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Abstract

The maximum likelihood, moment and mixture of the estimators are derived
for samples from the gamma distribution in the presence of outliers generated from
gamma distribution. These estimators are compared empirically when all parame-
ters are unknown; their bias and mean squares error are investigated with the help
of numerical technique. We have shown that these estimators are asymptotically
unbiased. At the end, we conclude that mixture estimators are better than the
maximum likelihood and moment estimators.
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1 Introduction

In an experimental situation, many times, an experimenter comes across some ob-
servations which are different from the main body of the data and hence are outliers.
The problem of outliers is of considerable importance in almost all experimental fields
and has revised continued attention in statistical literature. If we ignore the outliers in
estimation of parameters, then variance of the estimators will increase and in testing of
hypothesis, power will decrease. Hence, we have to consider a different model when out-
liers are present. For more details, see Hawkins (1980), Miller (1981) and Barnet and
Lewis (1994). According to the definition of outliers, we have dependence in the whole
data. Also, only we know about the number of outliers but we can not distinguish which
of the observation is outlier or no outlier. In other hands, If we select some of the ob-
servation from a distribution and the remaining are selected from a different distribution
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then mix them to each other, we have independence in whole of data and it is a mixture
model. One should note that in the mixture model, we know about the number and the
value of the contamination observation. Also, we can use any observation from any two
distributions. But in the outliers problem in actual data the number of outliers is few
such as 1,2,3,4.
Consider spread from a point source for example, which might a small plot of plants.
During favorable weather conditions, the plants release their pollen and it disperses ac-
cording to a gamma distribution with distance from the source. However, in less favorable
conditions, light, rain or mist, not only are the plants less likely to release pollen, but
that which is released still falls with a gamma distribution. Dixit et al. (1996) consider
the above example in the context of spread disease amongst plants of viral spores such as
barley yellow mosaic dwarf virus (BYMDV). By using the methodology as stated in Dixit
et al. (1996), it is possible to estimate the average distance (and hence area) of disease
spread in a field from a small patch of infested plants in the presence of some spread
caused by insects. Also, Dixit and Nasiri (2001) estimated parameters of the exponen-
tial distribution in the presence of outliers generated from uniform distribution. Jabbari
Nooghabi et al. (2009) extended their approach to estimate parameters of gamma distri-
bution in the presence of outliers generated from uniform distribution. Further, Jabbari
Nooghabi et al. (2010) used some statistics for detecting outliers in gamma distribution.
According to Dixit et al. (1996), we assume that a set of random variables X1, X2, ..., Xn

represent the distance of an infected sampled plant from a plot of plants inoculated with
a virus. Some of the observations are derived from the airborne dispersal of the spores
and distributed according to the gamma distribution. The other observations out of n
random variables (say k ) are present. Because, aphids which are known to be carriers of
BYMDV have passed the virus into the plants when the aphids feed on the sap. These k
(known) aphids are considered to be gamma distributed with spread scale parameter.
Now, we assume that the random variables X1, X2, ..., Xn are such that k of them are
distributed with probability density function (pdf)

g(x) =
xα−1

Γ(α) (βθ)α
exp

(
− x

βθ

)
, x > 0, θ > 0, β > 0,

and the remaining (n− k) random variables are distributed with pdf

f(x) =
xα−1

Γ(α) θα
exp

(
−x

θ

)
, x > 0, θ > 0.

The present paper considers the estimation of α, β and θ in the model described above.
One should note that β > 0 and β ̸= 1. Because for β = 1, the study is reduced to esti-
mation of the parameters of the homogenous case of the Gamma distribution and there is
no outliers. In Section 2, we obtain the joint distribution of X1, X2, ..., Xn in the presence
of k outliers. In Sections 3, 4 and 5, we deal with the method of moment, maximum like-
lihood and mixture of these two methods (moment and maximum likelihood) to estimate
α, β and θ, respectively. We compare empirically the bias and mean square error (MSE)
of the estimators in the last section.
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2 Joint distribution of X1, X2, ..., Xn with k outliers

Let Xi, i ≥ 1 be a sequence of non negative continuous random variables such that for a
given combination A1, A2, ..., An−k of the integers 1, 2, ..., n, the following conditions hold.
I: The random variables XA1 , XA2 , ..., XAn−k

, are independent each having the pdf f(x).
II: The remaining random variables are also independent each having the pdf g(x).
III: The two sets of the random variables are also independent.
IV: Further, it is assume that the combinations A1, A2, ..., An−k of the integers 1, 2, ..., n
are chosen at random with equal probability [C(n, k)]−1 for each combinations, where
C(n, k) = n!

k!(n−k)!
.

The joint density of X1, X2, ..., Xn is given as

f(x1, x2, ..., xn) =
n∏

i=1

f(xi)
∑

A1,A2,...,Ak

k∏
j=1

g(xAj
)

f(xAj
)
[C(n, k)]−1,

where ∑
A1,A2,...,Ak

=
n−k+1∑
A1=1

n−k+2∑
A2=A1+1

...
n∑

Ak=Ak−1+1

.

The above formula is known as the outliers model (refer to Dixit (1989)). By using the pdf
of f(x) and g(x) and after some simplification, the joint pdf of X1, X2, ..., Xn in presence
of k outliers is given by

f(x1, x2, ..., xn, α, β, θ) = hk

n∏
i=1

xα−1
i exp

(
−xi

θ

)
H(x, β, θ), (1)

where
hk =

[
C(n, k)(Γ(α))nβkαθnα

]−1
,

Γ(α) =
∫ ∞

0
tα−1e−tdt,

and

H(x, β, θ) =
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj

 .

Also, the marginal density of Xi (i = 1, 2, ..., n) can be written as:

f(xi;α, β, θ) = bg(x) + b̄f(x),

where b = k
n
, b̄ = 1 − b and (X1, X2, ..., Xn) are not independent. For more details see

Dixit (1989), Dixit, Ali and Woo (2003), Dixit, Moore and Barnett (1996) and Dixit and
Nasiri (2001).
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3 Method of moments

To find the moment estimator of the parameters, we should find the sample and
population moments. So by comparing these moments, the method of moments estimators

are derived. Let D =
m′

2

m′
1
2 and D1 =

m′
2

m′
1
, where

m′
i =

n∑
j=1

xi
j

n
, i = 1, 2, 3.

If we assume that β is known by using the method of moments, we get

D =
(α + 1)(bβ2 + b̄)

α(bβ + b̄)2
, (2)

and

Dα[bβ + b̄]2 = (α + 1)(bβ2 + b̄).

So

α̂ =
bβ2 + b̄

D(bβ + b̄)2 − (bβ2 + b̄)
. (3)

Also,

D1 =
θ(α+ 1)(bβ2 + b̄)

bβ + b̄
, (4)

and

θ̂ =
D1(bβ + b̄)

(α + 1)(bβ2 + b̄)
. (5)

By substituting (3) in (5), we obtain

θ̂ =
D1[D(bβ + b̄)2 − (bβ2 + b̄)]

D(bβ2 + b̄)(bβ + b̄)
. (6)

Now, to estimate β, we should compare the third sample and population moments. So
we find the third population moment and get

m′
3 = θ3(α + 2)(α + 1)α(bβ3 + b̄). (7)

Substituting (3) and (5) in (7), imply that

m′
3 =

D1
3(bβ3 + b̄)[2D(bβ + b̄)2 − (bβ2 + b̄)]

(bβ2 + b̄)2(bβ + b̄)D2
. (8)
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Therefore, solving the following equation gets the moment estimator (ME) of β as:

A1β
5 + A2β

4 + A3β
3 + A4β

2 + A5β + A6 = 0, (9)

where 

A1 = m′
3D

2b3 +D3
1b

2 − 2D3
1Db3,

A2 = m′
3D

2b2b̄− 4D3
1Db2b̄,

A3 = 2m′
3D

2b2b̄+D3
1bb̄− 2D3

1Dbb̄2,
A4 = 2m′

3D
2bb̄2 +D3

1bb̄− 2D3
1Db2b̄,

A5 = −4D3
1Dbb̄2 +m′

3D
2bb̄2,

A6 = m′
3D

2b̄3 − 2D3
1Db̄3 +D3

1 b̄
2.

(10)

Note: For moment estimator of β, one should note that in either case, we may get more
than one feasible solution. In such a situation, estimates can be selected by evaluating the
likelihood for each feasible solution and choosing the one that maximizes the likelihood
function with respect to β.
Now, it is useful to show that θ̂, α̂ and β̂ are asymptotically unbiased estimators.
Let W1 =

∑n
i=1Xi, W2 =

∑n
i=1X

2
i and W3 =

∑n
i=1X

3
i , then by using the method of

moments

D =
nW2

W 2
1

, D1 =
W2

W1

and W3 = nm′
3.

So if β is known, we can write θ̂ as a function of W1 and W2

θ̂ = f(W1,W2). (11)

Let E(W1) = µ and E(W2) = ν. We expand the function f(W1,W2) about the point
(µ, ν) using Taylor series

f(W1,W2) = f(µ, ν) + (W1 − µ)
∂f

∂W1

|W1=µ,W2=ν + (W2 − ν)
∂f

∂W2

|W1=µ,W2=ν + ... . (12)

Therefore from (5), (11) and (12)

E(θ̂) ≃ f(µ, ν) =
ν
µ
(bβ + b̄)

(α + 1)(bβ2 + b̄)
,

where
µ = (bβ + b̄)αθ and ν = (bβ2 + b̄)θ2α(α + 1).

So, we obtain

E(θ̂) ≃ θ. (13)
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Now, assume that α̂ is a function of W1 and W2 as α̂ = g(W1,W2). Then by using the
expansion of Taylor series of g(W1,W2) around (µ, ν), same as (12) and using (3), we find

E(α̂) ≃ bβ2 + b̄
ν
µ2 (bβ + b̄)2 − (bβ2 + b̄)

=
bβ2 + b̄

(bβ2+b̄)(α+1)
α

− (bβ2 + b̄)

= α. (14)

Finally to prove E(β) ≃ β, assuming that β̂ is a function of W1, W2 and W3 as β̂ =
h(W1,W2,W3) and expand it around (µ, ν, η), where η = E(W3). So we get

h(W1,W2,W3) = h(µ, ν, η) + (W1 − µ)
∂h

∂W1

|W1=µ,W2=ν,W3=η + (W2 − ν)
∂h

∂W2

|W1=µ,W2=ν,W3=η

+(W3 − η)
∂h

∂W3

|W1=µ,W2=ν,W3=η + .... (15)

Then, E(β̂) ≃ h(µ, ν, η). To verify the unbiasedness of the estimator, we have

A1 ≃ η
n

(
nν
µ2

)2
b3 +

(
ν
µ

)3
b2 − 2

(
ν
µ

)3 (
nν
µ2

)
b3,

A2 ≃ η
n

(
nν
µ2

)2
b2b̄− 4

(
ν
µ

)3 (
nν
µ2

)
b2b̄,

A3 ≃ 2 η
n

(
nν
µ2

)2
b2b̄+

(
ν
µ

)3
bb̄− 2

(
ν
µ

)3 (
nν
µ2

)
bb̄2,

A4 ≃ 2 η
n

(
nν
µ2

)2
bb̄2 +

(
ν
µ

)3
bb̄− 2

(
ν
µ

)3 (
nν
µ2

)
b2b̄,

A5 ≃ −4
(
ν
µ

)3 (
nν
µ2

)
bb̄2 + η

n

(
nν
µ2

)2
bb̄2,

A6 ≃ η
n

(
nν
µ2

)2
b̄3 − 2

(
ν
µ

)3 (
nν
µ2

)
b̄3 +

(
ν
µ

)3
b̄2.

(16)

After substituting (16) in left side of (9) and by using some elementary algebra, we get
the equation is equal to 0. This means that the moment estimator of β is asymptotically
unbiased. For more details, see Dixit and Nasiri (2001).

4 Maximum likelihood estimator

From (1), the likelihood equation corresponding to x1, x2, ..., xn is

L = L(x1, x2, ..., xn, α, β, θ) = [Γ(α)]−n β−kαθ−nα (C(n, k))−1
n∏

i=1

xi
α−1 exp

(
−xi

θ

)

×
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj

 . (17)
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Then

∂L

∂α
≃

{
[Γ(α)]−n−1

[
−nΓ′(α)− kΓ(α) ln(β)− nΓ(α) ln(θ) + Γ(α)

n∑
i=1

ln(xi)

]}

×
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj

 , (18)

where

Γ′(α) =
∂Γ(α)

∂α
.

So to find the maximum likelihood estimator (MLE) of α, we must solve the following
equation using numerical methods (Newton-Raphson method is just one among many
possible approaches) as

−nΓ′(α)− kΓ(α) ln(β)− nΓ(α) ln(θ) + Γ(α)
n∑

i=1

ln(xi) = 0. (19)

If β = 1, we can rise the MLE of α without outlier as the following:

−nΓ′(α)− Γ(α)

[
n ln(θ)−

n∑
i=1

ln(xi)

]
= 0. (20)

Also, we have

∂L

∂θ
≃ θ−nαe−

∑n

i=1
xi/θ[−nα

θ

∑
A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj


+

∑n
i=1 xi

θ2
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj


+
1− β

βθ2
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj

] = 0. (21)

Then to obtain the MLE of θ, we must solve the following equation using numerical
methods.

− nα

θ

∑
A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj

+

∑n
i=1 xi

θ2
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj


+
1− β

βθ2
∑

A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj


k∑

j=1

xAj
= 0. (22)

If we put β = 1, we obtain θ̂ =
∑n

i=1
xi

nα
as the MLE of θ without outlier.

Finally, for MLE of β we have

∑
A1,A2,...,Ak

exp

−1− β

βθ

k∑
j=1

xAj


−kαβ +

1

θ

k∑
j=1

xAj

 = 0. (23)

So, we must solve the above equation to find the MLE of β as well as the equation (22).
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5 Mixture of methods of moment and maximum like-

lihood

Read (1981) proposed the methods which are avoided the difficulty of complicated equa-
tions. According to Read’s results (1981), we obtain the mixture estimator (MXE) for
the two cases as follows.
I) β is known:
In Section 3, we obtained the moment estimator of θ as

θ̂ =
D1[D(bβ + b̄)2 − (bβ2 + b̄)]

D(bβ2 + b̄)(bβ + b̄)
. (24)

Therefore by substituting the above estimator in equation (23) and solving by numerical
methods, we can find the MXE of α.
II) β is unknown:
At first, we find the estimator of β according to ME method by solving equation (9).
So we substitute this estimator in equation (6) and then solve it to obtain the MXE of
θ. Finally, the MXE of α will be obtained by solving the equation that is yielded from
replacing the ME of β and θ in equation (23).

6 Numerical Study

In order to get an idea of efficiency between the three types of estimator i.e ME, MLE and
MXE in known β and unknown β cases, we have generated a sample of size 5(1)10(5)30
for k = 1 and k = 2 from the gamma distribution with α=5, β=0.1 and θ=0.5 using R
statistical software. For example, for k=1, α=5, β=0.1 and θ=0.5 a sample of size 10 is
generated such that a sample of size 9 is taken from f(x) and a sample of size one is taken
from g(x). For these observations, we have calculated bias and MSE of the estimators.
This process is repeated 1000 times. Further, these 1000 biases and MSEs were divided
by 1000. Figures 1 and 2 (a, b, c, d, e and f) show the results based on one thousand
independent replication of each experiments for k = 1 and k = 2, respectively.
In figures 1 and 2 (a, for Bias of α̂), one can easily find that the Bias of MXE of α̂ in
case II is less than Bias of the other methods for all n. Figures 1 and 2 (b, for Bias of
β̂) show that the Bias of MXE of β̂ is between Bias of ME and MLE for all sample sizes.
It is clear that in figures 1 and 2 (c, for Bias of θ̂) the Bias of MXE of θ̂ in case II is
approximately near to the Bias of MXE in case I and MLE and also less than the Bias
of ME. In addition, in figures 1 and 2 (d, for MSE of α̂), it can be obtained that the
MSE of MXE of α̂ in case II is less than the MSE of other methods for all n and it is
decreasing when n increases. Figures 1 and 2 (e, for MSE of β̂) show that the MSE of
MXE of β̂ is less than MSE of MLE and ME for all sample sizes and decreasing respect
to n. It is obvious that in figures 1 and 2 (f, for MSE of θ̂) the MSE of MXE of θ̂ in case
II is less than the MSE of MXE in case I, MLE and ME and also is decreasing when n is
increasing.

8
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In summary, the graphs show that for the estimation of α, β and θ, the MXE in case
II (Mixture2, β is unknown) is more efficient than the other estimators. Also in case I
(Mixture1, β is known), we see that the MXE is better than the MLE and ME. Further,
in the two cases the MLE is better than the ME. Finally, we can inference that the MSE
of MXE in both cases decreases as n is increased. So it is a consistent estimator.

References

[1] Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. 3rd. Ed., John Wiley
and Sons.

[2] Dixit, U. J. (1989). Estimation of parameters of the Gamma Distribution in the
presence of Outliers. Commun. Statist. Theor. Meth. 18, 3071-3085.

[3] Dixit, U. J., Ali, M. M. and Woo Jungsoo. (2003). Efficient Estimation of parameters
of a uniform distribution in the presence of outliers. Soochow Journal of Mathematics
29(4), 363-369.

[4] Dixit, U.J., Moore, K.L. and Barnett, V. (1996). On the estimation of the power
of the scale parameter of the exponential distribution in the presence of outliers
generated from uniform distribution. Metron 54(3-4), 201-211.

[5] Dixit, U.J. and Nasiri, F.P. (2001). Estimation of parameters of the exponential
distribution in the presence of outliers generated from uniform distribution. Metron
59(3-4), 187-198.

[6] Hawkins, D. M. (1980). Identification of Outliers. 1. Chapman and Hall, New York,
NY.

[7] Jabbari Nooghabi, M., Jabbari Nooghabi, H. and Nasiri, F.P. (2009). Estimation
of parameters of the gamma distribution in the presence of outliers generated from
uniform distribution. Pakistan Journal of Statistics 25(1), 15-26.

[8] Jabbari Nooghabi, M., Jabbari Nooghabi, H., Nasiri, P. (2010). Detecting outliers in
gamma distribution. Commun. Statist. Theor. Meth. 39, 698-706.

[9] Miller, R. G. Jr. (1981). Simultaneous Statistical Inference. 2nd ed. New York:
Springer Verlag.

[10] Read, R.R. (1981). Representation of certain covariance matrices with application to
asymptotic efficiency, J. Amer. Statist. Assoc. 76, 148-154.

9



Vol 19, No. 10;Oct 2012

106 office@multidisciplinarywulfenia.org

Bias of ̂  when k =1,  =5, ! =0.1 and " =0.5           MSE of ̂  when k =1,  =5, ! =0.1 and " =0.5 

Bias of !̂  when k =1,  =5, ! =0.1 and " =0.5           MSE of !̂  when k =1,  =5, ! =0.1 and " =0.5 

Bias of"̂  when k =1,  =5, ! =0.1 and " =0.5            MSE of"̂  when k =1,  =5, ! =0.1 and " =0.5

n

302520151098765

B
ia

s
 o

f 
a

lp
h

a

5

4

3

2

1

0

-1

-2

-3

-4

Method

M.E

MLE

Mixture1

Mixture2

n

302520151098765

M
S

E
 o

f 
a

lp
h

a

5

4

3

2

1

.5

.4

.3

.2

.1

.05

Method

M.E

MLE

Mixture1

Mixture2

n

302520151098765

B
ia

s
 o

f 
b
e
ta

2

1

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

Method

M.E

MLE

Mixture2

n

302520151098765

M
S

E
 o

f 
b
e
ta

2

1

.5

.4

.3

.2

.1

.05

.04

.03

.02

.01

Method

M.E

MLE

Mixture2

n

302520151098765

B
ia

s
 o

f 
th

e
ta

6

5

4

3

2

1

0

-1

-2

Method

M.E

MLE

Mixture1

Mixture2

n

302520151098765

M
S

E
 o

f 
th

e
ta

2

1

.5

.4

.3

.2

.1

.05

.04

.03

.02

.01

.005

.004

.003

.002

.001

Method

M.E

MLE

Mixture1

Mixture2

Figure 1. Comparison the bias and MSE of the estimators based on simulation results
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Figure 2. Comparison the bias and MSE of the estimators based on simulation results
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