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The maximum likelihood (ML) and uniformly minimum variance
unbiased estimators (UMVUE) of the probability density function
(pdf), cumulative distribution function (cdf) and rth moment are
derived for the Pareto distribution in the presence of outliers. It has
been shown that MLE of pdf and cdf are better than their UMVUEs.
At the end, these methods are illustrated with the help of real data
from an insurance company.
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1. Introduction

The Pareto distribution was originally used to describe the allocation of wealth among individuals
since a larger portion of thewealth of any society is ownedby a smaller percentage of the people in that
society. It can be shown that using the graph of f (x) (probability density function), the probability that
owns a small amount of wealth per person is high. The probability then decreases steadily as wealth
increases.

Another application of this distribution is for On-Line Analytical Processing (OLAP) view size
estimation. Nadeau and Teorey [9] used the Pareto distribution for OLAP aims at gaining useful
information quickly from large amounts of data residing in a data warehouse. To improve the
quickness of response to queries, pre-aggregation is a useful strategy. However, it is usually impossible
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to pre-aggregate along all combinations of the dimensions. Themulti-dimensional aspects of the data
lead to a combinatorial explosion in the number and potential storage size of the aggregates.

Nadeau and Teore [9] have suggested to selectively pre-aggregate. Cost/benefit analysis involves
estimating the storage requirements of the aggregates in question. They [9] presented an original
algorithm for estimating the number of rows in an aggregate based on the Pareto distribution model.
They also tested the Pareto model algorithm empirically against four published algorithms, and
concluded that the Pareto model algorithm is consistently the best of these algorithms for estimating
view size. Pareto distribution is also useful for finding the average of annuity.

In economics, where this distribution is used as an income distribution, the threshold parameter
is some minimum income with a known value.

Asrabadi [1] derived the uniformly minimum variance unbiased estimator (UMVUE) of the
probability density function (pdf), the cumulative distribution function (cdf) and the rth moment of
Pareto distribution. Dixit and Jabbari Nooghabi [6] had obtained amaximum likelihood (ML) estimator
of pdf and cdf and had shown that the ML estimators are more efficient than their UMVUEs. Further,
it is shown that the MLE of the rth moment does not exist.

In insurance formodelling the claimswhere theminimum claim is themodal value, we can use the
Pareto distribution (see http://www.brighton-webs.co.uk/distributions/pareto.asp). Also, according
to Benktander [2], the Pareto distribution is useful for automobile insurance problems. For example,
in a motor insurance, a claim of at least θ as a compensation can be made and claims below θ are not
entertained. Here the parameter θ is known and we can fit the Pareto distribution with parameters α
and θ to the data of claims, where θ is known and α is unknown. For more details about applications
of the homogeneous case of the Pareto distribution see [9,1,2]. In the above example, we know that
the vehicles involved are of different costs, of which some of them may have a very high cost and
claim amounts vary according to the damage to the vehicles. So if a company assumes that claims of
these vehicles (expensive/severe damaged vehicles) are β times higher than normal vehicles, the data
of claims follow a Pareto distribution in the presence of outliers with parameters α, β and θ , where
α is unknown, β , θ and the number of outliers are Dixit and Nasiri known. For the model of outliers
refer to [3,5,7,8]. We do claim that this work is the first in estimation in the Pareto distribution with
outliers.

Let a set of random variables (X1, X2, . . . , Xn) represent the claim amounts of a motor insurance
company. It is assumed that claims of some of vehicles (expensive/severely damaged vehicle) are β
times higher than normal vehicles.

Hence, we assume that the random variables (X1, X2, . . . , Xn) are such that any k (number of
outliers) of them are distributed with pdf

f2(x; α, β, θ) =
α(βθ)α

xα+1
, 0 < βθ ≤ x, α > 0, β > 1, θ > 0, (1)

and the remaining (n − k) random variables are distributed as

f1(x; α, θ) =
αθα

xα+1
, 0 < θ ≤ x, α > 0. (2)

In this paper, we have derived the ML and UMVU estimators of pdf and cdf of the above Pareto
distribution in the presence of outliers. We assume that β , θ and k are known and α is unknown.
At the end, we have given an example of claims in a motor insurance company.

2. Joint distribution of (X1,X2, . . . ,Xn) with k outliers

The joint distribution of (X1, X2, . . . , Xn) in the presence of k outliers is given by

f (x1, x2, . . . , xn; α, β, θ)

=
αnθnαβkα

C(n, k)


n∏

i=1

xi

−(α+1) n−k+1−
A1=1

n−k+2−
A2=A1+1

. . .

n−
Ak=Ak−1+1

k∏
j=1

I(xAj − βθ), (3)

http://www.brighton-webs.co.uk/distributions/pareto.asp
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where C(n, k) =
n!

k!(n−k)! and I is the indicator function defined as

I(y) =


1 y > 0,
0 otherwise.

The marginal distribution of Xi (i = 1, 2, . . . , n) can be written as:

f (xi; α, β, θ) = b
α(βθ)α

xα+1
i

I(xi − βθ) + b̄
αθα

xα+1
i

I(xi − θ), α > 0, β > 1, θ > 0, (4)

where b =
k
n , b̄ = 1 − b and (X1, X2, . . . , Xn) are not independent (for more details see [3,5,7,8]).

3. UMVU estimator

Let X1, X2, . . . , Xn be a random sample of size n from the distribution (1) and (2), then T =
∏n

i=1 Xi
is a complete sufficient statistic for the unknown parameter α. According to the Lehmann Scheffe
theorem if h(x1|t) = f ∗(t) be the conditional pdf of X1 given T , we have

E[f ∗(T )] =

∫
f ∗(t)h∗(t)dt =

∫
h(x1|t)h∗(t)dt =

∫
h(x1, t)dt = f (x1),

where h∗(t) is the pdf of T and h(x1, t) is the joint pdf of X1 and T . Therefore f ∗(t) is the UMVUE of
f (x1).

Lemma. The distribution of T is h∗(t) as

h∗(t) =
αnθnαβkα

Γ (n)
t−(α+1)

[ln(t) − k ln(β) − n ln(θ)]n−1I(t − βkθn). (5)

Proof. The joint pdf of (X1, T ) is obtained by making the following transformation.

{y1 = x1, y2 = x2, . . . , yn−1 = xn−1, t = x1x2 . . . xn}.

The Jacobian of transformation is J =
1

y1y2...yn−1
.

We have from (3)

h(y1, y2, . . . , yn−1, t) =
1

y1y2 . . . yn−1
f

y1, y2, . . . , yn−1,

t
y1y2 . . . yn−1


, (6)

then integrating y2, y3, . . . , yn−1 over the respective range, the joint pdf of (Y1, T ) is

h(y1, t) =
αnθnαβkα

(n − 2)!y1
t−(α+1)

× {b[ln(t) − ln(y1) − (k − 1) ln(β) − (n − 1) ln(θ)]n−2I(y1 − βθ)I(t − y1βk−1θn−1)

+ b̄[ln(t) − ln(y1) − k ln(β) − (n − 1) ln(θ)]n−2I(y1 − θ)I(t − y1βkθn−1)}. (7)

Further, integrating h(y1, t) with respect to y1 over the range of y1, result is h∗(t) given in (5). �

Now we obtain UMVUE of f (x), F(x) and rth moment.

Theorem 3.1. For a given t

(A) f̂ (x) is UMVUE of f (x), where

f̂ (x) =
(n − 1)

x[ln(t) − k ln(β) − n ln(θ)]n−1

× {b[ln(t) − ln(x) − (k − 1) ln(β) − (n − 1) ln(θ)]n−2I(t − xβk−1θn−1)I(x − βθ)

+ b̄[ln(t) − ln(x) − k ln(β) − (n − 1) ln(θ)]n−2I(t − xβkθn−1)I(x − θ)}. (8)



U.J. Dixit, M. Jabbari Nooghabi / Statistical Methodology 8 (2011) 340–355 343

(B) F̂(x) is UMVUE of F(x), where

F̂(x) = 1 −
1

[ln(t) − k ln(β) − n ln(θ)]n−1

× {b[ln(t) − ln(x) − (k − 1) ln(β) − (n − 1) ln(θ)]n−1I(t − xβk−1θn−1)I(x − βθ)

+ b̄[ln(t) − ln(x) − k ln(β) − (n − 1) ln(θ)]n−1I(t − xβkθn−1)I(x − θ)}. (9)

(C) The rth moment of X ∼ f̂ (x) is the UMVUE of the rth moment of X ∼ f (x), where

E(X r) =
(n − 1)!θ r(bβr

+ b̄)
[r(ln(t) − k ln(β) − n ln(θ))]n−1


t rβ−rkθ−rn

−

n−2−
j=0

[r(ln(t) − k ln(β) − n ln(θ))]j

j!


I(t − βkθn). (10)

Proof. Case A: (8) can be proved by using the lemma.

Case B: We have

E(F̂(x)) =

∫
F̂(x)h∗(t)dt

= 1 −
αnθnαβkα

(n − 1)!

×


bI(x − βθ)

∫
∞

xβk−1θn−1
t−(α+1)

[ln(t) − ln(x) − (k − 1) ln(β) − (n − 1) ln(θ)]n−1dt

+ b̄I(x − θ)

∫
∞

xβkθn−1
t−(α+1)

[ln(t) − ln(x) − k ln(β) − (n − 1) ln(θ)]n−1dt

.

On simplification, we get E(F̂(x)) = F(x).

Case C: We have

E(X r) =

∫
xr f̂ (x)dx =

(n − 1)
[ln(t) − k ln(β) − n ln(θ)]n−1

× {bI(t − βkθn)

∫ tβ1−kθ1−n

βθ

xr−1
[ln(t) − ln(x) − (k − 1) ln(β) − (n − 1) ln(θ)]n−2dx

+ b̄I(t − βkθn)

∫ tβ−kθ1−n

θ

xr−1
[ln(t) − ln(x) − k ln(β) − (n − 1) ln(θ)]n−2dx}.

On simplification, we get E(X r).
Further we have

E[E(X r)] =

∫
∞

βkθn

E(X r)h∗(t)dt

= αnθnα+rβkαr1−n(bβr
+ b̄)

[
β−rkθ−rn

∫
∞

βkθn
t−α+r−1dt

−

n−2−
j=0

r j

j!

∫
∞

βkθn
t−α−1

[ln(t) − k ln(β) − n ln(θ)]jdt
]
.
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If we put z = ln(t) − k ln(β) − n ln(θ), then

E[E(X r)] = αnθnα+rβkαr1−n(bβr
+ b̄)


β−rkθ−rn (βkθn)r−α

α − r
−

n−2−
j=0

r j

j!
β−kαθ−nα

∫
∞

0
z je−αzdz



= αnθnα+rβkαr1−n(bβr
+ b̄)


β−kαθ−nα

α − r
− β−kαθ−nα 1

α

n−2−
j=0

 r
α

j

=
αθ r

α − r
(bβr

+ b̄)

= E(X r),

by using
n−2−
j=0

 r
α

j
=

αn−1
− rn−1

(α − r)αn−2
,

and the proof is complete. �

Note: UMVUE of α is

α̂ =
n − 1

ln(t) − n ln(θ) − k ln(β)
, t > βkθn, (11)

and

E(α̂r) =
Γ (n − r)(n − 1)r

Γ (n)
αr , r ≤ n − 1. (12)

For r = 1, E(α̂) = α.

4. MSE of UMVU estimator

In this section, we obtain the MSE of f̂ (x) and F̂(x).

Theorem 4.1. (A)

MSE(f̂ (x)) =
(n − 1)α2nθα

(n − 2)!xα+2
{b2βαA2n−4

i (βθ)Bi(βθ)

+ b̄2A2n−4
i (θ)Bi(θ) + 2bb̄An−2

i (θ)An−2
j (βθ)Bi+j(θ)}

−

[
b
α(βθ)α

xα+1
I(x − βθ) + b̄

αθα

xα+1
I(x − θ)

]2
, (13)

(B)

MSE(F̂(x)) =
α2nθα

(n − 1)!xα
{b2βαA2n−2

i (βθ)Bi(βθ)

+ b̄2A2n−2
i (θ)Bi(θ) + 2bb̄An−1

i (θ)An−1
j (βθ)Bi+j(θ)}

−


θ

x

2α 
bβαI(x − βθ) + b̄I(x − θ)

2
, (14)

where

An
i (θ) =

n−
i=0

C(n, i) [ln(θ) − ln(x)]n−i I(x − θ),
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and

Bi(θ) = Γ (i − n + 2)α−2−i
i−n+1−
l=0

[α(ln(x) − ln(θ))]l

l!
I(x − θ).

Proof. Case A: We can find E(f̂ (x))2 using the pdf of T in (5)

E(f̂ (x))2 =
(n − 1)θαα2n

(n − 2)!xα+2

× [b2βαA2n−4
i (βθ)Bi(βθ) + b̄2A2n−4

i (θ)Bi(θ) + 2bb̄An−2
i (θ)An−2

j (βθ)Bi+j(θ)], (15)

by using the following relation.

[t − ln(x) + ln(θ)]2n−4
=

2n−4−
i=0

C(2n − 4, i)t i[ln(θ) − ln(x)]2n−4−i.

Then, we obtain the MSE of f̂ (x).
Case B: We can find E(F̂(x))2 using (5).

Hence

E(F̂(x))2 =
α2nθα

(n − 1)!xα
{b2βαA2n−2

i (βθ)Bi(βθ)

+ b̄2A2n−2
i (θ)Bi(θ) + 2bb̄An−1

i (θ)An−1
j (βθ)Bi+j(θ)}

+1 − 2


θ

x

α

[bβαI(x − βθ) + b̄I(x − θ)]. (16)

Then we get the MSE of F̂(x) and the proof is complete. �

5. Maximum likelihood estimator

Using (3), the likelihood equation for α is

n
α

+ n ln(θ) + k ln(β) −

n−
i=1

ln(xi) = 0. (17)

Hence solving the above equation, we get MLE of α as given below:

α̃ =
n

n∑
i=1

ln(xi) − n ln(θ) − k ln(β)

,

n−
i=1

ln(xi) > ln(θnβk). (18)

Using the property of MLE, we can obtain the estimator of pdf, cdf and the rth moment by using α̃
instead of α in the pdf, cdf and rth moment, respectively. So

f̃ (x) =
α̃θ α̃

xα̃+1


bβ α̃I(x − βθ) + b̄I(x − θ)


, α̃ > 0, θ > 0, β > 1, (19)

F̃(x) = 1 −


θ

x

α̃ 
bβ α̃I(x − βθ) + b̄I(x − θ)


, α̃ > 0, θ > 0, β > 1, (20)

and

E(X r) =
α̃θ r

α̃ − r
(bβr

+ b̄), α̃ > r, θ > 0, β > 1. (21)

Now we will find the distribution of α̃.
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LetW1 =
∑n−k

i=1 ln


Xi
θ


and W2 =

∑k
i=1 ln


Xi
θ


. So

g(w1) =
αn−kwn−k−1

1

Γ (n − k)
exp(−αw1), w1 > 0, (22)

and

g(w2) =
αkβkα(w2 − k ln(β))k−1

Γ (k)
exp(−αw2), w2 > k ln(β). (23)

SinceW1 andW2 are independent then after some elementary algebra, we can find the distribution
of α̃. Hence

g(α̃) =
(αn)n

Γ (n)(α̃)n+1
exp


−

αn
α̃


, α̃ > 0. (24)

For more details see [4].

Theorem 5.1. (A) f̃ (x) is a biased estimator of f (x) and

E(f̃ (x)) =
1

xΓ (n)

n−2−
j=0

(αn)j+1

j!
Γ (n − j − 1)

×


b

ln


βθ

x

j

I(x − βθ) + b̄

ln


θ

x

j

I(x − θ)


. (25)

(B) F̃(x) is a biased estimator of F(x) and

E(F̃(x)) = 1 −
1

Γ (n)

n−1−
j=0

(αn)j

j!
Γ (n − j)

×


b

ln


βθ

x

j

I(x − βθ) + b̄

ln


θ

x

j

I(x − θ)


. (26)

(C) E(X r) is a biased estimator of E(X r) and

E(E(X r)) =
θ re

−nα
r

Γ (n)


bβr

+ b̄
 ∞−

j=0

Γ (n + j)
 r

αn

j 
1 −

n+j−1−
i=0

 nα
r

i
i!


. (27)

Proof. Case A: We have

E(f̃ (x)) =

∫
∞

0
f̃ (x)g(w)dw

=
(αn)n

xΓ (n)


bI(x − βθ)

∫
∞

0


βθ

x

w e−
αn
w

wn
dw + b̄I(x − θ)

∫
∞

0


θ

x

w e−
αn
w

wn
dw


,

where g(w) is given in (24).
Note that

βθ

x

w

= ew ln


βθ
x


=

∞−
j=0

wj

ln


βθ

x

j
j!

, x ≥ βθ,
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and 
θ

x

w

= ew ln


θ
x


=

∞−
j=0

wj

ln


θ
x

j
j!

, x ≥ θ.

Hence

E(f̃ (x)) =
(αn)n

xΓ (n)

∞−
j=0

1
j!


b

ln


βθ

x

j

I(x − βθ) + b̄

ln


θ

x

j

I(x − θ)

∫
∞

0

e−
αn
w

wn−j
dw,

which result in

=
1

xΓ (n)

∞−
j=0

(αn)j+1

j!
Γ (n − j − 1)


b

ln


βθ

x

j

I(x − βθ) + b̄

ln


θ

x

j

I(x − θ)


,

where j ≤ (n − 1).

Case B: We have

E(F̃(x)) =

∫
∞

0
F̃(x)g(w)dw.

Then

E(F̃(x)) = 1 −
(αn)n

Γ (n)

∞−
j=0

1
j!


b

ln


βθ

x

j

I(x − βθ)

+ b̄

ln


θ

x

j

I(x − θ)

∫
∞

0

e
−αn
w

wn−j+1
dw

= 1 −
1

Γ (n)

∞−
j=0

(αn)j

j!
Γ (n − j)


b

ln


βθ

x

j

I(x − βθ) + b̄

ln


θ

x

j

I(x − θ)


.

Case C: We can obtain

E(E(X r)) =

∫
∞

0

E(X r)g(w)dw.

Hence

E(E(X r)) =
(αn)n

Γ (n)
θ r bβr

+ b̄
 ∞−

j=0

r j
∫

∞

r

e
−αn
w

wn+j+1
dw

=
θ re

−nα
r

Γ (n)


bβr

+ b̄
 ∞−

j=0

Γ (n + j)
 r

αn

j 
1 −

n+j−1−
i=0

 nα
r

i
i!


,

by using

1
w − r

=
1
w

∞−
j=0

 r
w

j
, w > r,

and the proof is complete. �

Note: E(E(X r)) tends to infinity as n → ∞.
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6. MSE of ML estimator

In the previous section, we found the MLE of f (x), F(x) and rth moment. Now we try to obtain the
MSE of f̃ (x) and F̃(x).

Theorem 6.1. (A)

MSE(f̃ (x)) =
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(B)
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Proof. Case A:

E(f̃ (x))2 =
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and to evaluate these integrals, we use the following equations.
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Hence
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This implies that
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since Γ (y) is defined for y > 0.
So by using some elementary algebra, we can get the MSE of f̃ (x).

Case B: We can obtain E(F̃(x))2 as
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Therefore we can obtain the MSE of F̃(x) and the proof is complete. �

Note: If k is unknown, then k can be selected by evaluating the likelihood for different values of k
choosing the one that maximizes the likelihood.

7. Comparison of MLE and UMVUE

In order to get an idea of the efficiency of the two types of estimation i.e MLE and UMVUE, we have
generated a sample of size 10, 15, 20, . . . , 40 from the Pareto distribution in the presence of outliers
with k = 1, 2, 3, α = 0.5, 1, 1.5, 2, β = 1.5, 2 and θ = 0.5, 1. For example, for k = 1, α = 0.5,
β = 1.5 and θ = 0.5 a sample of size 10 is generated such that a sample of size 9 is taken from (2)
and a sample of size one is taken from (1). For these observations, we have calculated exactMSE of the
estimators from (13), (14), (28) and (29). Then, we have taken the average of MSE of 10 observations.
This process is repeated 1000 times. Further, these 1000MSEswere divided by 1000 using R software.
Then we have plotted all these graphs in Figs. 1–4.

From the graphs, it has been seen that ML estimators of pdf and cdf are more efficient than their
UMVU estimators.

From (27), we can conclude that expected value of the MLE of rth moment does not exist, hence in
this case UMVU estimator is better.

8. An illustrative example

For insurance company one of its services is motor insurance. A claim of at least 500,000 Rials
(Iranian Rials) as compensation for the motor insurance can be made. The vehicles involved are of
different costs, of which some of them may have a very high cost. Claim amounts vary according to
the damage to the vehicles. The company had assumed that claims of expensive/severely damaged
vehicles are 1.5 times higher than the normal vehicles. In this paper, we have drawn a random sample
of size 20 of the claim amounts. It is observed that such claims follow the Pareto distribution in the
presence of outliers with parameters α, β and θ , where α is unknown, β = 1.5 and θ = 500,000 and
the number of outliers (k) is unknown. One should note that for normal vehicles claims below 500,000
Rials are not entertained.

Here, even if company assumed a different value of β (β > 1), for example β = 2, the data of
claims has the Pareto distribution in the presence of outliers with parameters α, β and θ , where α is
unknown, β = 2 and θ = 500,000 and the number of outliers (k) is unknown.

The data of claims from an insurance company in Iran records for the year 2008 is given below:

750,000, 780,000, 630,000, 1750,000, 1450,000
3000,000, 7650,000, 4210,000, 890,000, 950,000

1240,000, 1800,000, 1630,000, 9020,000, 4750,000
3250,000, 1135,000, 1326,000, 1280,000, 760,000.

So α̂ (UMVUE of α) and α̃ (MLE of α) for k = 1, 2, 3 are shown in Table 1.
Also from the likelihood function corresponding to k, L(x; α̂) and L(x; α̃) for k = 1, 2, 3 are shown

in Table 2.
The likelihood function is maximized for k = 1, α̂ = 0.7786114 and α̃ = 0.819591.
Therefore for n = 20, k = 1, β = 1.5 and θ = 500,000 the final result of UMVUE and MLE of f (x)

and F(x) corresponding to α̂, α̃ and the first observation (750,000) are given in Table 3.
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Fig. 1. Comparison the MSE of the estimators of pdf respect to observation generated from the Pareto distribution in the
presence of outliers.
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Fig. 2. Comparison the MSE of the estimators of pdf respect to observation generated from the Pareto distribution in the
presence of outliers.
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Fig. 3. Comparison the MSE of the estimators of cdf respect to observation generated from the Pareto distribution in the
presence of outliers.
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Fig. 4. Comparison the MSE of the estimators of cdf respect to observation generated from the Pareto distribution in the
presence of outliers.
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Table 1
UMVUE and MLE of α for β = 1.5 and θ = 500,000.

k α̂ α̃

1 0.7786114 0.819591
2 0.7917672 0.8334392
3 0.8053753 0.8477634

Table 2
The likelihood function corresponding to k.

k L(x; α̂) L(x; α̃)

1 3.314979e−137 3.401843e−137
2 4.878569e−138 5.006404e−138
3 1.143291e−138 1.173248e−138

Table 3
UMVUE andMLE of pdf and cdf for n = 20, k = 1,β = 1.5, θ = 500,000 and x = 750,000.

f̂ (x) 7.81366 e−07
f̃ (x) 7.992615 e−07
F̂(x) 0.2590218
F̃(x) 0.2686033
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