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In this article, we discuss nonparametric estimation of a mean residual life function from
length-biased data. Precisely, we prove strong uniform consistency and weak converge
of the nonparametric mean residual life estimator in length-biased setting.
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1. Introduction

Let X be a random variable (r.v.) with density function f and distribution function (df) F,
we say that random variable Y has the length-biased distribution of F if the df of Y is given
by

G(t) = 1

μ

∫ t

0
xf (x)dx, t ≥ 0, (1.1)

where μ = ∫ ∞
0 xdF (x), and μ is assumed finite. Hence, the density of Y is

g(t) = tf (t)

μ
, t ≥ 0. (1.2)

The phenomenon of length-biased was first tackled in the context of anatomy by Wick-
sell (1925) as what he called the corpuscle problem. Length-biased was later systematically
studied by McFadden (1962), Blumenthal (1967), then by Cox (1969), in the context of
estimation of the distribution of fiber lengths in a fabric.

Length-biased data arise in many practical situations, including econometrics, survival
analysis, renewal processes, biomedicine and physics. For instance, if X represents the
length of an item and the probability of this item being selected in the sample is proportional
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On the Nonparametric MRL Estimator 513

to its length, then the distribution of the observed length is length-biased. In cross-sectional
studies in survival analysis, for example, often the probability of being selected, for a
particular subject, is proportional to his/her survival time. Interesting applications of length-
biased data can be found in Cox (1969), Patil and Rao (1977, 1978), Colman (1979) and
Vardi (1982b). The distribution function, G, is, from a slightly different perspective, the
distribution of the randomly left-truncated r.v.’s Y , in the stationary assumption. If the
incidence rate of the event has not changed over time, a stationary might reasonably
describe the incidence of the event, this is equivalent to assuming that the randomly left
truncation induced by the sampling is uniform (Wang, 1991). Throughout this article we
assume that G is continuous on R+ = [0,∞). An elementary calculation shows that F is
determined uniquely by G, namely

F (t) = μ

∫ t

0
y−1dG(y), t ≥ 0.

Cox (1969) and Vardi (1982a) considered the problem of finding a nonparametric
maximum likelihood estimate (NPMLE) of F on the basis of a sample Y1, Y2, . . . , Yn from
G. Let Gn be empirical estimator of G is given by

Gn(t) = 1

n

n∑
i=1

I (Yi ≤ t),

where I (A) denote the indicator of the event A. Empirical estimator of F can be written in
the form

Fn(t) = μn

∫ t

0
y−1dGn(y),

where

μ−1
n =

∫ ∞

0
y−1dGn(y).

The mean residual life (MRL) function at age x is defined to be the expected remaining
life given survival to age x. It is a concept of obvious interest and, indeed, one of the most
important notations in actuarial, reliability and survivorship studies. Yang (1978) and Hall
and Wellner (1979) initiated investigations of the asymptotic behaviors of the empirical
mean residual life process. They obtained results on the basis of a uniform on compact
topology. Csörgő and Zitikis (1996) exposed the study of the mean residual life process over
the whole positive half line. They establish the the strong uniform-over-[0,∞) consistency,
and weak uniform-over-[0,∞) approximation of the empirical mean residual life process
by employing weight functions. By representing the empirical mean residual life process as
an integral form, Bae and Kim (2006) proved uniform asymptotic behaviours of the process
over the whole positive half line. Under length-biased sampling and Type I censoring,
pointwise consistency of MRL established by de Uña-Álvarez (2004), which un-censoring
is its special case.

The main aim of this article is to derive asymptotic behaviors of the nonparametric
estimator of a MRL function for a sample from the corresponding length-biased distribution.
We prove uniform consistency and weak convergenc of the MLR estimator.

For any d.f. L denotes the right endpoint of its support by a τL = inf{x : L(x) = 1}.
Assuming that τF = τG = τ < ∞. As mentioned above, the MRL function MF at x ≥ 0
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514 Fakoor

is defined by

MF (x) := E(X − x|X > x) = I[0,τ )(x)

1 − F (x)

∫ ∞

x

(1 − F (t))dt. (1.3)

Mn, is the empirical counterpart of MF , defined by

Mn(x) := I[0,Y(n))(x)

1 − Fn(x)

∫ ∞

x

(1 − Fn(t))dt, (1.4)

where Y(n) = max1≤i≤n Yi. The layout of this article is as follows. In Sec. 2, we give some
asymptotic results of MRL function. Proofs of the main results deffered to Sec. 3.

2. Asymptotic Study

2.1. Strong Uniform Consistency

We have the following strong consistency result for Mn − MF .

Theorem 2.1. If 0 < μ < ∞, we have as n → ∞, for any ε > 0

sup
0≤x≤τ−ε

|Mn(x) − MF (x)| → 0 a.s. (2.1)

Proof. See Sec. 3. �

2.2. Weak Convergence

It is the purpose of this subsection to study the weak convergence results for the normalized
mean residual life process Un(x), which is defined by

Un(x) = √
n[Mn(x) − MF (x)].

First, we introduce a class of functions {ϕx ; ϕx(u) = (1 − x
u

)I(x,∞)(u), x ≥ 0}. We
notice that for each x ≥ 0 the function ϕx(.) is bounded by envelope ϕ0(u) = I(0,∞)(u) and

∫ ∞

x

(1 − F (u))du = μ

∫
ϕx(u)dG(u).

Then, for x ≥ 0, we get the integral representations of M and Mn as

MF (x) = μ
I[0,τ )(x)

1 − F (x)
H (x) (2.2)

and

Mn(x) = μn

I[0,Y(n))(x)

1 − Fn(x)
Hn(x). (2.3)

where

H (x) =
∫

ϕx(u)dG(u)
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On the Nonparametric MRL Estimator 515

and

Hn(x) =
∫

ϕx(u)dGn(u)

Notice further that, for each x ≥ 0

Mn(x) − MF (x) = μn

I[0,Y(n))(x)

1 − Fn(x)
[Hn(x) − H (x)]

+Rn(x)H (x), (2.4)

where

Rn(x) = μn

I[0,Y(n))(x)

1 − Fn(x)
− μ

I[0,τ )(x)

1 − F (x)
. (2.5)

We will use the representation (2.4) in studing the weak convergence of Un(x). In the
following we assume that QG(t) = Q(t) is the quntile function of G for 0 < t < 1. Let
W = {W (t); 0 < t < 1} be a mean zero Gaussian process with covariance function

Cov(W (x),W (y)) = σx∧y − A(y)σx − A(x)σy + A(x)A(y)σ, (2.6)

for each x, y ∈ (0, 1), where A(t) = μ2(1 − 2F (Q(t))),

σt =
∫ Q(t)

0

1

y2
dG(y), 0 < t < 1,

and

σ = lim
t→∞ σt =

∫ ∞

0

1

y2
dG(y).

Also, let Z = {Z(x); x ≥ 0} be a mean zero Gaussian process with covariance function

Cov(Z(x), Z(y)) =
∫ ∞

x∨y

(
1 − x

u

) (
1 − y

u

)
dF(u).

Theorem 2.2. Suppose that E(X−r ) < ∞ for some r > 1. Then we have

Un(·) D→ U (·)

over D[0,∞), where

U (x) = μ
I[0,τ )(x)

1 − F (x)
Z(x) + I[0,τ )(x)W (G(x))

(1 − F (x))2

(∫ ∞

x

(
1 − x

u

)
dG(u)

)
(2.7)

and D[0,∞) is the space of cadlag functions on [0,∞) endowed with Skorokhod metric d
on [0,∞) [cf. Billingsley (1968)].

Proof. See Sec. 3. �
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516 Fakoor

3. Proofs

In order to prove Theorem 2.1 we need the following lemma.

Lemma 3.1. (Horváth, 1985) Let 0 < μ < ∞, then we have

sup
0≤t<∞

|Fn(t) − F (t)| → 0 a.s.

Proof of Theorem 2.1. First we have

Mn(x) − MF (x) = (1 − Fn(x))−1

(
−

∫ ∞

x

(Fn(t) − F (t))dt

+MF (x)(Fn(x) − F (x))

)
. (3.1)

Hence, (2.1) follows by Lemma 3.1, if we can show that

In =
∫ ∞

0
|Fn(t) − F (t)|dt → 0 a.s.

Since μ = ∫ ∞
0 (1−F (t))dt < ∞, therefore, for ε > 0 arbitrary small, we can choose α > 0

so large that

I (α) =
∫ ∞

α

(1 − F (t))dt < ε/2.

Thus,

In ≤ I (α) + In1 + In2,

where

In1 = μ−1
n n−1

n∑
i=1

∫ ∞

α

1

Yi

I (Yi > t)dt

and

In2 =
∫ α

0
|Fn(t) − F (t)|dt ≤ α sup

0≤x<∞
|Fn(t) − F (t)|.

Note that

E

∫ ∞

α

1

Y
I (Y > t)dt =

∫ ∞

α

(1 − F (t))dt = μ−1I (α).

Strong law of large numbers implies that

In1 → I (α) a.s. (3.2)

Also, Lemma 3.1, implies that

In2 → 0 a.s. (3.3)
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On the Nonparametric MRL Estimator 517

Therefore,

lim sup
n→∞

In ≤ ε a.s.

for all small ε and this completes the proof of (2.1).

Lemma 3.2. (Bae and Kim, 2006) As n → ∞,

√
nI[Y(n),τ )(·) D→ 0

as random elements of D[0,∞).

Let W = {W (x); 0 < x < 1} be the Gaussian process with covariance function men-
tioned in (2.6).

Lemma 3.3. Under assumption of Theorem 2.2, we have

√
nRn(·) D→ W (G(·))

(1 − F (·))2
I[0,τ )(·)inD[0,∞)

where Rn(·) is Eq. (2.5).

Proof. It is easy to see that

Rn(x) = μn

I[0,Y(n))(x)

1 − Fn(x)
− μ

I[0,τ )(x)

1 − F (x)

= μnI[0,Y(n))(x)

[
1

1 − Fn(x)
− 1

1 − F (x)

]

+ (μn − μ)
I[0,Y(n))(x)

1 − F (x)
− μ

I[Y(n),τ )(x)

1 − F (x)

= μnI[0,Y(n))
(Fn(x) − F (x))

(1 − F (x))(1 − Fn(x))
+ (μn − μ)

I[0,Y(n))(x)

1 − F (x)

−μ
I[Y(n),τ )(x)

1 − F (x)

=: Rn1(x) + Rn2(x)

To deal with Rn2(x), it follows from Lemma 3.2 that

√
nRn2(x) = −√

nμ
I[Y(n),τ )

1 − F (x)
D→ 0

Next, following the notations of Sen (1984, p. 65),

√
nRn1(x) = √

n
I[0,Y(n))

(1 − F (x))(1 − Fn(x))
[μn(Fn(x) − F (x)) + (μn − μ)(1 − Fn(x))]

= I[0,Y(n))

(1 − F (x))(1 − Fn(x))
[μnW

∗
n (G(x)) + √

n(μn − μ)(1 − Fn(x))]
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518 Fakoor

= I[0,Y(n))

(1 − F (x))(1 − Fn(x))
[W ∗∗

n (G(x))],

where

W ∗∗
n (G(x)) = μnW

∗
n (G(x)) + (1 − Fn(x))μ2

∫ ∞

0

1

y
d[

√
n(Gn(y) − G(y))].

Similar to the proof of Relation (4.9) in the proof of weak convergence of W ∗
n in

Sen (1984), it can be shown by employing weak convergence of
√

n[Gn(·) − G(·)] to a
tied-down Wiener process B = {B(t); 0 < t < 1} that

√
nRn1(x)

D→ I[0,τ )(x)

(1 − F (x))2
W (G(x)),

where

W (t) = μ2

QG(t)
B(t) + μ2

∫ QG(t)

0

1

QG(s)2 B(s)dQG(s)

+ (1 − 2F (QG(t)))μ3
∫ 1

0

1

QG(s)2 B(s)dQG(s), (3.4)

and QG(t) is the quntile function of G for 0 < t < 1. Note that covariance function of W (t)
is given by (2.6). The proof of Lemma 3.3 is now complete. �

Proof of Theorem 2.2. The result follows from representation (2.4), Lemma 3.3 and
Proposition 2 of Bae and Kim (2006).
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