0.54403 (15)	0.9827 (4)	0.16821 (14)	0.0261 (4)	
02	0.4173 (2)	0.3092 (5)	0.3189 (2)	0.0528 (8)	
N1	0.45241 (18)	0.5364 (5)	0.10546 (18)	0.0266 (5)	
H1N	0.460 (3)	0.362 (5)	0.106 (3)	0.032*	
N2	0.61194 (18)	0.5089 (5)	0.22963 (16)	0.0241 (4)	
H2N	0.601 (3)	0.340 (5)	0.226 (2)	0.029*	
N3	0.4401 (2)	0.7487 (5)	0.28612 (18)	0.0288(5)	

Acta Cryst. (2012). E68, o3009

H3N	0.428 (3)	0.909 (5)	0.305 (2)	0.035*
C1	0.3635 (2)	0.6492 (6)	0.0436 (2)	0.0294 (6)
H1B	0.3792	0.6516	-0.0251	0.035*
H1A	0.3527	0.8367	0.0637	0.035*
C2	0.2652 (2)	0.4925 (6)	0.04980 (19)	0.0270 (5)
C3	0.2351 (2)	0.2941 (6)	-0.0179 (2)	0.0309 (6)
H3A	0.2759	0.2598	-0.0696	0.037*
C4	0.1463 (3)	0.1456 (7)	-0.0111 (3)	0.0391 (7)
H4A	0.1267	0.0093	-0.0577	0.047*
C5	0.0860 (2)	0.1951 (9)	0.0635 (2)	0.0432 (7)
H5A	0.0247	0.0937	0.0679	0.052*
C6	0.1150 (3)	0.3920 (9)	0.1315 (3)	0.0457 (9)
H6A	0.0742	0.4238	0.1835	0.055*
C7	0.2035 (2)	0.5440 (8)	0.1241 (2)	0.0364 (7)
H7A	0.2219	0.6832	0.1698	0.044*
C8	0.6884 (2)	0.5876 (6)	0.3112 (2)	0.0286 (6)
H8A	0.6577	0.5637	0.3733	0.034*
H8B	0.7050	0.7800	0.3048	0.034*
C9	0.7871 (2)	0.4274 (6)	0.31541 (19)	0.0263 (5)
C10	0.8070 (2)	0.2410 (7)	0.2450 (2)	0.0303 (6)
H10A	0.7574	0.2120	0.1899	0.036*
C11	0.8993 (3)	0.0966 (8)	0.2550 (3)	0.0401 (7)
H11A	0.9121	-0.0311	0.2067	0.048*
C12	0.9720 (3)	0.1367 (8)	0.3341 (3)	0.0453 (9)
H12A	1.0345	0.0358	0.3409	0.054*
C13	0.9537 (3)	0.3244 (9)	0.4035 (3)	0.0505 (10)
H13A	1.0045	0.3561	0.4575	0.061*
C14	0.8624 (3)	0.4658 (8)	0.3949 (2)	0.0403 (7)
H14A	0.8502	0.5920	0.4439	0.048*
C15	0.4032 (3)	0.5428 (6)	0.3344 (3)	0.0405 (8)
C16	0.3359 (2)	0.6241 (6)	0.4143 (2)	0.0490 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
P1	0.0211 (3)	0.0136 (2)	0.0242 (3)	-0.0009 (3)	0.00582 (19)	-0.0014 (2)
Cl1	0.0438 (12)	0.139 (3)	0.0597 (12)	0.0070 (14)	0.0255 (10)	-0.0081 (14)
F1	0.076 (4)	0.169 (7)	0.0121 (19)	-0.017 (4)	0.0062 (19)	-0.016 (3)
F2	0.139 (5)	0.036 (2)	0.056 (3)	-0.013 (3)	0.066 (3)	-0.0126 (18)
Cl1A	0.076 (3)	0.148 (5)	0.0257 (15)	0.005 (3)	0.0091 (13)	-0.0213 (17)
F1A	0.028 (3)	0.079 (6)	0.098 (6)	-0.017 (4)	0.036 (4)	0.007 (5)
F2A	0.081 (5)	0.043 (3)	0.060 (4)	0.032 (3)	0.047 (4)	0.012 (3)
01	0.0319 (10)	0.0160 (9)	0.0322 (9)	-0.0018 (7)	0.0107 (7)	0.0004 (7)
O2	0.0767 (19)	0.0144 (10)	0.0769 (18)	0.0017 (12)	0.0504 (16)	0.0025 (11)
N1	0.0229 (10)	0.0199 (11)	0.0361 (11)	0.0025 (9)	-0.0006 (8)	-0.0079 (9)
N2	0.0240 (10)	0.0158 (10)	0.0316 (11)	-0.0011 (8)	-0.0008 (8)	-0.0015 (9)
N3	0.0405 (13)	0.0129 (12)	0.0366 (11)	0.0009 (9)	0.0198 (10)	-0.0012 (8)
C1	0.0263 (12)	0.0335 (18)	0.0281 (12)	-0.0024 (10)	0.0009 (9)	0.0050 (10)
C2	0.0218 (12)	0.0308 (14)	0.0281 (12)	0.0024 (10)	0.0014 (9)	0.0067 (10)
C3	0.0275 (13)	0.0332 (16)	0.0321 (13)	0.0026 (11)	0.0033 (11)	0.0008 (11)

Acta Cryst. (2012). E68, o3009

C4	0.0366 (16)	0.0320 (19)	0.0477 (17)	-0.0011 (12)	0.0000 (13)	-0.0013 (12)
C5	0.0271 (13)	0.0458 (19)	0.0568 (18)	-0.0050 (17)	0.0047 (12)	0.008 (2)
C6	0.0327 (17)	0.064 (3)	0.0427 (17)	-0.0004 (17)	0.0129 (13)	0.0049 (17)
C7	0.0287 (14)	0.049 (2)	0.0314 (13)	-0.0020 (14)	0.0042 (11)	-0.0040 (13)
C8	0.0296 (13)	0.0269 (14)	0.0284 (12)	0.0019 (11)	-0.0006 (10)	-0.0036 (10)
C9	0.0252 (12)	0.0265 (13)	0.0270 (12)	-0.0032 (10)	0.0025 (9)	0.0035 (10)
C10	0.0260 (12)	0.0340 (17)	0.0309 (12)	-0.0004 (12)	0.0030 (9)	-0.0017 (11)
C11	0.0298 (15)	0.0427 (19)	0.0494 (18)	0.0062 (14)	0.0113 (13)	-0.0021 (15)
C12	0.0297 (15)	0.052 (2)	0.0533 (19)	0.0088 (14)	0.0011 (13)	0.0121 (16)
C13	0.0378 (19)	0.062 (3)	0.0474 (19)	0.0040 (17)	-0.0156 (15)	0.0013 (18)
C14	0.0393 (17)	0.0429 (19)	0.0356 (15)	0.0020 (15)	-0.0096 (12)	-0.0027 (14)
C15	0.060 (2)	0.0165 (13)	0.0516 (18)	0.0013 (13)	0.0366 (16)	0.0015 (12)
C16	0.0641 (16)	0.0245 (15)	0.066 (2)	-0.0012 (15)	0.0394 (15)	0.0048 (15)

Geometric parameters (Å, °)

P1-01	1.474 (2)	С3—НЗА	0.9500
P1—N1	1.617 (2)	C4—C5	1.382 (5)
P1—N2	1.619 (2)	C4—H4A	0.9500
P1—N3	1.728 (2)	C5—C6	1.381 (6)
Cl1—C16	1.607 (3)	С5—Н5А	0.9500
F1-C16	1.379 (5)	C6—C7	1.390 (5)
F2-C16	1.355 (4)	С6—Н6А	0.9500
Cl1A—C16	1.585 (4)	C7—H7A	0.9500
F1A-C16	1.399 (5)	C8—C9	1.505 (4)
F2A-C16	1.373 (4)	C8—H8A	0.9900
O2—C15	1.203 (4)	C8—H8B	0.9900
N1—C1	1.467 (4)	C9—C10	1.388 (4)
N1—H1N	0.88 (2)	C9—C14	1.396 (4)
N2—C8	1.466 (3)	C10—C11	1.391 (4)
N2—H2N	0.86 (2)	C10—H10A	0.9500
N3—C15	1.341 (4)	C11—C12	1.373 (5)
N3—H3N	0.86 (2)	C11—H11A	0.9500
C1—C2	1.507 (4)	C12—C13	1.378 (6)
C1—H1B	0.9900	C12—H12A	0.9500
C1—H1A	0.9900	C13—C14	1.373 (5)
С2—С3	1.386 (4)	C13—H13A	0.9500
С2—С7	1.393 (4)	C14—H14A	0.9500
C3—C4	1.382 (4)	C15—C16	1.534 (4)
O1—P1—N1	116.13 (13)	C9—C8—H8B	109.0
O1—P1—N2	116.36 (12)	H8A—C8—H8B	107.8
N1—P1—N2	103.17 (12)	C10—C9—C14	118.1 (3)
O1—P1—N3	103.15 (11)	C10—C9—C8	123.6 (2)
N1—P1—N3	109.14 (13)	C14—C9—C8	118.3 (3)
N2—P1—N3	108.72 (12)	C9—C10—C11	120.2 (3)
C1—N1—P1	122.3 (2)	C9-C10-H10A	119.9
C1—N1—H1N	118 (2)	C11—C10—H10A	119.9
P1—N1—H1N	117 (2)	C12-C11-C10	120.7 (3)
C8—N2—P1	120.50 (19)	C12—C11—H11A	119.7

Acta Cryst. (2012). E68, o3009

C8—N2—H2N	114 (2)	C10—C11—H11A	119.7
P1—N2—H2N	118 (2)	C11—C12—C13	119.5 (3)
C15—N3—P1	122.91 (19)	C11—C12—H12A	120.2
C15—N3—H3N	119 (2)	C13—C12—H12A	120.2
P1—N3—H3N	118 (2)	C14—C13—C12	120.3 (3)
N1—C1—C2	112.5 (2)	C14—C13—H13A	119.9
N1—C1—H1B	109.1	С12—С13—Н13А	119.9
C2—C1—H1B	109.1	C13—C14—C9	121.2 (3)
N1—C1—H1A	109.1	C13—C14—H14A	119.4
C2—C1—H1A	109.1	C9—C14—H14A	119.4
H1B—C1—H1A	107.8	O2—C15—N3	125.7 (3)
C3—C2—C7	118.9 (3)	O2—C15—C16	119.6 (3)
C3—C2—C1	120.6 (2)	N3—C15—C16	114.6 (2)
C7—C2—C1	120.5 (3)	F2-C16-F2A	54.8 (4)
C4—C3—C2	120.8 (3)	F2-C16-F1	94.3 (4)
C4-C3-H3A	119.6	F^2A — $C16$ — $F1$	1385(4)
$C_2 - C_3 - H_3 \Delta$	119.6	F_2 C_16 F_1 A	136.0(5)
$C_2 = C_3 = H_{5} R_{1}$	120.1.(2)	F_{2} C_{16} F_{1A}	150.0(5)
$C_{5} = C_{4} = C_{5}$	120.1 (3)	$F_{2A} = C_{10} = F_{1A}$	93.3(3)
C_{3} C_{4} H_{4}	120.0	$F_{1} = C_{10} = F_{1A}$	90.2(3)
С5—С4—П4А	120.0	F2 - C10 - C15	113.0(3)
$C_0 - C_3 - C_4$	119.9 (3)	F2A = C16 = C15	110.0(3)
Co-Co-HSA	120.1		106.8 (4)
C4—C5—H5A	120.1	FIA = CI6 = CI5	107.3 (5)
C5—C6—C7	120.2 (3)	F2—C16—CIIA	/0./ (4)
С5—С6—Н6А	119.9	F2A—C16—Cl1A	120.0 (4)
С7—С6—Н6А	119.9	F1A—C16—Cl1A	109.2 (5)
C6—C7—C2	120.1 (3)	C15—C16—Cl1A	112.5 (3)
С6—С7—Н7А	119.9	F2—C16—Cl1	116.7 (4)
С2—С7—Н7А	119.9	F2A—C16—Cl1	71.6 (4)
N2—C8—C9	112.7 (2)	F1—C16—Cl1	107.5 (4)
N2—C8—H8A	109.0	C15—C16—Cl1	115.7 (3)
С9—С8—Н8А	109.0	Cl1A—C16—Cl1	120.6 (3)
N2—C8—H8B	109.0		
O1—P1—N1—C1	-45.6 (3)	C14—C9—C10—C11	0.6 (5)
N2—P1—N1—C1	-174.1 (2)	C8—C9—C10—C11	-178.7 (3)
N3—P1—N1—C1	70.4 (2)	C9-C10-C11-C12	-0.3 (5)
O1—P1—N2—C8	53.1 (2)	C10-C11-C12-C13	-0.8(6)
N1—P1—N2—C8	-178.5(2)	C11—C12—C13—C14	1.5 (6)
N3—P1—N2—C8	-62.8(2)	C12—C13—C14—C9	-1.2(6)
01 - P1 - N3 - C15	-1757(3)	C10-C9-C14-C13	0.2(5)
N1 - P1 - N3 - C15	60 2 (3)	C8-C9-C14-C13	1795(3)
N2 P1 N3 C15	-516(3)	P1 N3 C15 O2	-0.6(6)
$P1_N1_C1_C2$	-1202(2)	$P1_N3_C15_C16$	-170 3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.48(3)	$02 \ C15 \ C16 \ E2$	179.3(2) 157.0(5)
N1 = C1 = C2 = C3	94.0 (3)	$V_2 = C_{13} = C_{10} = C_2$ N2 C15 C16 E2	-22.2(5)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(3)	$1N_{3} - C_{13} - C_{10} - F_{2}$	(23.3(3))
$C_1 = C_2 = C_3 = C_4$	-1.2(4)	$U_2 = U_1 $	-142.8(3)
1 - 1 - 12 - 13 - 14	1/8.4 (3)	$1N_{3} - U_{13} - U_{10} - F_{2A}$	50.0 (b)
$C_2 - C_3 - C_4 - C_5$	0.4 (5)	02-C15-C16-F1	33.6 (6)

$C_{3} - C_{4} - C_{5} - C_{6}$	-0.4(5)	N3-C15-C16-F1	-125.6(4)
C4—C5—C6—C7	1.2 (6)	02-C15-C16-F1A	-40.0 (6)
C5—C6—C7—C2	-2.0(6)	N3-C15-C16-F1A	138.8 (5)
C3—C2—C7—C6	2.0 (5)	O2-C15-C16-Cl1A	80.1 (5)
C1—C2—C7—C6	-177.6 (3)	N3—C15—C16—C11A	-101.1 (4)
P1—N2—C8—C9	-162.00 (19)	O2-C15-C16-Cl1	-64.0 (5)
N2-C8-C9-C10	5.0 (4)	N3-C15-C16-Cl1	114.8 (4)
N2-C8-C9-C14	-174.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
N1—H1 <i>N</i> ···O1 ⁱ	0.88 (2)	2.30 (3)	3.092 (3)	151 (3)	
N2—H2N····O1 ⁱ	0.86 (2)	2.05 (2)	2.867 (3)	158 (3)	
N3—H3 <i>N</i> ···O2 ⁱⁱ	0.86 (2)	2.01 (2)	2.854 (3)	166 (3)	

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) *x*, *y*+1, *z*.