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The development of genetic maps of markers based upon
DNA polymorphisms is beginning to provide the
experimental geneticist and the plant and animal breeder with
powerful tools for the study of quantitative genetic variation.
The use of markers to detect individual loci responsible for
quantitative genetic variation (quantitative trait loci or QTL)
provides greater power than segregation analysis without
marker information. The use of flanking marker methods has
proved to be a powerful tool for the mapping of quantitative
trait loci (QTL) in the segregating generations derived from
crosses between inbred lines (Haley and Knott 1992).

The Haley-Knott regression method is based on multiple
regressions which can be applied using any general statistical
package, developed by Haley and Knott (1992). They used
the example of mapping in an F2 population and showed
that these regression methods produce very similar results
to those obtained using maximum likelihood (Haley and
Knott 1992). The Haley–Knott (HK) regression method
continues to be a popular approximation to standard interval
mapping (IM) of quantitative trait loci (QTL) in experimental
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crosses (Feenstra et al. 2006). Currently, the HK regression
method is preferred as a fast approximation to the IM method
for estimating model parameters (Feenstra et al. 2006).

In addition to the correctly estimated QTL position, the
size of the CI (95%) serves as an important criterion in QTL
mapping. This study carried out to consider effect of different
simulated parameters on confidence intervals (CI) obtained
from different methods.

Neural networks have been successfully applied in many
cases but there has been relatively little research into
application of ANNs in the field of animal breeding
(Kominakis et al. 2002). The ANN model is used to solve a
wide variety of problems in science and engineering,
particularly for some areas where the mathematical modeling
methods fail (Khazaei et al. 2008). An ANN model can
predict multiple dependent variables based on multiple
independent variables, where as a mathematical model is only
able to predict one dependent variable at a time (Zhang et al.
2002). The most powerful ability of ANN to solve large-
scale complex problems is training or education. The best-
known and most commonly used training algorithm is back-
propagation (Zhang et al. 2002 and  Drummond et al. 2004).

Here, a comprehensive simulation study was carried out
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ABSTRACT

Determination of confidence intervals (CI) using different methods at different levels of population size (Ps), marker
space (Ms), standard deviation of QTL effect (SDQ), ratio of additive to dominance SD (Rad) and QTL position relative
to flanking markers (rpQ) were investigated by simulation. The simulation conducted by F2 design and analyzed with
Haley and Knott (HK) method. Moreover an ANN model trained by backprobagation algorithm obtained to predict CIs
of different methods at combinations of simulated parameters. After obtain of best ANN model with optimal adequacy
parameters we used the artifitial neural network (ANN) model to prediction of CIs at very large-scale combination of
simulated parameters comparing actual simulation study. Bootstrap method had more per cent of acurate intervals but
average size of the intervals was very high in more scenarios. 1 LOD support interval and bayesian credible interval
resulted to be preferable with high per cent of acurate and small confidence intervals, moreover they weekly affected by
parameters such as population size and SD of QTL. This study investigated that we can predict CIs for more combination
of simulated parameters using best trained ANN. By this study it is sugestive to consideration of more combinations of
simulated parameters using the model obtained by best structured ANN to expanding of original study.
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to determine the effect of marker spacing, population size,
standard deviation of QTL effect, ratio of additive to
dominance effect of QTL and QTL location relative to
flanking markers on the percent of acurate confidence
intervals (PACI) and Mean of ACI obtained using HK
regression method. Then an optimal ANN was designed to
predict PACI and Mean of ACI. Finally the designed adequate
ANN model were used for prediction of PACI and mean of
ACI for more combination of simulated parameters
(scenarioes).

MATERIAL AND METHODS

Haley and Knott regression method
We assume that yi|gi~N(µgi,σ2),where yi is the phenotype

of individual i and gi is its (unobserved) QTL genotype.
Therefore we assumed that the phenotypic data (yi) in every
group of animals (animals with same QTL genotype) has a
mean depending on QTL genotype and a residual variance.
Then we calculate conditional QTL genotype given marker
genotype, pij=pr(gi|Mi) where Mi is marker genotype data
for individual i. Phenotype of individual i for a given marker
data follows a mixture of normal distribution. E(yi|Mi)=σjpijµj
where µj is the mean of individual’s phenotype with jth QTL
genotype so the conditional phenotype average given marker
data is linear in the µj and might be estimated by linear
regression of yi on pij, thus here at each position across
genome we calculate the pij and then regress the phenotype
on this matrix (Broman and Sen 2009).

Data simulation
An F2 population derived from crossing between two

inbred line each with alternate homozygote genotype in
marker loci and QTL, with different population size was
simulated. 11 markers on one chromosome with different
equal spaces of 5 and 10 CM were simulated. Chromosome
length was different corresponding to marker spaces from
50 and 100 respectively with presenting one QTL (between
6th and 7th marker). An F2 populations with different
combination of population sizes (Ps) of 300, 600 and 900,
Standard deviation of QTL effect (SDQ) of 0.2, 0.5, 0.8 and
with different portion of additive to dominance effects (Rad)
of 0.25, 0.5 and 0.75 were simulated. In each combination
of simulated parameters (scenario) QTL located between
sixth and seventh markers relatively with 0, 0.25, 0.5 of the
interval separated from sixth marker. Therefor 162 scenarioes
with different combinations of 2 levels of marker spacing
(Ms), 3 level of Population size (Ps), 3 level of QTL effect
(SDQ) each with 3 different levels of proportion of additive
dominance effect (Rad) and 3 level of QTL location relative
to adjacent flanking markers (rpQ) were considered. Each
scenario was replicated 100 times. In each simulated
population the trait value had a normal distribution.

For each individual one chromosome with corresponding
length was simulated. The genotypes of markers and QTL

was sampled from binomial distribution using haldane
mapping function, thus Crossing over between markers and
between markers and QTL was simulated using haldane
mapping function. Trait value was sampled from normal
distribution with corresponding mean according to genotype
of QTL and with unexplained standard deviation
(unexplained by QTL) equal 1 SD(σ=1).

QTL mapping analysis
Analysis was caried out using Haley-Knott regression

method using R/qtl (Broman et al. 2003) package. At first
carried out a genome scan with a single QTL model for
estimating probable QTL position with higher LOD score
on the chromosome. The LOD scores calculated as LOD=(n/
2)log10(RSS0/RSS1) where n is sample size, RSS0 is the null
residual sum of squares and RSS1 is model residual sum of
squres (the model defined as regression of phenotypes on
the conditional QTL genotypes depending on markers
genotypes). For estimating intercept (mean), additive effect
and dominance effectand corresponding standard error of
them we fitted a single QTL model using HK regression
method. To deterime the significant treshold of LOD score
(α= 0.05), a permutation with 1000 replicate using defined
model were done for each replication of a scenario. 1 and
1.5 LOD support intervals calculated as interval in wich LOD
score is within 1 and 1.5 units of its maximum on the
chromosome. With a priori of being QTL existing any where
of chromosome is equal, posterior distribution obtained by
rescaled LOD to 10LOD to be a distribution, f(è|data)=
10LOD(è)/σè10LOD(è). The 95% bayesian credible interval is
in which σèºIf(è|data)e”0.95. 95% and 99% confidence
interval using non-parametric bootstrap method calculated.
In the non-parametric bootstrap, one sample with replacement
created from original data with size of equal to original data,
in the new data set some individuals omited and some
repeated then Interval mapping performed for the sampled
data to estimate QTL location. To create a set of locations
for QTL, the process of resampling and estimation of QTL
location were repeated for 1000 times. 99% and 95%
confidence interval of bootstrap method defined as regions
covered by 99% and 95% of the 1000 estimated positions,
respectively.

Comparision statistics
Here Accurate Confidence Intervals (ACI) is the estimated

confidence interval in the replication with significant
(α=0.05) QTL that covers real QTL position on the
chromosome. Per cent of Acurate Confidence Intervals
(PACI) for each scenario was calculated as,

We calculated mean of ACIs size as,
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Artificial neural network modeling and evaluation
For fit an ANN model to predict PACI and mean of ACI

for differrent parameters using Ps, Ms, SDQ, Rad and rQp
as inputs, we developed an ANN model by backpropagation
algorithms. The data set obtained from simulation study were
divided into learning and testing data set, then learning data
set used to train the ANN and testing data set were used for
validation of the trained ANN model. The best of number of
input, output, learning rate, momentum coefficient, number
of hidden layers, number of hidden neurons, and number of
training cycles or epochs were chosen to obtain the optimal
ANN. To determine adequacy of the ANN model we used
three statistics containing R2, T and root MSE (RMSE). The
T statistics measures the scattering around fitted line using
the ANN. It’s better when close to 1. The formula of
calculating T is as below (Khazaei et al. 2008),

where n is the number of data set, is the average of X
over the n samples, and Xm and Xp are the actual and by
ANN model predicted HK efficiency parameters,
respectively.

Expanding of original simulation study using the ANN models
For appropraite methods of calculating CI accourding to

results from the simulation study, we considered more
scenarios. Mean of ACI and PACI for these scenarios were
predicted using the trained ANN models. Thus More different
levels of simulated parameters were used to create large-

scale scenarios. Then the adequate ANN models were used
to predict outputs. In the original study the space from
different levels of simulated parameters was equal thus it
can support to proper the use of the adequate ANN model to
expanding the original study.

RESULTS

Confidence intervals
PACI using all methods positively affected by increasing

Ps and decreasing rpQ. Table 1 shows average effect of other
parameters than Ps on PACIs obtained from different
methods. Per cent of accurate 1 LOD support interval affected
slightly by SDQ and affected by Ms specially in low level of
SDQ. SDQ increased the PACI obtained from 1.5 LOD
interval the increase was higher when SDQ increased from
0.2 to 0.5. Ms in high and medium SDQ did not affect PACI
of 1.5 LOD interval. Increase of SDQ decresed PACIs
obtained from bayesian credible interval, other 2 parameters.
PACI in the bootstrap 95% and 99% was not affected by Ms,
SDQ and Rad.

As presented in Table 2 mean of ACIs in all methods
affected by rpQ and sharply by Ps. CIs was small in larg Ps
and when the QTL located on the marker. CIs in 1 LOD
interval became high with increase of Rad and Ms, size of
the CI was narrowed by increas in SDQ, the trend was same
in other methods.

In total CIs of bootstrap method was very large than others,
size of CIs in different methods. In the SDQ of 0.8 all methids
had small CI, and in the SDQ of 0.2 efficiency of bootstraping
method decreased. 1 LOD interval was small in SDQ of 0.2,
but BCI was better on the context of 0.5 and 0.8.

ANN models and evaluations
To fit an ANN model for prediction of mean of ACIs we

used ANN structure of 4–10–5–5, containing number of

Table 1. Average effect of SDQ, Rad and Ms on PACI in different methods

SDQ=0.2 SDQ =0.5 SDQ =0.8

Rad=0.25 Rad=0.5 Rad=0.75 Rad=0.25 Rad=0.5 Rad=0.75 Rad=0.25 Rad=0.5 Rad=0.75

 † Ms 5 91.15 91.05 91.49 97.89 97.33 98.00 99.00 98.44 98.11
10 90.87 91.93 92.18 97.67 97.55 97.55 98.11 97.78 97.33

‡ Ms 5 97.30 97.00 97.54 99.56 99.00 99.00 100.00 99.44 99.56
10 95.63 96.90 95.84 98.89 99.00 99.56 99.22 99.11 99.17

• Ms 5 93.47 94.03 94.13 91.33 92.00 92.22 82.00 87.22 87.89
10 92.36 94.18 93.42 92.56 92.55 93.77 86.33 89.22 89.67

* Ms 5 98.04 99.17 99.33 96.22 96.22 97.56 95.56 95.78 94.44
10 99.60 98.46 98.23 96.89 96.77 97.44 94.78 95.78 95.00

§ Ms 5 99.89 99.76 100.00 99.11 99.33 99.44 99.11 99.00 98.78
10 100.00 100.00 99.47 98.78 99.56 99.44 98.67 99.00 99.33

Ms, Marker spce, Rad, ratio of additive to dominance Standard Deviation, SDQ, Standard Deviation of QTL effect,  PACI, per cent of
acurate confidence interval (per cent of confidence intervals that containing QTL), † PACIs that obtained using 1 LOD support interval,  ‡
PACIs that obtained using 1.5 LOD support interval, • PACIs that obtained using baysian credible interval with 95%, *PACIs that obtained
using bootstrap method with 95%, § PACIs that obtained using bootstrap method with 99%.
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inputs (Ps, Ms, SDQand rpQ), number of neurons in first
and second hidden layer and number of outputs, respectively.
Results from 162 scenarios partitioned to 110 scenarios for
training data set and 52 scenarios for testing data set.
Adequacy statistics for every predicted output (mean of ACI
resulted from different methods) using the ANN model were
presented in Table 3. The ANN trained with Learn Rule of
Delta, TanH transfer function, with learning rate and
momentum equal to 0.3 and 0.4, respectively. The results
show that the ANN model is able to learn the relationship
between the inputs and mean of ACIs for different methods.

Adequate ANN structure for prediction of PACI resulted
from 1 LOD and BCI methods were 5–10–9–5–2(number of
input, numbere of neurons for first, second and third hidden
layer and number of output, respectively). Other parameters
containing learning rule, transfer function and etc were same
with the ANN that fitted for mean of ACI. Adequacy statistic
of the ANN model to predict of PACI for 1 LOD and BCI
method using the ANN were presented in Table 4. The results

show that the ANN can’t predict PACI properly, in other word
there are other parameter or parameters rather than considered
inputs that affects the PACIs.

Expanded study using the ANN models
A total of 3,276 different scenarios using different

simulated parameters that presented in Table 5 were used to
predict mean of ACIs by the trained ANN model. Fig. 1
presents mean of ACIs resulted from 1 LOD support interval
in different combinations of Ps and Ms. As presented in the
Fig. 1 increase of Ps and decrease of Ms decreases the mean
of ACIs. The results show that mean of ACI resulted from
BCI affected by Ps and Ms with same trend as 1 LOD support
method. Moreover effect of SDQ and Rad on mean of ACIs
obtained from 1 LOD support interval were presented in Fig.
2. Effect of the parameters on mean of ACI resulted from
BCI followed the same trend as presented in Fig. 2.

Consideration of PACI using the ANN trained for this
regard caried out using 36036 different scenarios that

Table 3. Adequacy statistics of predicted mean of ACI for different methods using the ANN model

Statistics 1 LOD 1.5 LOD BCI Boot 95% Boot 99%

Testing data set R2 0.963404 0.961792 0.963279 0.978809 0.981348
T 0.958711 0.954043 0.958959 0.977438 0.979699
RMSE 0.037659 0.041251 0.039236 0.032525 0.033052

Training data set R2 0.98213 0.988745 0.986337 0.988626 0.990224
T 0.981962 0.988522 0.986154 0.98831 0.989874
RMSE 0.031381 0.026281 0.028501 0.028919 0.028608

All data set (train+test) R2 0.977946 0.982191 0.98104 0.986461 0.988097
T 0.977502 0.981645 0.980654 0.986235 0.987913
RMSE 0.033442 0.031658 0.032193 0.030076 0.030047

ACI, acurate confidence interval (confidence intervals that containing QTL), 1 LOD, confidence interval resulted from 1 LOD support
interval, 1.5 LOD, confidence interval resulted from 1.5 LOD support interval, BCI, confidence interval resulted from Bayesian Credible
Interval, Boot 95%, confidence interval resulted from Bootstraping (α=0.95), Boot 99%, confidence interval resulted from Bootstraping
(α=0.99).

Table 2. Average effect of SDQ, Rad and Ms on mean of ACI in different methods in CM

SDQ=0.2 SDQ =0.5 SDQ =0.8

Rad=0.25 Rad=0.5 Rad=0.75 Rad=0.25 Rad=0.5 Rad=0.75 Rad=0.25 Rad=0.5 Rad=0.75

 † Ms 5 17.02 20.24 22.97 6.06 7.79 7.77 3.84 4.61 4.80
10 22.23 27.61 28.85 8.04 9.99 10.27 5.22 6.24 6.98

‡ Ms 5 23.56 27.38 29.69 7.45 9.85 9.69 4.58 5.55 5.73
10 30.72 38.53 39.88 9.87 12.56 12.81 6.24 7.59 8.45

• Ms 5 20.14 24.00 25.53 4.60 6.70 6.40 2.16 2.97 3.09
10 29.43 35.55 35.10 6.45 8.69 8.83 3.45 4.54 5.27

* Ms 5 30.11 34.15 35.44 7.99 11.69 11.25 3.50 4.77 4.87
10 58.80 63.34 61.75 10.10 15.60 14.25 4.76 6.60 7.33

§ Ms 5 40.44 43.92 44.01 12.60 18.33 17.64 5.03 7.21 7.53
10 81.75 84.76 82.66 16.53 25.99 23.07 6.65 9.79 10.50

Ms, Marker spce, Rad, ratio of additive to dominance Standard Deviation, SDQ, Standard Deviation of QTL effect, ACI, acurate
confidence interval (confidence intervals that containing QTL), †, mean of ACIs that obtained using 1 LOD support interval, ‡, mean of
ACIs that obtained using 1.5 LOD support interval, •, mean of ACIs that obtained using baysian credible interval with 95%, *, mean of
ACIs that obtained using bootstrap method with 95%, §, mean of ACIs that obtained using bootstrap method with 99%.
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ACI, acurate confidence interval (confidence intervals
containing QTL), Ps, Population size, Ms, Marker space

Fig. 1. presents mean of ACIs resulted from 1 LOD support
interval in different combinations of Ps and Ms.

SDQ, standard deviation of QTL effect, ACI, acurate confidence
interval (confidence intervals that containing QTL)

Fig. 2. Effect of SDQ and Rad on mean of ACIs for 1 LOD
support interval.

presented in Table 6. Fig. 3 presents effect of Ps and Ms on
different combinations of Ps and Ms on PACI using 1LOD
method. Trend of Ps and Ms on PACI of BCI was same as
presented in Fig. 3. The result show decreasing of Ms and

Table 4. Adequacy statistics of predicted PACI for 1 LOD
support interval and BCI using the ANN model

Data Statistics 1 LOD BCI

Testing data set R2 0.637163 0.788005
T 0.313621 0.774682
RMSE 0.137845 0.087068

Training data set R2 0.919026 0.903801
T 0.918762 0.90253
RMSE 0.048167 0.054305

All data set(train+test) R2 0.777918 0.861341
T 0.737094 0.860303
RMSE 0.086376 0.066155

PACI, percent of acurate confidence interval (percent of
confidence intervals that containing QTL), 1 LOD, confidence
interval resulted from 1 LOD support interval, BCI, confidence
interval resulted from Bayesian Credible Interval

Ps, Population size, Ms, Marker space, PACI, per cent of
accurate confidence interval (per cent of confidence intervals that
containing QTL)

Fig. 3. Effect of Ps and Ms on different combinations of Ps and
Ms on PACI using 1LOD method.

increase of Ps increases the per cent of acurate confidence
intervals for 1 LOD support and BCI methods. Because of
low adequacy of the ANN model trained for PACI no more
considerationn caried out.

DISCUSSION

As presented in Table 1 Bootstraping method for
confidence interval has a high per cent of acurate confidence
interval in all scenarios but mean of confidence interval wide
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in all scenarios and only fairly preferable when QTL effect
is high. Effect of marker space on size of confidence interval
was very small, either Wisscher et al. (1996) reported that
the Marker spacing had only a small effect on the average
empirical confidence interval obtained by Bootstrapping
method. Although bayesian credible interval has apropriate

Table 5. The different combinations of simulated parameters
which were analyzed using optimal ANN model for mean of ACI

Population Marker space SD of QTL Ratio of additive
size to dominance SD

300 5 0.2 0.25
350 6 0.3 0.35
400 7 0.4 0.45
450 8 0.5 0.55
500 9 0.6 0.65
550 10 0.7 0.75
600 0.8
650
700
750
800
850
900

ANN, Artificial Neural Network; ACI, acurate confidence
interval (confidence intervals that containing QTL); SD, standard
deviation.

Table 6. The different combinations of simulated parameters
which were analyzed using optimal ANN model for PACI

Population Marker SD of Ratio of Relative position
size space QTL additive to of QTL to

dominance SD flanked marker

300 5 0.2 0.25 0
350 6 0.3 0.35 0.05
400 7 0.4 0.45 0.1
450 8 0.5 0.55 0.15
500 9 0.6 0.65 0.2
550 10 0.7 0.75 0.25
600 0.8 0.3
650 0.35
700 0.4
750 0.45
800 0.5
850
900

ANN, Artificial Neural Network; PACI, per cent of acurate
confidence interval (per cent of confidence intervals that containing
QTL) SD, standard deviation.

per cent of acurate confidence specially in combination of
low effect of QTL compairing other methods but this method
in the level of effect has higher size of confidence interval
comparing 1 lod support interval. Percent of acurate interval
of LOD support intervals low affected by parameters, 1 LOD
support interval is preferable speciall in high marker space
because of pretty per cent of accuracy (Table 1) and size of
confidence interval. “Resolving power” defined by Darvasi
and Soller (1997) as the 95% of confidence interval fot QTL
map location. Their study show that resilving power is
inversely proportional to sample size and to square of the
QTL gene effect.

The results of this study implies that 1 LOD support
interval is better for it’s low affection from simulated
parameters. This study resulted that ANN can properly learn
relationship between simulated parameters and mean of ACI,
but it’s not usefull for prediction of PACI.
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