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Abstract 

 

A finite-difference analysis of the large deflection response of uniformly loaded square, circular and elliptical clamped and simply-

supported orthotropic plates is presented. Several types of non-uniform (graded) mesh are investigated and a mesh suited to the curved 

boundary of the orthotropic circular and elliptical plate is identified. The DXDR method–a variant of the DR (dynamic relaxation) 

method–is used to solve the finite-difference forms of the governing orthotropic plate equations. The DXDR method and irregular recti-

linear mesh are combined along with the Cartesian coordinates to treat all types of boundaries and to analyze the large deformation of 

non-isotropic circular/elliptical plates. The results obtained from plate analyses demonstrate the potential of the non-uniform meshes 

employed and it is shown that they are in good agreement with other results for square, circular and elliptical isotropic and orthotropic 

clamped and simply-supported plates in both fixed and movable cases subjected to transverse pressure loading.  

 
Keywords: Orthotropic circular and elliptical plates; Non-uniform rectangular mesh; Large deflection; Dynamic relaxation  

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 
 
1. Introduction 

The increasing use of composite materials in thin-walled 

structures, which may be regarded as assemblies of plate and 

shell elements, provides both the catalyst and justification for 

the continual development and refinement of numerical pro-

cedures for the solution of orthotropic and other plate flexure 

problems. The solutions of particular interest here are for the 

large deflection response of clamped and simply-supported 

circular and elliptical plates with rectangular Cartesian 

orthotropy. Such plates commonly arise in practice as inspec-

tion covers and other types of end closures. 

Both the small and large deflection responses of orthotropic 

plates have been investigated by a number of researchers dur-

ing the course of the past half-century. For example, in the 

1970’s Chia [1, 2] studied the nonlinear flexural behavior of 

rectangular orthotropic plates using an approximate analytical 

solution. Dalaei and Kerr [3] investigated the small deflection 

response of clamped rectangular orthotropic plates subjected 

to uniform transverse pressure using the extended Kan-

torovich method. In later studies, Mbakogu and Pavlovica [4] 

and Tabalov et al. [5] also investigated the small deflection 

response of clamped rectangular orthotropic plates. Mistou et 

al. [6] investigated the behavior of clamped laminated rectan-

gular orthotropic plates subjected to uniform transverse pres-

sure both experimentally and numerically using a Ritz ap-

proximate analysis. Bhaskar and Kaushik [7] used a double 

Fourier series approach to analyze unsymmetric cross-ply 

laminated clamped rectangular plates. Recently, Salehi and 

Sobhani [8] used Mindlin plate theory in conjunction with the 

DR method to investigate both the small and large deflection 

response symmetrically laminated fiber-reinforced sector 

plates. 

In the majority of the aforementioned papers the plate was 

either of rectangular or circular geometry. Therefore, for nu-

merical mesh-based solutions, a uniform square or rectangular 

mesh would be adequate for rectangular plates with rectangu-

lar Cartesian orthotropy. Similarly, for circular plates with 

polar orthotropy, an orthogonal polar mesh would suffice but 

would not readily accommodate rectangular Cartesian 

orthotropy. Here, however, the focus of interest is on the use 

of a single non-uniform rectangular mesh that may be used to 

analyze square, circular and elliptical plates with rectangular 

Cartesian orthotropy. 

It is the main objective of the current study to show if the 

DXDR method and irregular rectilinear mesh are combined 

along with the Cartesian coordinates one can treat all types of 
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boundaries which is also extendable to the large deformation 

of non-isotropic plates. The main application of the current 

method can be the analysis of orthotropic materials which are 

made initially in rectangular dies and the fibers are inserted in 

rectilinear dictions and then are cut into circular and elliptical 

forms. 

The large deflection response of clamped and simply-

supported square, circular and elliptical orthotropic plates 

subjected to uniform transverse pressure is investigated using 

several types of non-uniform rectangular finite-difference 

mesh. Consequently, the same governing equations may be 

used for square, circular and elliptical plates. Moreover, the 

mesh could be used to analyze orthotropic plates with more 

general boundary shapes. 

A variant of the DR method, namely the DXDR method [9] 

is employed to solve the finite-difference forms of the large 

deflection orthotropic plate equations. The results are pre-

sented for both deflections and stress couples in order to dem-

onstrate the accuracy of the present non-uniform mesh large 

deflection solutions by comparison with counterpart solutions 

obtained with uniform meshes and by other approximate 

analysis techniques.  

 

2. Mesh generation 

Consider a square orthotropic plate with sides of length 2a  

and thickness h , as shown in Fig. 1. For convenience, the 

origin of the co-ordinate system , ,x y z  is located at the cen-

ter of the mid-plane of the plate. In order to carry out a finite-

difference analysis of a square or rectangular plate it is gener-

ally sufficient to use a uniform square or rectangular mesh 

extending over the plate domain. However, for plates with 

curved boundaries it is not usually possible to use a uniform 

square or regular rectangular mesh because the nodes of the 

mesh do not coincide with curved boundary of the plate. 

Different types of non-uniform rectangular meshes may be 

generated in either or both of the co-ordinate directions x  

and .y The mesh may be uniform in one direction and non-

uniform in the other direction. In this case the mesh is denoted 

as a Type 1 mesh. Fig. 2(a) shows an example of a Type 1 

mesh, in which the mesh is uniform in the y  direction and 

non-uniform in the x  direction. Here, the mesh size in the 

x  direction reduces as the nodal distance from the center of 

the plate increases (it is assumed that symmetry is exploited 

and only the positive quadrant of the plate is modeled). 

Clearly, the mesh may be arranged to be non-uniform with 

respect to both co-ordinate directions. One example of these 

non-uniform meshes, designated Type 2, is illustrated in Fig. 

2(b). Such non-uniform bi-directional meshes may be gener-

ated in a variety of ways. Here, simple power laws are em-

ployed. The co-ordinates of the nodes of the mesh in the x  

and y directions are defined as follows: 

 

xn
i

x a
k

 
=  

 
 (1a) 

 

(a)                       (b) 
 

Fig. 1. Square plate with its principal axes of orthotropy parallel to the 

x and y axes: (a) plan view; (b) cross-section. 

 

 

 

(a) 

 

 

(b) 
 

Fig. 2. Examples of non-uniform meshes: (a) uniform in the y direction 

1yn =  and non-uniform in the x direction 1xn ≠ [Type 1]; (b) non-

uniform in both x and y directions ( )0.5x yn n= = [Type 2]. 
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.
yn

j
y a

k

 
=  

 
 (1b) 

 

In Eq. (1) a is the half side length of the square plate or the 

radius of the circular plate, i  and j are the node numbers in 

the x and y directions, respectively, where 0 , ,i j k≤ ≤ 1k +  

is the total number of nodes in the x  and y  directions, 

respectively, and xn  and yn are both positive constants. If 

one of the constants xn  or yn  is equal to one and the other 

is not equal to one, then a Type 1 mesh is defined, i.e. 1xn =  

and 1yn ≠  or 1xn ≠  and 1yn = . On the other hand, the mesh 

will be non-uniform in both x  and y  directions when 

1xn = and 1.yn ≠ Moreover, when 1,x yn n= =  a uniform 

mesh with respect to both the x  and y  axes is defined.  

For plates with a curved boundary, xn  and yn  cannot be 

selected independently. In other words, these quantities must 

be determined so that the mesh nodes coincide with curved 

boundary of the plate. For example, the boundary nodes of a 

circular plate must satisfy following equation: 

 
2 2 2x y a+ =  (2) 

 

where a  is the radius of plate. Substituting Eqs. (1a) and 

(1b) into Eq. (2) leads to the following result: 

 
2 2

1 .
x yn n

i j

k k

   
+ =   

   
 (3) 

 

For a Type 1 mesh (uniform in one direction and non-

uniform in the other direction), the unknown power xn  or 

yn  in the non-uniform direction may be determined by solv-

ing Eq. (3). In other words, xn  (or yn ) is determined so that 

the mesh lines intersect the circle boundary. It is clear that xn  

(or yn ) will have a specific value for each mesh line. How-

ever, a Type 2 mesh is defined by 0.5,x yn n= =  where the 

mesh has the same degree of non-uniformity in both the x  

and y  directions. Other values of xn  and yn , between 0 

and 1 or greater than 1, are unlikely to be of interest because 

they only increase the rate of directional non-uniformity of the 

mesh. In such cases, xn and yn would have different values 

for each line of the mesh for the other values, i.e. when xn ≠ 

yn ≠ 0.5. Nevertheless, for the sake of completeness, they are 

investigated to a limited extent and discussed later in the paper. 

Similar remarks apply to other plates with curvilinear 

boundaries, e.g. elliptical plates. In order to investigate the 

accuracy of these meshes, the circular and elliptical forms of 

Eq. (3) are used first to generate meshes for square and rec-

tangular plates, respectively. This mesh generation method 

may be explained by a simple example. Consider a square 

plate of side length 2a . To define a Type 1 mesh over a 

square plate, a circle of radius a  with its center at the center 

of the square plate is defined, as shown in Fig. 2(a). Then, a 

Type 1 mesh is generated in one direction ( x  or y ) over the 

circle by, for example, setting 1xn =  and determining yn  

from Eq. (3). Here, the total number of mesh nodes in the x 

and y directions is assumed to be 13 (k = 12). The mesh lines 

over circle are then extended to the sides of the square to pro-

duce a Type 1 mesh over the square plate. Other mesh types 

(for example, Type 2 mesh which is shown in Fig. 2(b)), may 

be generated in a similar manner. For rectangular plates, an 

inscribed ellipse should be used. To demonstrate the mesh 

distribution in the current study, the used mesh for the circular 

and elliptical plates are shown in Figs. 3(a) and 3(b), respec-

tively. 

 

3. Governing orthotropic plate equations 

The Cartesian forms of the equilibrium equations for an 

orthotropic plate may be written in the following form [10]: 

 

0
xyx

NN

x y

∂∂
+ =

∂ ∂
 (4) 

0
y xyN N

y x

∂ ∂
+ =

∂ ∂
 (5) 

2 22 2

2 2 2

2 2

2

2

2 0 .

xy yx
x

xy y

M MM w
N

x yx y x

w w
N N q

x y y

∂ ∂∂ ∂
+ + + +

∂ ∂∂ ∂ ∂

∂ ∂
+ + =

∂ ∂ ∂

 (6) 

 

(a) 

 

 

(b) 
 

Fig. 3. The general form of mesh distribution of: (a) circular plate; (b) 

elliptical plate. 
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It should be appreciated that Eqs. (4) and (5) are the in-

plane equilibrium equations and Eq. (6) is the out-of-plane 

equilibrium equation. In these equations, ,x yN N  and xyN  

are the stress resultants, ,x yM M  and xyM  are the stress cou-

ples, w is the deflection and q  is the transverse pressure. 

The stress resultants and stress couples may be expressed 

as: 
 

( ) ( )2

2

, , , ,

h

x y xy x y xyh
N N N dzσ σ τ

−
=∫  (7a) 

( ) ( )2

2

, , , , .

h

x y xy x y xyh
M M M z dzσ σ τ

−
=∫  (7b) 

 

In Eq. (7) ,x yσ σ and xyτ are the direct and shear stress 

components. 

The stresses under the integrals on the right-hand sides of 

Eq. (7) are given in Ref. [11] as: 

 

11 12

12 22

66

0

0 .

0 0

x x

y y

xy xy

Q Q

Q Q

Q

σ ε

σ ε

τ γ

    
    =    
           

 (8) 

 

In Eq. (8), ,x yε ε and xyγ are the direct and shear strains 

and the terms ( ), 1, 2, 6ijQ i j =  are the reduced stiffness 

which may be expressed as: 

 

( )
11

11

12 211

E
Q

υ υ
=

−
 (9a) 

( ) ( )
12 22 21 11

12

12 21 12 211 1

E E
Q

υ υ

υ υ υ υ
= =

− −
 (9b) 

( )
22

22

12 211

E
Q

υ υ
=

−
 (9c) 

66 12 .Q G=  (9d) 

 

In Eq. (9), 11E and 22E  are the elastic moduli with respect 

to the major and minor axes of orthotropy, respectively, and 

12G  is the shear modulus with respect to the same axes. For 

orthotropic plates, which are considered here, the principal 

axes of orthotropy coincide with the x and y axes. The terms 

12υ  and 21υ  denote the major and minor Poisson’s ratios. 

The strains of points at a distance z above the mid-plane of 

the plate are given as: 

 

0 0
x xx

0 0
y y y

0 0
xy xy xy

ε kε

ε ε z k .

γ γ k

    
    
   = + 
    
         

 (10) 

 

In Eq. (10) 0 0
x yε , ε  and 0

xyγ  are the direct and shear strain 

of the plate mid-plane and 0 0
x yk , k  and 0

xyk  are the curva-

tures and twist of the plate mid-plane. 

The relationships between the mid-plane strains and dis-

placements are given as: 

 
2

0 u 1 w
ε

x 2 x
x

∂ ∂ 
= +  ∂ ∂ 

 (11a) 

2
0
x

v 1 w
ε

y 2 y

 ∂ ∂
= +  
∂ ∂ 

 (11b) 

0
xy

u v w w
γ .

y x x y

∂ ∂ ∂ ∂
= + +
∂ ∂ ∂ ∂

 (11c) 

 

In Eq. (11) u  and v  are the in-plane displacements in the 

x and y directions, respectively. Moreover, it should also be 

appreciated that geometric nonlinearity, due to stretching of 

the plate mid-plane, is reflected by the presence of the quad-

ratic terms in Eq. (11). 

Similar relationships exist between the mid-plane curva-

tures and deflection of the plate as follows: 

 
2

0
x 2

w
k

x

∂
=−

∂
 (12a) 

2
0
y 2

w
k

y

∂
=−

∂
 (12b) 

2
0
xy

w
k 2 .

x y

∂
=−

∂ ∂
 (12c) 

 

The boundary conditions in the plate analyses for the square 

plate are: 

(a) Fixed clamped edge 

Along x a= ± : 

 

0, 0, 0, 0 .
w

u v w
x

∂
= = = =

∂
 (13a) 

 

Along y a= ± : 

 

0, 0, 0, 0 .
w

u v w
y

∂
= = = =

∂
 (13b) 

 

(b) Movable clamped edge 

 

Along x a= ± : 

 

0, 0, 0, 0 .x

w
v w N

x

∂
= = = =

∂
 (13c) 

 

Along y a= ± : 

 

0, 0, 0, 0 .y

w
u w N

y

∂
= = = =

∂
 (13d) 
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(c) Fixed simply-supported edge 

Along x a= ± : 

 

0, 0, 0, 0 .xu v w M= = = =  (13e) 

 

Along y a= ± : 

 

0, 0, 0, 0 .yu v w M= = = =  (13f) 

 

(d) Movable simply-supported edge 

Along x a= ± : 

 

0, 0, 0, 0 .x xv w M N= = = =  (13g) 

 

Along y a= ± : 
 

0, 0, 0, 0 .y yu w M N= = = =  (13h) 

 

Because both the plate geometry and the loading are sym-

metric about the x and y axes only one quarter of the plate has 

to be analyzed. It is clear that , , ,x y xw N N M  and yM  are 

symmetric about the x and y axes, xyM is antisymmetric 

about the x and y axes, u  is symmetric about the x axis and 

antisymmetric about the y axis and υ  is antisymmetric about 

the x axis and symmetric about the y axis. Hence, the forego-

ing symmetry/antisymmetry conditions have to be enforced 

along the x and y axes. 

In the case of the circular and elliptical plates, the same 

symmetry/antisymmetry conditions have to be enforced along 

the x and y axes. However, along the circumferential bound-

ary the conditions are somewhat more complicated. For ex-

ample in the fixed clamped boundary condition, at all nodal 

points around the circumference of the plate ,u v  and w  are 

set to zero. In addition, the slope normal to the circumference, 

i.e. in the n direction (see Fig. 2(a)), has also to be set to zero. 

This boundary condition is defined as: 

 

cos sin .
w w x w y w w

n x n y n x y
θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (13i) 

 

In Eq. (13i) the angle θ  is defined as shown in Fig. 2(a). It 

is easy to show that the condition for simply-supported cases 

(fixed and movable) would be: 

 
2 2

2

2 2

2 2
2

2

0 0 cos

2 sin cos sin 0 .

n

w w
M

n x

w w

x y y

θ

θ θ θ

∂ ∂
= ⇒ = ⇒ +

∂ ∂

∂ ∂
+ =

∂ ∂ ∂

 (13j) 

 

Moreover, the condition for movable cases (simply-

supported and clamped) is: 

 

( )0 & 0

0 cos sin 0 .

n tmembrane

u u u

n x y

σ ε

θ θ

= =

∂ ∂ ∂
⇒ = ⇒ + =

∂ ∂ ∂

 (13k) 

 

4. DXDR solution of the governing large deflection 

orthotropic plate equations 

The DXDR method is a modified version of the original DR 

method. In this modified method the starting vector and damp-

ing factor are selected more deliberately compared to the 

original DR [12]. It is an iterative time-stepping solution tech-

nique for modeling the response of damped dynamic systems. 

However, it has mainly been used to obtain the static response 

by artificially damping out the oscillations of equivalent quasi-

dynamic systems. The starting point of any DXDR analysis to 

determine the static structural response is the formulation of 

the quasi-dynamic system of governing equations. Thus, the 

second-order quasi-dynamic plate equations describing the 

large deflection response of the square, circular and elliptical 

orthotropic plates, i.e. Eqs. (4)-(6), may be expressed as fol-

lows for the thn  time increment [12]: 

 

n n n n n n
ii i ii i i im D c D f p+ + =&& &  (14) 

 

where n
iD&  and n

iD&&  are ( )3 1×  vectors of velocity and 

acceleration, n
if and n

ip  are vectors of the internal forces 

(corresponding principally to the LHS’s of Eqs. (4)-(6)) and 

the applied pressure q  at the thi  node and n
iim  and n

iic  

are ( )3 3×  diagonal mass and damping matrices for the three 

displacement components ,u v  and w  at node i  during 

the thn  iteration, respectively. 

Now, because only the static large deflection response of 

the orthotropic plate is of interest, Eq. (14) may be trans-

formed into time-stepping initial value format for the plate 

velocities [12]. The equation then becomes: 

 

( )
( ) ( )

1 1

2 2
2 2

.
2 2

n n
nnn ni
i

i i nn n n n
iii i

r
D D

m

τ ς τ

τ ς τ ς

+ −−
= +

+ +
& &  (15) 

 

In Eq. (15), nτ is the fictitious time step, n
iς  are the nodal 

damping factors and ( )n n n
i i ir p f= −  is the force vector at 

node i .  

The nodal displacements 1n
iD +  are determined from the 

velocities calculated in Eq. (15) by means of the following 

simple integration rule: 

 
1

1 1 2 .
n

n n n
i i iD D Dτ

+
+ += + &  (16) 

 

Furthermore, it is convenient to relate the damping and 

mass matrices as follows [12]: 



3236 M. Kadkhodayan et al. / Journal of Mechanical Science and Technology 26 (10) (2012) 3231~3242 

 

 

.n
ii i iic mς=  (17) 

 

In the DXDR method, the mass matrix, nodal damping fac-

tors and the time increment should be defined in such a way as 

to guarantee the stability and convergence of the iterative pro-

cedure. The most common method of achieving this objective 

is to determine mii by means of Gerschgörin theorem. Accord-

ing to this theorem, the following inequality must be satisfied 

in order to guarantee the stability of the iterations [13]: 

 

( )2
,

1

.
4

n k
n n
ii ij T

j

m S
τ

=

≥ ∑  (18) 

 

In Eq. (18) k  is the number of degrees of freedom of the 

structure and ,
n
ij TS  is the thij  element of the tangent stiff-

ness matrix during the thn  iteration and is given by: 

 

, .
n

n i
ij T

j

f
S

D

∂
=
∂

 (19) 

 

Alternatively, by applying Rayleigh's Principle [14] at each 

node, the instantaneous critical damping factor for node i dur-

ing the thn  iteration [12] may be expressed as: 
 

( )
( )

1

2

2 .

T
n n
i i in

i T
n n n
i ii i

D f D

D m D

ς

 
 

=  
 
 

 (20) 

 

Other approaches have also been suggested [13]. The ficti-

tious time increment of the thn  iteration is usually assumed 

to be constant and equal to unity. However, some researchers 

have proposed that this parameter should also be based on the 

Rayleigh quotient [15]. Techniques have also been proposed 

to determine the initial displacement vector in order to reduce 

the computational time [12, 16, 17]. 

 

5. Large deflection results for square, circular and 

elliptical plates using non-uniform meshes 

Different results are presented in this section. The total 

number of nodes in the x  and y  directions, is equal to 13 

(k = 12). The first set of results has been computed for a 

square clamped isotropic plate subjected to uniform transverse 

pressure loading. The results are intended to demonstrate that 

converged and accurate deflections can be obtained with non-

uniform finite-difference meshes. In Fig. 4 the plate center 

deflections with Type 1 and Type 2 non-uniform meshes are 

compared with deflections obtained from Chia’s [18] ap-

proximate analytical solution. It is clear that the center deflec-

tions obtained for both meshes are in reasonably good agree-

ment with the deflections predicted by Chia’s approximate 

analytical solution. 

A second set of comparison analyses has been undertaken 

for clamped square orthotropic plates subjected to uniform 

transverse pressure in order to demonstrate that the DXDR 

analysis produces converged and accurate results for 

orthotropic materials. For these comparisons it has been nec-

essary to define the elastic moduli of the orthotropic plate 

materials to be used in the analyses. Three materials were 

selected with properties representative of unidirectional glass, 

carbon and boron fiber reinforced polymers. The elastic con-

stants, non-dimensionalized with respect to the minor elastic 

modulus, are presented in Table 1. 

The pressure-center deflection responses of glass-epoxy, 

carbon-epoxy and boron-epoxy plates are presented in Figs. 

5(a), 5(b) and 5(c), respectively. Again, Chia’s [18] approxi-

mate analytical solution is used as the benchmark solution for 

the comparison. It is evident that the center deflections pre-

dicted with the Type 1 mesh (non-uniform in the x  direc-

tion) are in closer agreement with Chia’s [18] values than the 

center deflections predicted with the Type 2 mesh (non-

uniform in both directions). It is presumed that the additional 

non-uniformity of the mesh is responsible for the under-

estimation of the center deflection response by the Type 2 

mesh. It has to be pointed out here that in orthotropic plates 

the dependency of results to the type of mesh is more severe 

than that for the isotropic plates. However, using the Type 1 

mesh is always more reliable in all cases. 

In order to examine further the differences between the results 

obtained with both uniform and non-uniform meshes, the stress 

couple distribution along the x axis is computed for a square 

glass-epoxy clamped plate when the major orthotropic axis is 

normal to the x axis. It is clear that there is very good agree-

ment between the stress couples for both uniform and Type 1 

non-uniform meshes. The Type 2 non-uniform mesh appears to 

predict significantly smaller (in the negative sense) values for 

Table 1. Elastic constants for the three types of orthotropic materials 

used in the large deflection plate analyses. 
 

Elastic constants Glass-epoxy Graphite-epoxy Boron-epoxy 

E11/E22 

G12/E22 

12υ  

3 

0.5 

0.25 

40 

0.6 

0.25 

10 

0.33 

0.22 

 

 
 

Fig. 4. Comparison of load-center deflection responses of clamped 

square isotropic plates. 
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the stress couple when / 0.7,x a ≥  as shown in Fig. 6. 

It is perhaps worth emphasizing that in the Type 1 mesh 

analysis, shown in Fig. 6, the major orthotropic axis was par-

allel to y axis (the uniform mesh direction). This choice of 

direction for the major orthotropic axis may be justified by 

comparing the results obtained for the deflection profiles 

along the x  and y  axes. The clamped square orthotropic 

plate was re-analyzed twice with both the uniform and non-

uniform Type 1 meshes, i.e. once with the major axis of 

orthotropy parallel to the y  axis and once with major axis 

parallel to the x  axis. It is clear from the deflection profiles 

along the x  and y  axes, shown in Fig. 7, that the results 

obtained with the major axis of orthotropy parallel to the y  

axis are more accurate. It is well known that for orthotropic 

plates subjected to uniform transverse pressure over the cen-

tral region of the plate the deflection profile is flatter trans-

verse to the principal orthotropic axis than it is parallel to this 

axis [18]. Moreover, for the Type 1 mesh, with the principal 

axis of orthotropy in the y  direction, the mesh in the x  

direction, i.e. transverse to the major orthotropic axis, is 

coarser nearer to the center and finer nearer the edge of the 

plate. Hence, because the mesh is coarser in the flat region of 

the plate, the error is smaller than if the coarse mesh is used in 

the direction of the major orthotropic axis (the y direction).  

Other non-uniform meshes may be generated by using dif-

ferent values of the exponent yn  in Eq. (1b). Square glass-

epoxy clamped plates subjected to uniform transverse pressure 

 

(a) 

 

 

(b) 

 

 

(c) 
 

Fig. 5. Comparison of load-center deflection responses of square 

orthotropic clamped plates subjected to uniform transverse pressure 

(computed using Type 1 and 2 meshes): (a) glass-epoxy plate; (b) 

carbon-epoxy plate; (c) boron-epoxy plate. 

 

 

 
 

Fig. 6. Comparison of stress couple profiles along the x axis of a 

square glass-epoxy plate subjected to uniform transverse pressure 

(computed using uniform and Type 1 and 2 meshes) – principal axis of 

orthotropy parallel to the y axis. 

 

 

(a) 

 

 

(b) 
 

Fig. 7. Deflection profiles along the x and y axes of square 

orthotropic clamped plates subjected to uniform transverse pressure 

computed using uniform and Type 1 meshes: (a) major axis of 

orthotropy in the x direction; (b) major axis of orthotropy in the y

direction. 
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have been analyzed using uniform and non-uniform meshes 

defined by 1.2, 1.3 1.4yn and= . Here, 1xn ≠  and it is cal-

culated from Eq. (3) for each mesh line (k = 12). Table 2 

shows the xn  values for 1.2, 1.3 1.4 .yn and=  The deflec-

tion profiles along the y axis obtained with the uniform and 

non-uniform meshes are shown in Fig. 8. It is clear that as the 

exponent yn  increases the non-uniformity of the mesh in-

creases and the calculated deflections are over-estimated com-

pared to the values obtained from the uniform mesh analyses. 

For example, when 1.4yn =  the mid-span deflection is about 

twice of that predicted with the uniform mesh. 

Generally the mesh used to analyze the orthotropic curved 

boundaries should have adequate accuracy as well as satisfac-

tory convergence rate. As aforementioned, the Type 1 mesh 

could provide sufficient accuracy in almost all cases. Further-

more, this type of mesh could also give higher convergence 

rate. The Figs. 9(a) and 9(b) show the variation of residual 

energy with iteration number for Type 1 mesh and for the 

mesh with ny = 1.4, respectively.  

The non-uniform mesh may not just be used to analyze 

square isotropic and orthotropic plates. It may also be used to 

analyze isotropic and orthotropic circular and elliptical plates. 

It is assumed that the axes of orthotropy are parallel to the x  

and y axes. In order to demonstrate the flexibility and accu-

racy of the Type 1 mesh the large deflection response of a 

clamped isotropic circular plate subjected to uniform trans-

verse pressure is analyzed. The center deflection-pressure 

response is shown in Fig. 10 and compared with the results 

given in Ref. [18] and also with the results obtained by using a 

DXDR polar co-ordinate finite-difference analysis of the prob-

lem.  

In order to demonstrate the ability of the Type 1 mesh for 

both the small and large deflection responses of clamped 

orthotropic circular plates, two further results comparisons are 

presented for a glass-epoxy plate. A small deflection analysis 

of the load-deflection response for the case of uniform trans-

Table 2. The xn  values corresponding to each mesh line for ny = 1.2, 

1.3 and 1.4 (k = 12). 
 

xn  
i  j  

1.2yn =  1.3yn =  1.4yn =  

0 12 1 1 1 

1 11 0.335796 0.321378 0.308149 

2 10 0.289474 0.271840 0.255832 

3 9 0.250980 0.231254 0.213571 

4 8 0.216027 0.194986 0.176410 

5 7 0.183100 0.161456 0.142700 

6 6 0.151526 0.130023 0.111811 

7 5 0.121032 0.100496 0.083602 

8 4 0.091613 0.072995 0.058250 

9 3 0.063537 0.047938 0.036208 

10 2 0.037457 0.026122 0.018229 

11 1 0.014788 0.008992 0.005469 

12 0 0 0 0 

 

 

(a) 

 

 

(b) 
 

Fig. 8. Deflection profiles along the y axis of a square orthotropic 

clamped plate subjected to uniform transverse pressure computed using 

uniform and a range of non-uniform meshes: (a) principal axis of 

orthotropy in the x direction; (b) principal axis of orthotropy in the 

y direction. 

 

 

 

(a) 

 

 

(b) 
 

Fig. 9. A comparison between the convergence rate of two different 

meshes: (a) Type 1 mesh; (b) mesh with ny = 1.4. 
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verse pressure loading is shown in Fig. 11. As expected, the 

load-deflection response is linear and the Type 1 mesh results 

are in good agreement with the exact results given in Ref. [19]. 

Large deflection analysis results for the Type 1 mesh are 

shown in Fig. 12. The deflection profiles in the x  and y  

directions are presented for the principal axes of orthotropy 

parallel to the y  direction with the non-uniformity of the 

mesh in the x  direction, Type 1 mesh. 

The Type one mesh is also capable to investigate the circu-

lar and elliptical plates with movable boundary condition in 

both fixed and simply-supported cases. Fig. 13 shows the 

large deflection analysis of a movable clamped isotropic circu-

lar plate subjected to uniform transverse pressure. As it is seen, 

there is a good agreement between the results obtained using 

the Type 1 mesh ( 1, 1y xn n= ≠ ) and the Banerjee results [20]. 

Moreover, the employed mesh can also be used to analyze the 

isotropic elliptical plates. The results obtained by the aid of 

current study and those of Banerjee [21] are compared to each 

other in Figs. 14(a)-15(a) for movable clamped and simply-

supported edges, respectively. Figs. 14(b)-15(b) and 14(c)-

15(c) show the profiles along the x  and y  axes and the 

stress couple profiles along the x  axis for the elliptical plate 

for the mentioned boundary conditions. 

Furthermore, the method can be extended to analyze the 

large orthotropic circular and elliptical plates with clamped 

and simply-supported movable edges. Figs. 16 and 17 show 

the results obtained from current study for glass-epoxy 

orthotropic plates. 

Generally, by the aid of proposed mesh and method ex-

plained above it is not only possible to analyze plates with 

different boundaries but the adequate convergence and accu-

racy are also achievable. For instance, the Table 3 shows the 

accuracy of the results which is attainable in this method com-

pared to other published data. 

A quick glance at Figs. 4-17 displays the capability of the 

proposed method and that it could properly treat the circular 

and elliptical boundaries while Cartesian axes are used. The 

employed proposed irregular mesh may be applied to any 

other curved boundaries with more complicated shapes which 

are especially useful to analyze the orthotropic plates when the 

reinforced fibers are placed in rectilinear directions. In fact, it 

quite happens that the reinforced sheets are made initially in 

large scale and then the plates are cut out with an arbitrary 

shape and boundary form.  

 
 

Fig. 10. Load-center-deflection response of a clamped isotropic circu-

lar plate subjected to uniform transverse pressure, comparison of Type 

1 mesh ( 1, 1y xn n= ≠ ) and other approximate responses. 

 

 

 
 

Fig. 11. Small deflection analysis of the load-center deflection re-

sponse of a clamped orthotropic circular plate subjected to uniform 

transverse pressure, comparison of Type 1 mesh ( 1, 1y xn n= ≠ ) and 

exact responses. 

 

 

 
 

Fig. 12. Deflection profiles along the x and y axes of a clamped 

orthotropic circular plate subjected to uniform transverse pressure, 

profiles computed with a Type 1 mesh ( 1, 1y xn n= ≠ ) with the major 

axis of orthotropy parallel to the y axis. 

 

 

 
 

Fig. 13. Large deflection of the load-center deflection response of a 

movable clamped isotropic circular plate subjected to uniform trans-

verse pressure, comparison of Type 1 mesh ( 1, 1y xn n= ≠ ) and ap-

proximate responses. 
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(a)                                                    (b) 

 

 

(c) 
 

Fig. 14. Large deflection analysis of a movable clamped isotropic elliptical plate subjected to uniform transverse pressure (a/b = 2): (a) load-

deflection curve and comparison of Type 1 mesh ( 1, 1y xn n= ≠ ) and approximate responses; (b) profiles along the x and y axes; (c) stress couple 

profiles along the x axis. 

 

 

      

                               (a)                                                      (b) 

 

 

(c) 
 

Fig. 15. Large deflection analysis of a movable simply-supported isotropic elliptical plate subjected to uniform transverse pressure (a/b = 2):

(a) load-deflection curve and comparison of Type 1 mesh ( 1,yn = 1)xn ≠  and approximate responses; (b) profiles along the x and y axes, 

(c) stress couple profiles along the x axis. 
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6. Concluding remarks 

Clamped and simply-supported square, circular and ellipti-

cal plates with Cartesian orthotropy subjected to uniform 

transverse pressure have been analyzed using the DXDR 

technique in conjunction with both uniform and non-uniform 

Cartesian finite-difference meshes. Both fixed and movable 

boundary conditions have been investigated. It has been 

shown that the use of non-uniform finite-difference meshes 

permits square, circular and elliptical plate geometries to be 

analyzed using the same Cartesian mesh. Moreover, both the 

small and large deflection responses of the plates may be pre-

dicted with good accuracy provided the non-uniformity of the 

mesh is not excessive. It appears that, for orthotropic plates, 

the Type 1 mesh (non-uniform in one direction only) gives 

best results when the non-uniformity is transverse to the major 

axis of orthotropy. 
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