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ABSTRACT
A novel method for the reduction of wave height along the outer wall of a bend is introduced by adding a convex corner to the inner bend wall. The
negative waves emitted from the convex corner are then superimposed on the positive waves caused by the outer bend wall. The interaction of positive
and negative waves transforms the original single-humped wave along the outer wall to a lower double-humped wave. The optimum expansion angle
of the convex corner is a function of the offset width to the bend width, the radius of curvature to the bend width, and the approach flow Froude
number. Numerical studies indicate that the convex corner may be used in a wide range of safe conditions free from cavitation damage. By using an
optimized convex corner, the wave height may be reduced between 10 and 45%.
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1 Introduction

Cross-waves are generated in a supercritical flow channel due
to side wall deflection or curvature. Concave corners generate
positive waves or shocks, whereas convex corners emit negative
waves or centred depressions. In a contraction, the shocks and
depressions interact generating a complex wave pattern. How-
ever, if the transition is designed properly, the wave interaction
subsides the wave progression in the downstream channel. The
analytical solution for the wave development in straight transi-
tions is provided by Henderson (1966) or Chow (1959). In the
recent years, however, advanced numerical methods have been
applied for studying shock waves in transitions (Causon et al.
1999, Jan et al. 2009).

Similarly, if a supercritical flow enters a curved channel, a
group of oblique waves is produced. Their general configura-
tion, position, and height were studied by von Kármán (1938),
Knapp and Ippen (1938), and by Ghaeini Hessaroeyeh and
Tahershamsi (2009) proposing analytical relationships for the
extremum wave heights and locations. Supercritical flow in

bends has also been studied experimentally (Reinauer and Hager
1997) and numerically (Valiani and Caleffi 2005).

Usually, the generation and development of supercritical
waves in open channels and bends are not desirable from an engi-
neering point of view because wave crests may become much
higher than the inflow depth so that the wall height increases
considerably. Moreover, these waves extend into the downstream
channel and disturb the water surface. Ippen (1936) reported that
a flood occurred on 1 January 1934 in a rectangular cross-section
of a concrete channel bend of Verdugo Wash, a tributary of Los
Angeles River in California, with a radius of 182.9 m, a width of
1.5 m, and a bend angle of 12◦ that had an average inflow depth
and velocity of 1.13 m and 11.6 m/s, respectively. The maxi-
mum depth was 1.77 m at the bend outlet. Knapp (1951) was the
first to suggest several possible techniques for shock wave treat-
ment in supercritical bend flows. However, Vischer and Hager
(1994) identified six basic methods for shock wave reduction,
namely chute banking, wave interference, chute vanes, bottom
drops, cover plates, and reduction of the shock number. Wave
interference was defined as creating negative waves of intensity
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equal to the positive disturbances. This method was proposed for
chute contractions. Later on, Reinauer and Hager (1996) intro-
duced a pyramid-shaped diffractor element to reduce shocks in
contractions. In addition, they experimentally demonstrated that
the previous analytical solutions based on the wave interference
principle does not work for chute contractions mainly because a
shock wave has a finite wavelength in the order of a flow depth.
Moreover, a minor deviation from the design conditions of Ippen
and Dawson (1951) leads to the development of shock waves
implying that the design is highly inflexible and may work for
only one discharge (Hager 2010).

In a laboratory study, Beltrami et al. (2007) extended the idea
of superposition of shocks and depressions to curved channels by
installing water flaps upstream of a channel bend. These gener-
ate counter-phase positive waves that superimpose on the bend
negative waves caused by the inner wall and reduce the wave
height.

Herein, the design of a small convex corner at a bend inlet is
proposed to reduce negative disturbances, imposed on the pos-
itive waves generated along the outer wall. A convex corner
reduces a single-humped wave along the outer wall to a double-
humped wave, thereby decreasing the wave height considerably.
This method is simple, practical, and inexpensive. The approxi-
mate Riemann solver of Roe is applied to optimize the geometry.
The robustness of the numerical method is confirmed by exam-
ining its performance in straight transitions by comparing it with
the available analytical solutions and the experimental data.

2 Hydraulics of supercritical bend flow

If a supercritical flow enters a rectangular channel bend of cen-
tral radius rc, two sets of superficial oblique disturbances develop
due to sidewall curvature (Fig. 1). Positive disturbances along the
outer concave wall increase the flow depth and negative waves
along the inner convex wall decrease it. The first wave crest
(trough) is located at the angle θmax (θmin) from the bend inlet
along the outer (inner) wall. It is assumed that θmax = θmin = θm

and the extreme wave positions result from the bend geom-
etry and the approach flow characteristics as (Knapp 1951,
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Figure 1 Development of oblique waves in a bend (Chow 1959)

Chow 1959)

θm = tan−1 2b
(2rc + b) tan β

(1)

where b is the channel width and the wave angle β is a function
of the approach flow Froude number

β = sin−1
(

1
Fo

)
, Fo = Vo√

gho
(2)

In Eq. (2), ho and Vo are the depth and velocity at the bend inlet
and g the acceleration due to gravity. After the formation of the
first crest (trough) at θm, a set of consecutive wave extrema are
formed along the bend walls at 2θm, 3θm, etc.

Knapp and Ippen (1938) proposed the following relationship
for the wall surface profiles:

h
ho

= F2
o sin2

(
β ± θ

2

)
0 < θ < θm (3)

where h is the variable flow depth versus the angle θ . Using Eqs.
(1)–(3) the position and the crest height of the first wave at the
outer wall may be determined.

3 Performance of a convex corner at a bend inlet

In Fig. 2, a convex corner is shown, at a bend inlet, with a deflec-
tion angle α, an offset width d and an offset length l = d/ tan α.
The corner emanates negative waves which are confined in a
fan-shaped region (Fig. 2). These waves may be adjusted care-
fully, by changing the geometry, to interfere with the first positive
wave along the outer bend wall to reduce its height. The reduction
of the first peak results in the lowering of the succeeding wave
heights; improving the flow conditions in the curved reach, and
smoothing the wavy water surface in the downstream channel.
Predicting the first crest location and water surface elevation is
necessary for designing the wall height.
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Figure 2 Interaction of centered depression and oblique shock in a
bend
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4 Numerical approach

4.1 Shallow water equations

The shallow water equations (SWE) are used to analyse hyper-
critical flows (Fo > 3). Their depth-averaged differential form
upon neglecting frictional and turbulence effects in a horizontal
channel is (Toro 2001)

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= 0 (4)

where U is the vector of conservative variables and F(G) is the
flux vector in the x(y) coordinate system defined as

U =
⎡
⎣ h

hu
hv

⎤
⎦ , F(U ) =

⎡
⎣ hu

hu2 + 1
2 gh2

huv

⎤
⎦ ,

F(U ) =
⎡
⎣ hv

huv

hv2 + 1
2 gh2

⎤
⎦ (5)

where (u, v) are the depth-averaged velocities in the (x, y)
directions.

4.2 Two-dimensional numerical scheme of Roe

The SWE are solved using the approximate Riemann solver of
Roe over a quadrangular-structured grid. This is a Godunov-type
high-resolution scheme able to simulate shock and depression
waves in supercritical flows. A minmod limiter is implemented
to control wiggles at the vicinity of shocks (Leveque 2002).
For two-dimensional supercritical flows, three boundary condi-
tions need to be specified at the upstream boundary but none at
the downstream boundary (Chaudhry 2008). Therefore, the flow
depth h and the velocities u and v are set equal to their approach
flow values at the upstream boundary, and are fixed during the
computations. At the downstream end, the dependent variables
are interpolated from the solution domain. The solid boundaries
are simulated assuming slip boundary conditions. The steady
supercritical flow with undisturbed flow depths and velocities
are introduced to the model as initial conditions. The computa-
tional time step is controlled by the Courant–Friedrichs–Lewy
(CFL) stability criterion. The unsteady flow equations are inte-
grated in time to converge to a steady-state solution if the absolute
sum of the depth residuals is less than, say, 10−7 (Shamkhalchian
and Jaefarzadeh 2011). To verify the robustness of the numerical
scheme, oblique shock waves and centred depressions produced
by supercritical flow in straight transitions were modelled and
compared with the analytical and numerical results of other
researchers.
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Figure 3 Oblique shockwave in a concave corner
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Figure 4 Centered depression in a convex corner

4.3 Oblique shock waves

Consider a concave corner as shown in Fig. 3. The length and
width of the inlet channel are 1.4 and 0.84 m and the contraction
angle is 15◦. The upstream flow depth is 1 m and the approach
flow Froude number is Fo = 2. This corner was modelled by
Causon et al. (1999) using the Harten, Lax, and van Leer (HLL)
approximate Riemann solver over a boundary-fitted grid with
84 × 140 cells. The results of Roe’s scheme having the same
cell number and size compare excellently with the analytical
solution (Chow 1959) and the numerical results of the model
of Causon et al. (1999) for the downstream Froude number
and depth. However, the numerical shock front angle is under-
estimated by 0.55◦ as compared with the analytical solution.
Note that the flow depth increases by 54% beyond the oblique
shock.

4.4 Centred depression waves

Assume a convex corner with an expansion angle of 15◦ (Fig. 4).
The geometrical characteristics of the upstream channel and the
number and size of the computational cells are identical to the
previous example, except for Fo = 1.95. The results of Roe’s
scheme in comparison with the analytical solution and the numer-
ical model of Causon et al. (1999) for the downstream Froude
number, flow depth, and depression angles β1 and β2, measured
with reference to the approach flow and final flow directions
are quite close to each other and the downstream flow depth is
reduced by 51%.
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5 Numerical modelling of supercritical bend flow

Reinauer and Hager (1997) studied experimentally supercriti-
cal flow in rectangular channel bends. The geometrical char-
acteristics of one of their horizontal-curved channels were:
bend radius = 3.607 m, bend angle = 51◦, and channel width =
0.25 m. Based on their observations, the following relationships
for the location of the first wave crest and the wave profile along
the outer wall are

tan θmax =

⎧⎪⎪⎨
⎪⎪⎩

Fo
b
rc

, Fo
b
rc

≤ 0.35

0.6
√

Fo
b
rc

, Fo
b
rc

> 0.35
(6)

τow = sin1.5
(

π

2
θ

θmax

)
0 ≤ θ

θmax
< 1.25 (7)

wih the normalized wall profile

τow = h − ho

hmax − ho
(8)

where hmax is the maximum flow depth. Equation (7) applies for
0.75 < θ/θmax ≤ 1.25.

Beltrami et al. (2007) suggested an alternative surface profile
along the outer wall as

τow = 1 − Jo(3.8(θ/θmax))

1.4
(9)

where Jo is the Bessel function of the first kind of order zero.
Equation (9) is close to Eq. (7) if 0.75 < θ/θmax ≤ 1.25 and
gives appropriate results if 1.25 < θ/θmax ≤ 2. Valiani and Cal-
effi (2005) modelled the channel bend of Reinauer and Hager
using the HLL solver. Herein, this bend was simulated using
the Roe solver with quadrangular cells. In Fig. 5, the numerical
results for the normalized wall profile τow(θ/θmax) are in close
agreement with Eqs. (7) and (9) for different Fo. In Fig. 6, the
maximum dimensionless depth η = hmax/ho obtained from the
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Figure 5 Normalized wall profile τow(θ/θmax)
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Figure 7 Crest location tanθmax versus Fob/rc, (—) Eqs. (6), (�)

present numerical experiments, all other data by Reinauer and Hager
(1997)

analytical equation of Knapp and Ippen (1938), the numerical
schemes of Roe and HLL, and the experiments of Reinauer and
Hager (1997) are plotted against Fo, for ho = 5 cm. The numer-
ical results of Roe and HLL are nearly identical. For Fo ≤ 4.5,
the analytical and numerical results are close to the experimental
data, whereas for Fo > 4.5 the numerical results, particularly the
analytical solutions, are far from the tests. Based on numerical
experiences for Fo > 4.5, a zone of separation occurs in the vicin-
ity of the inner bend wall (Shamkhalchian and Jaefarzadeh 2011),
as was also reported by Reinauer and Hager (1997). Figure 7
refers to the location of first wave crest tan θmax against Fob/rc,
obtained from the present numerical experiments together with
Eqs. (6) and data provided by Reinauer and Hager (1997). The
numerical and experimental data generally agree.

6 Numerical studies of convex corner in bend flow

From the analytical equations (1)–(3) and the experimental equa-
tions (6)–(9), it is deduced that the normalized wall profile in bend
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Figure 8 Dimensionless outer wall wave profile h(θ)/ho for rc/b = 15, Fo = 3, d/b = 0.12 and tan α = 0.1, (— —) bend without convex corner,
(____) bend with convex corner
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Figure 9 Normalized wall profiles τow (θ/θmax) for rc/b = 15 and Fo = 4.5. (a) d/b = 0.12 (b) tan α = 0.25

flow is a function of Fo and rc/b. In the presence of a convex
corner, the geometrical characteristics of the corner as shown in
Fig. 2 will affect the profile as well, so

τow = f
(

Fo,
rc

b
, α,

d
b

)
(10)

The channel bend of Reinauer and Hager (1997) was consid-
ered with rc/b = 15 and two hypothetical bends with rc/b = 10
and rc/b = 20. The inlet channel width was fixed at b = 0.25 m.
Roe’s model, a powerful tool for simulating shocks and depres-
sions in transitions, was used to study the performance of the
convex corner in bends. Herein, this bend was simulated with a
maximum number of 3740 quadrangular cells. The grid sizes
varied from 2 mm × 5 mm around the convex corner tip to
20 mm × 25 mm along the outer bend wall. The computational
time step was of the order 0.5 × 10−5 s to satisfy the CFL stability
criterion.

In Fig. 8, the dimensionless outer wall profile h/ho is plotted
versus θ , with and without the convex corner for rc/b = 15,
Fo = 3, d/b = 0.12 and tan α = 0.1. The presence of the corner
transforms the first single-humped wave into a double-humped
wave, thus reducing the crest height of subsequent waves.

In Fig. 9(a), the normalized wall profile with rc/b = 15,
Fo = 4.5 and d/b = 0.12 is shown for various α. By increas-
ing the expansion angle, the heights of the two humps are close
to each other so that at tan α = 0.25 the humps are nearly equal.
In Fig. 9(b), the normalized wall profiles for rc/b = 15, Fo = 4.5
and tan α = 0.25 are shown for different d/b ratios.

By increasing d/b, the crest height of the double-humped
wave decreases. Numerical experiments indicate that changing
the offset width and expansion angle of the convex corner relo-
cates the position and height of the double-humped wave. For
a certain d/b, the optimum expansion angle αopt results as the
heights of the two humps are identical associated with the max-
imum reduction of the wall profile. The length of transition may
be determined when the optimum angle is achieved.

The optimum expansion angle was estimated in a series of
numerical studies for d/b = 0.04–0.12, tan α = 0.15–0.4, Fo =
2.5–4.5 and rc/b = 10–20. Figure 10 shows tan αopt versus Fo

for different values of rc/b. In these graphs, solid lines are best
fitted to all sets of data associated with various d/b. For Fo ≤ 3,
the optimum angle does not depend on the approach flow Froude
number. For Fo > 3, it decreases linearly and the slope of the
lines decreases as rc/b increases.

The following equations describe the solid lines

tan αopt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[4.2784(d/b) + 0.7633] 1
(rc/b)

+0.0479(d/b) + 0.259, Fo ≤ 3

[4.2784(d/b) + 0.7633 + 1.7323(3 − Fo)]
1

(rc/b)

−0.0451(3 − Fo) + 0.0479(d/b) + 0.259, Fo > 3
(11)

The maximum and minimum errors of Eqs. (11) are 7.34 and
0.17%, respectively.

D
ow

nl
oa

de
d 

by
 [

M
oh

am
m

ad
 R

ez
a 

Ja
ef

ar
za

de
h]

 a
t 0

9:
39

 1
3 

N
ov

em
be

r 
20

12
 



628 M.R. Jaefarzadeh et al. Journal of Hydraulic Research Vol. 50, No. 6 (2012)

(a) (b) (c)

0

0.25

0.5

0

0.25

0.5

ta
n 

a 
op

t

ta
n 

a 
op

t

ta
n 

a 
op

t

7

5
6

4
3

2

7

7
6

5

4
3

2

0

0.25

0.5
2

3

4

5
6

7

5432 5432 5432
Fo Fo Fo

Figure 10 Variation of tan αopt against Fo, d/b = (�) 0.04, (�) 0.08, (�) 0.12, (____) best-fitted lines to data, (- - -) contours of h below which
cavitation will not occur, rc/b = (a) 10, (b) 15, (c) 20
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Figure 11 Variation of TR(Fo) for an optimum angle α, d/b = (�) 0.04, (�) 0.08, (�) 0.12, rc/b = (a) 10, (b) 15, (c) 20

7 Convex corner and potential of cavitation damage

In high-velocity flows, sharp-edged geometries are susceptible to
cavitation damage. Around the tip of a convex corner, neglecting
the gauge pressure head in close proximity to water surface, the
cavitation index may be defined as

σ = hatm − hv

V 2
o /2g

(12)

where hatm is the atmospheric pressure head and hv the vapour
pressure head. Substituting for hatm − hv ≈ 10 m, at sea level and
25◦C, and rewriting Eq. (12) in terms of Fo and h gives

σ = 20
F2

oh
(13)

Falvey (1990) proposed an incipient cavitation index for cham-
fers that are away-from-the-flow as

σi = 0.83(tan α)0.55 (14)

At the onset of cavitation, σ = σi and the depth below which
cavitation will not occur is obtained from

h = 24
(tan α)0.55F2

o
(15)

In Fig. 10, depth contours from Eq. (15) are plotted by dashed
lines to identify the onset of cavitation at the intersection points
with solid curves. Consequently, there is a wide range of safe
depths so that convex corner may be used under laboratory and
field conditions without any risk of cavitation damage.

8 Efficiency of the convex corner

Similar to Beltrami et al. (2007) to evaluate the efficiency of a
convex corner, a total reduction parameter TR is defined as

TR = hmax − h∗
max

hmax − ho
(16)

where hmax is the maximum wave height without the convex
corner, h∗

max is the maximum wave height in the presence of
the convex corner and ho is the approach flow depth. Curves of
TR(Fo) are plotted in Fig. 11 for various values of rc/b and d/b.
For low Froude numbers and high d/b, convex corner offers a
higher efficiency that increases with rc/b. For example, using an
optimum expansion angle, for d/b = 0.12, Fo = 2.5 and rc/b =
20 the wave crest reduces by 45%. In any case, the minimum
efficiency is not below 10%.

A parabolic curve may be fitted to each data set as

TR = a′F2
o + b′Fo + c′ (17)

where a′, b′ and c′ are constant coefficients depending on rc/b
and d/b for different curves.

9 Conclusions

The performance of a small convex corner at a bend inlet is stud-
ied by the approximate Riemann solver of Roe. The negative
waves originating from the corner are superimposed upon the
positive waves of the outer wall. The first single-humped wave
is thereby transformed to a double-humped wave of considerably
reduced height. The position and height of the double-humped
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wave is a function of the radius of curvature to the bend width,
the offset breadth to the bend width, the tangential angle of the
expansion angle, and the approach flow Froude number. The
maximum height reduction is obtained if the two humps are
equal, associated with the optimum angle of the convex corner.
The numerical computations for the optimum design of the con-
vex corner in three bends reveal that the optimum angle decreases
by increasing the approach flow Froude number and moderately
increases by enhancing the ratio of d/b. Detailed studies confirm
that there is a relatively wide range of safe conditions below the
onset of cavitation. The efficiency of the convex corner decreases
by increasing the approach flow Froude number and rises mod-
erately by increasing the ratio of d/b. In the range of this study
the wave height reduces by 10–45%.
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Notation

a′, b′, c′ = constant coefficients (–)
b = inlet (bend) width (m)
d = offset width (m)
F (G) = flux vector in the x(y) coordinate (m2/s,

m3/s2, m3/s2)

Fo = approach flow Froude number (–)
g = acceleration due to gravity (m/s2)

h = flow depth, wave profile (m)
hmax = maximum flow depth (m)
h∗

max = maximum wave height with convex corner
(m)

hatm = atmospheric pressure head (m)
hv = vapour pressure head (m)
ho = approach flow depth (m)
Jo = Bessel function of the first kind of order

zero
l = length of convex corner (m)
rc = bend central radius (m)
TR = total reduction parameter (–)
u(v) = depth-averaged velocity in x(y) direction

(m/s)
U = vector of conservative variables (m, m2/s,

m2/s)
Vo = approach flow velocity (m/s)
α = expansion angle of convex corner (–)
αopt = optimum expansion angle of convex corner

(–)
β = wave (shock) front angle (–)
β1, β2 = depression angles (–)
η = maximum dimensionless depth (–)

θ = deflection angle of sidewall, central angle
of bend (–)

θmax, θmin = location of first wave crest (trough) (–)
σ = cavitation index (–)
σi = incipient cavitation index (–)
τow = normalized wall profile (–)
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