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Abstract— Bayesian Network is a significant graphical model 
that is used to do probabilistic inference and reasoning under 
uncertainty circumstances. In many applications, existence of 
discrete and continuous variables in the model are inevitable 
which has lead to high amount of researches on hybrid 
Bayesian networks in the recent years. Nevertheless, one of the 
challenges in inference in hybrid BNs is the difference between 
conditional probability density functions of different types of 
variables. In this paper, we propose an approach to construct a 
Unified Conditional Probability Density function (UCPD) that 
can represent probability distribution for both types of 
variables. No limitation is considered in the topology of the 
network. Hence, the construction of the unified CPD is 
developed for all pairs of nodes. We take use from mixture of 
Gaussians in the UCPD construct. Additionally, we utilize 
Kullback–Liebler divergence to measure the accuracy of our 
estimations.

Keywords- hybrid bayesian network; mixture of Gaussians; 
unified conditional probability density function   

I.  INTRODUCTION  
Bayesian Network (BN) is one of the most prominent 

graphical models that can handle reasoning under uncertainty. 
Besides, it is a powerful model to represent the joint 
probability distribution of the random variables of the model. 
This graphical model is presented by a Directed Acyclic 
Graph (DAG) where nodes are random variables of the 
model and edges represent conditional dependencies.  
Associated with each node are parameters that represent the 
conditional probability densities. Each conditional 
probability density is a function of a random variable, with 
respect to its parents in the topology of the graph. Random 
variables in the graph can be either discrete or continuous.  

Two main aspects exist for BNs: construction methods, 
such as [1,2], and inference in it. The goal of constructing 
BNs is to use this model to do probabilistic inference. 
Inference in BNs is NP-Hard [3]. Therefore, exact and 
approximate inference algorithms have been developed for 
different classes of BNs. Here, our attention is on hybrid 
BNs and more details will be discussed in the proceeding 
sections. 

We propose a unified conditional probability density 
function for all types of nodes in the hybrid BNs with the aid 
of mixture of Gaussians.  

The rest of the paper is organized as following. Chapter 2 
is focused on hybrid BNs; limitations that are stipulated in 

this class of BNs and inference in it. Chapter 3 introduces the 
proposed unified probability distribution function and the 
details of the specific definition for each pair of node types. 

II. HYBRID BAYESIAN NETWORK: DEFINITION AND 
INFERENCE 

Hybrid Bayesian networks contain discrete and 
continuous nodes simultaneously. These networks are 
essential to model many applications such as target tracking, 
speech recognition and fault diagnosis where existence of 
both types of nodes is inevitable. 

During the definition of hybrid BNs, some limitations are 
also defined. These limitations are mostly categorized into 
three classes. First limitation is considered in the topology of 
the graph and its random variables, that no continuous parent 
can have any discrete child. This limitation implies that none 
of the descendents of any continuous node can be a discrete 
node. The second limitation is about continuous nodes and 
their probability distributions that can be Gaussian or non-
Gaussian (any arbitrary function). The third limitation is 
about the relationship between continuous nodes that can be 
linear or nonlinear. If we allow each one of these limitations, 
we have a restricted class of hybrid BNs. In this paper, we 
have the only limitation that the probability distributions for 
continuous nodes are Gaussian. But this does not affect the 
generality of our discussion because it can be extended for 
non-Gaussian distribution functions. 

Inference in hybrid BNs is more complicated than in 
other classes of BNs. This is because of different kinds of 
nodes and their probability distributions. The computations 
become more complicated such that calculations of the 
posterior probability on hybrid BNs mostly result in 
approximate answers.  

Different researches have been done for presenting the 
probability distribution and inference in hybrid BNs. Some 
of the inference algorithms work only for a special class. 
One class is CLG (Conditional Linear Gaussian). In CLGs a 
continuous node cannot have any discrete child and linear 
relationships exist between continuous nodes. Lauritzen 
algorithm is an exact method for inference in CLGs [4]. In 
[5] an architecture that is an extension of lazy propagation is 
extended for CLGs. For general hybrid BNs, different 
approaches have been investigated. In inference algorithms, 
one approach is to approximate the probability distribution 
function. In [6] Gaussian and Dirac functions are utilized to 
do inference and compute the required messages. In [7] the 
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author approximates hybrid BN by MoG (mixture of 
Gaussians) BNs. In [8] inference has been done by the aid of 
approximating probability density function by mixture of 
truncated exponentials. In [9] by approximating the 
probability density function with mixture of polynomials, 
inference has been done in hybrid BNs. In [10], authors use 
arc reversal method and describe it between all possible node 
types. 

III. UNIFIED CONDITIONAL PROBABILITY DENSITY 
FUNCTION   

As mentioned earlier, one of the most important 
characteristic of hybrid BNs is inclusion of discrete and 
continuous random variables. Here, we do not consider any 
limitation in the topology of the network graph; i.e. child and 
parent nodes can be either discrete or continuous. 
Accordingly, eight different cases of child and parent node 
types occur. Whether the child node is discrete or 
continuous, a parent has four possible cases. These cases are 
as follows: 1) discrete node without any parent, 2) discrete 
node with discrete parents, 3) discrete node with continuous 
parents, 4) discrete node with discrete and continuous 
parents, 5) continuous node without any parent, 6) 
continuous node with continuous parents, 7) continuous node 
with discrete parents, and 8) continuous node with discrete 
and continuous parents. 

In each case according to the node and parent type 
conditional probability density is presented by a probability 
table called conditional probability table (CPT) or by a 
probability function that is called conditional probability 
density function (CPD). In these cases, a discrete node with 
continuous parents, a discrete node with discrete and 
continuous parents, a continuous node with discrete parents, 
and a continuous node with discrete and continuous parents, 
the number of CPD functions is more than one. More 
explanation can be found in the rest of the paper. 

 In this paper, we propose a unified conditional 
probability density function. Our goal is to define a function 
that represents the whole CPT and CPD functions for all 
node types. We call this function Unified Probability Density 
function (UCPD). As a result, a UCPD can handle 
differences between CPD types in inference algorithms. 

We further illustrate each case in details where for each 
case UCPD is defined separately. This UCPD is 
approximately equal to the actual CPDs or CPT. For the 
purpose of defining this UCPD; we take use from mixture of 
Gaussian functions. In addition, Kullback–Liebler (KL) 
divergence is used as a measure of goodness of estimation in 
each case [11]. 

For the rest of the paper, we use � to denote standard 
deviation, � to denote covariance matrix, μ to denote mean, 
p to denote the probability of states of a discrete random 
variable, c to denote coefficient, and finally sX to denote the 
number of states of a discrete random variable X. We use 
uppercase letters to represent the random variables, 
lowercase letters to represent the states of those variables, 
and finally Pa(X) denotes parents of variable X. The function 
N(x,μ,�) is normal or Gaussian function with mean μ and 
standard deviation �.  

A.  Discrete node without any parent  
For this type of node, its probability density function is 

presented by a CPT. For each state of the random variable, 
one probability value exists. We define the UCPD as follow, 
for each state of the random variable one Gaussian function 
is defined. Mean μ of each state is equal to the value of that 
state. As very small standard deviation is required for 
accurate estimation, we define � equal to 0.001. The 
coefficient c of each Gaussian is the product of the 
probability of that state and 2.5�. The UCPD is as below: 
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where, X is a discrete random variable without any 
parent. 

Example 1: Consider node X to be a discrete variable 
with states 1 and 3. A CPT that defines probabilities of this 
variable is shown in Table I; also the value of UCPD is 
shown, where the UCPD is as in (2). The KL divergence 
between two densities is shown in Table III. 

TABLE I. CPT AND UCPD FOR DISCRETE VARIABLE X 

States of  X CPT UCDP(rounded by 2 d.p.) 

1 0.3 0.3 
3 0.7 0.7 
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B. Discrete node with discrete parents 
For this case, the states are combinations of states of 

child and parent nodes. This case is also presented by a CPT. 
UCPD is defined as follow: first a Gaussian function is 
defined for each state, then for each parent we add one 
dimension to the density function. Mean μ for each Gaussian 
is equal to the value of that state. � is a diagonal square 
matrix with the size of the state dimension and the diagonal 
elements are equal to 0.01. The coefficient c is the 
probability of that state multiply by square of covariance 
determinant and a constant �. The UCPD for this case is as: 
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Where, X is a discrete random variable that has at least 
one parent. � is very small and should be determined for 
each function separately. For these two recent cases, if one 
considers states as data and estimates density function by 
non parametric methods, this method can resemble kernel 
density estimation (KDE) method with Gaussian kernel [12]. 
However, the bandwidth for the kernel is predetermined and 
no extra computation is essential. 
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Example 2: Consider two discrete nodes U and V where 
V is the parent of U and P(U|V) is defined by a CPT as is 
shown in Table II. The values of the UCPD are also shown 
in that Table. The UCPD is as in (4). The KL divergence 
between two densities is shown in Table III. Constant � for 
this function is 0.063. 

TABLE II. CPT AND UCPD FOR DISCRETE VARIABLES (U|V) 

States of  U|V CPT UCDP(rounded by 2 d.p.) 

U=1 
V=1 0.5 0.5 
V=3 0.5 0.5 

U=2 
V=1 0.3 0.3 
V=3 0.7 0.7 
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C. Continuous node without/with continuous parents 
It is assumed that continuous nodes have Gaussian 

distribution. So the density distribution for these two cases is 
Gaussian, i.e. no changes for the actual functions are needed 
and hence computation of KL divergence is meaningless. 

D. Discrete node with continuous parents   
This case is one of the limitations that is considered for 

hybrid BNs. If this limitation holds, probability distribution 
for every discrete node is represented by a CPT. Hence, 
inference algorithms could deal with all discrete nodes the 
same. However, if this type of node exists, the probability 
distribution is presented by a function for each state of a 
discrete node with respect to its continuous parent, instead of 
a table. As the number of states for discrete variable increase, 
the numbers of functions to represent the distribution also 
increase. We use f to denote this function. We need to sum 
up these functions so that it becomes one probability 
function for all states. The UCPD is defined as follows, for 
each state a Gaussian function is defined. Mean μ of each 
Gaussians is equal to the value of that state; � should be very 
small so it is predetermined and is set to 0.001. The 
coefficient c of each Gaussian is the product of 2.5� and 
function f. The resulted UCPD is shown in (5).  
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Where, discrete node X can have one or more continuous 
parent; this relation is embedded in function f. 

Example 3: Consider discrete node X and continuous 
node Y; where Y is the parent of X. X has two states 1 and 9. 
For each one of these states, as mentioned earlier, one 
function is defined as the probability distribution with 
respect to its continuous parent Y. These probability 
functions and UCPD are defined in (6). The KL divergence 
between the actual CPDs and UCPD is shown in Table III. 
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E. Continuous node with discrete parents 
In this case, conditional probability for every 

combination of states of discrete parents is represented by a 
function, here with a Gaussian function. It means that if 
discrete parents have more than one state, more than one 
CPD function represent the actual probability distribution. 
Now we want to sum up these functions so that there is only 
one probability function. For the purpose of defining the 
UCPD, we add dimensions to the actual function with 
respect to the number of discrete parents. We want to sum up 
all of them, so we should define the new mean and 
covariance, instead of standard deviation, for the UCPD. As 
mentioned before, we add dimensions for the new function 
so the new mean μ is the mean of the actual probability 
function and every state of the parents. Covariance matrix � 
is a diagonal one with the diagonal elements equal to 0.001 
except for the first element that is the standard deviation of 
the actual probability function of that state. The coefficient c 
of each Gaussian is the product of square of covariance 
determinant and a constant �. The UCPD is shown as in (7): 
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where, X is a continuous node and Pa(X) represents 
discrete parent nodes.  

Example 4: Consider a continuous node Y with its 
discrete parent X. X has two states 1 and 2. As shown in (8) 
P(Y|X) has two Gaussian functions since parent of Y has two 
states. The node Y has one discrete parent therefore the 
UCPD has mean and covariance of dimension two. The 
UCPD is also shown in (8). The constant � for this case is 
equal to 0.079. The KL divergence between the actual CPDs 
and UCPD is shown in Table III. 
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F. Continuous node with discrete and continuous parents 
For this node type, the assumptions are the same as the 

previous case. We have one function as probability 
distribution for every state of discrete parents. The procedure 
for defining the UCPD is the same as the previous one. 
However, we should pay attention to the fact that in this case 
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there is a relationship between every continuous node and its 
parent. This relationship can be linear or nonlinear and is 
embedded in the probability function, which is maintained in 
defining UCPD. So the UCPD is as follows: 
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where, X is a continuous node and Pa(X) consist of 
discrete and continuous parents. 

Example 5: Consider two continuous nodes Z and Y and 
discrete node U, where Y and U are the parents of Z. The 
node U has two states, 1 and 2. As shown below, the 
relationship between Z and U is embedded in the 
corresponding functions: Linear (LR) or Nonlinear (NLR) 
relationships. When the UCPD is defined these relationships 
are also considered. The UCPD for linear and nonlinear 
cases is shown below and the KL divergence values are 
shown in Table III. Here, the constant � is equal to 0.079. 
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G. Discrete node with discrete and continuous parents 
This case is similar to the case D except that here we 

have discrete parents, too. Hence, the number of states is 
more than the case with no discrete parent. The relationship 
between the child node and continuous parent is embedded 
in function f. If we have more than one parent the covariance 
matrix is a diagonal one with all elements equal to 0.001. So 
the UCPD is shown as:  
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where, X is a discrete node. If we have one discrete 
parent we should replace constant � with 2.5 and the 
covariance matrix with standard deviation �. Based on the 
experiments, constant � is always less than 0.1. 

IV. CONCLUSION AND FUTURE WORK 
In this paper, we focus on hybrid BNs and the complex 

task of inference. One reason is the difference between node 

TABLE III. KL DIVERGENCE COMPARISON 

Case KL Divergence 

III.A 2.3938e-10 

III.B 1.36181e-09 

III.D f1: 2.3951e-17 f2: 3.3742e-16

III.E f1: 7.6719e-16 f2: 9.6338e-16

III.F 
Linear Relationship Non- Linear Relationship 

f1:5.8312e-16 f2:6.9374e-16 f1:6.2440e-17 f2:2.9825e-17

 
types and the representation of their probability distribution. 
Consequently we propose a unified probability distribution 
to represent the CPT and CPD functions of random variables. 
This UCPD can be extended to consider non-Gaussian 
functions for continuous nodes. Also it can be used in 
inference algorithm as a preprocessing phase to change the 
CPTs and CPDs to one unified form. Currently, we are 
working to introduce a new algorithm for inference in hybrid 
BNs with the aid of the proposed UCPD and Loopy Belief 
Propagation algorithm. 
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