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a b s t r a c t

In this research, a numerical procedure is used to solve the Navier-Stokes equation on a submerge

hydrofoil and the estimation of hydrofoil performance is done by an Adaptive Neuro-Fuzzy Inference

System (ANFIS) model. A pressure-based implicit technique and a non-orthogonal mesh with collocated

finite volume formulation are used to simulate flow around the hydrofoil. The procedure incorporates

the k�e eddy-viscosity turbulence model and a Volume of Fluid (VOF) process has been utilized to

simulate two-phase fluid (water and air). In the mentioned method, the analyses of thickness and

camber effect of hydrofoil, submerge distance (h/c), and the angle of attack (AOA) make an impression

on the hydrofoil performance. To verify the numerical simulation, a part of the presented results is

compared with the published experimental data. This comparison confirms the numerical process.

Moreover, the hydrofoil configuration and operating condition are assessed by ANFIS model. Consequently,

the results prove that the ANFIS model can predicate the hydrofoil performance very well.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The estimation of hydrofoil performance and finding a math-
ematical model play a significant role in many engineering
applications, particularly in marine vehicles. The hydrofoil is
widely used in marine vehicles and it increases the speed of
vehicles, maneuverability, stability and performance of the vehi-
cles, but hydrofoil performance depends on other parameters as
the camber of hydrofoil, submerge distance, and the angle of
attack and the thickness of hydrofoil. In addition, this perfor-
mance affects on wave generation on free surface. Therefore, an
accurate estimation of hydrofoil performance for a safe and
economical design of a marine has to be considered, so that it
can reduce energy consumption in operating conditions. There is
a great volume of published work dealing with moving hydrofoil
performances (De Blasi et al., 2000; Daskovsky, 2000; Filippov,
2001; Rhee et al., 2003; Bourgoyne, 2003; Hay and Visonneau,
2005; Chen and Liu, 2005; Antonio et al., 2005; Kouh et al., 2002).
But it is noticed that there is a lake of a simple mathematical
model to predict submerge hydrofoil performance, which moved
near the free surface of water. Although a number of studies has
been carried out considering a floating hydrofoil with some
assumptions common in hydrodynamics, which proves less
improvement.
ll rights reserved.
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In the last decades, extensive studies have been carried out on
the hydrofoil (Xie and Vassalos, 2007; Sadathosseini et al., 2008;
Antoine et al., 2009). Another point that should be considered is the
control system of marine transport. The current control system of
a fully submerged hydro-craft has manual input. However, the
manual input depends on human individual skills and the observa-
tion of waves encountering the work well over a wide range of
waves, while if the wave profile has been estimated, the best system
performance can be well estimated. For finding a good estimation of
the wave profile, it needs to predict hydrofoil treatment (Kim and
Yamato, 2005) and finding a mathematical model.

In the recent years, the research interest in artificial neural
network has increased and many efforts have been made on
application of neural networks to various marine engineering
problems. Many researchers have developed a hybrid model by
mixture the neural network with fuzzy logic to solve ocean
engineering problems (Kazeminezhad et al., 2005; Bateni and
Jeng, 2007; Guven et al., 2009). Futhermore, Patil et al. (in press)
have investigated the performance of Neuro-Fuzzy method for
predicting wave transmission coefficient of horizontally inter-
laced multilayer moored floating pipe breakwater. However, it is
observed that there are hardly any applications of soft computing
tools on the estimation of floating hydrofoil performance, moved
near the free surface of water.

In the present paper, floating hydrofoil performance and the
estimation of wave generation on the free surface have been
investigated by ANFIS, while this technique is more flexible then
other approach. In this research, the type of hydrofoil (camber and
thickness), submerge distance (h/c) and the angle of attack (AOA)
have been impressed on wave profile and hydrofoil performance.
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The novelty of this study is the investigation of ANFIS model in the
prediction of hydrofoil performance according to its configuration
and operating conditions. It is possible to evaluate the relative
importance of input parameters on the moving submerge hydrofoil
on the water. The results are tabulated in terms of statistical
measures, and they are demonstrated in scatter plans.
2. Theoretical routines

2.1. Adaptive Neuro-fuzzy inference system (ANFIS) architecture

Artificial neural network is a favorable technique to solve
optimization problems, because it can simulate the operations of
the brain and uses parallel processing to save computational time.
Fuzzy logic approach is another intelligent computing tool, which
is competent for applying to wide variety of problems. Neural
Networks (NN) are demonstrated to have powerful capability
of expressing relationship between input–output variables.
Recently, there has been a growing interest in combining both
these approaches, and as a result, Neuro-Fuzzy computing
techniques have been evolved. These are fuzzy systems, which
use neural networks theory in order to determine their properties
(fuzzy sets and fuzzy rules) by processing data samples (Mitra
and Hayashi, 2002). Neuro-Fuzzy integrates to synthesize the
merits of both neural networks and fuzzy systems in a comple-
mentary way to overcome their disadvantages. ANFIS model has
combined the neural network adaptive capabilities and the fuzzy
logic qualitative approach which Jang (1993) has presented. The
mentioned model has been attained its popularity due to a broad
range of useful applications in such diverse areas in recent years
as optimization of fishing predictions (Nuno et al., 2005;
Noureldin et al., 2007; Kishor et al., 2007; Lee and Gardner,
2006; Übeyli and Güler, 2006; Civicioglu, 2007; Qin and Yang,
2007; Daoming and Jie, 2006; Depari et al., 2006; Assaleh, 2007;
Huang et al., 2007).

All above works manifest that ANFIS model is considered as a
good universal approximation, predictor, interpolator and esti-
mator. They demonstrate that each non-linear function of many
inputs and outputs can be easily constructed with the model.
A typical architecture of the model is illustrated in Fig. 1, in which
a circle indicates a fixed node, and a square depicts an adaptive
node. For simplicity, two inputs x, y and one output z in the fuzzy
inference system (FIS) can be considered. The ANFIS in this paper
implements a Sugeno-Fuzzy type inference system. For example,
for a Sugeno-Fuzzy model, a common rule set with two fuzzy
if-then rules can be expressed as:

Rule 1: If x is A1 and y is B1,
Then

z1 ¼ p1xþq1yþr1 ð1Þ
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Fig. 1. ANFIS architecture P, N, S are defined in Eqs. (20), (21), (23), respectively.
Rule 2: If x is A2 and y is B2,
Then

z2 ¼ p2xþq2yþr2 ð2Þ

where Ai, Bi i¼ 1,2ð Þ Ai and Bi are fuzzy sets in the antecedent,
and pi,qi,ri i¼ 1,2ð Þ are the design parameters that are determined
during the training process.

As in Fig. 1, the ANFIS consists of five layers:
Layer 1, every node i in this layer is an adaptive node with a

node function:

O1
i ¼ mAi

ðxÞ, i¼ 1,2

O1
i ¼ mBi

ðyÞ, i¼ 1,2
ð3Þ

where x,y are the input of node i, and mAi
ðxÞ and mBi

ðyÞ can adopt
any fuzzy membership function (MF). In this paper, Gaussian MFs
are used:

gaussian x,c,sð Þ ¼ e� 1=2ð Þ x�c=sð Þ
2

ð4Þ

where c is center of Gaussian MF and s is a standard deviation of
this cluster. In layer 2, every node represents the ring strength of
a rule by multiplying the incoming signals and forwarding the
product as:

O2
i ¼oi ¼ mAi

ðxÞmBi
ðyÞ, i¼ 1,2 ð5Þ

In layer 3, the ith node calculates the ratio of the ith rules ring
strength to the sum of all rules ring strengths:

O3
i ¼$i ¼

oi

o1þo2
, i¼ 1,2 ð6Þ

where $i is referred to as the normalized ring strengths.
In layer 4, the node function is represented by

O4
i ¼$izi ¼$i pixþqiyþri

� �
, i¼ 1,2 ð7Þ

where $i is the output of layer 3, and pi,qi,ri

� �
are the parameter

set which are referred to as the consequent parameters.
In layer 5, the single node computes the overall output as the

summation of all incoming signals:

O5
i ¼

X2

i�1

$izi ¼
o1z1þo2z2

o1þo2
ð8Þ

It is clear that the ANFIS has two sets of adjustable parameters,
namely the premise and consequent parameters. During the
learning process, the premise parameters in the first layer and
the consequent parameters in the fourth layer are tuned until the
desired response of the FIS is achieved. In this work, the Hybrid
learning algorithm (Jang et al., 2002), which combines the Least
Square method (LS) and the back propagation (BP) algorithm,
is utilized to rapidly train and adapt the FIS. When the premise
parameter values of the membership function are fixed, the
output of the ANFIS can be written as a linear combination of
the consequent parameters:

z¼ $1xð Þp1þ $1xð Þq1þ $1ð Þr1þ $2xð Þp2þ $2xð Þq2þ $2ð Þr2 ð9Þ

The LS method can be applied to determine optimally the
values of the consequent parameters. When the premise para-
meters are not fixed, the search space becomes larger and the
convergence of training becomes slower. The Hybrid algorithm
converges much faster since it reduces the dimension of the
search space of the BP algorithm. During the learning process, the
premise parameters in layer 1 and the consequent parameters in
layer 4 are tuned until the desired response of the FIS is achieved.
The hybrid-learning algorithm has a two-step process. First, while
holding the premise parameters fixed, the functional signals are
propagated forward to layer 4, where the consequent parameters
are identified by the least square method. Second, the consequent
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parameters are held fixed while the error signals, the derivative of
the error measure with respect to each node output, are propa-
gated from the output end to the input end, and the standard BP
algorithm updates the premise parameters.

Fig. 2 demonstrates a schematic of the model, which the input
data is repeatedly presented. With each presentation, the output
of the model is compared with the desired output and an error is
computed. This error is fed back (back propagated) to the ANFIS
and it is utilized to adjust the weights so that the error is
decreased by each iteration and the neural model gets closer
and closer to produce the desired output. This process is known as
‘‘Training’’. The approach utilizes this error to adjust its weights in
order to decrease the error and this sequence of events is usually
repeated until either an acceptable error has been reached or the
no longer network has been appeared to be learning.

2.2. Convergence Criteria for estimation

The performance efficiency of the network is evaluated by
comparing the numerical values with the approach-estimated
ones. In addition to MSE (Mean Squared Error), NMSE (Normal-
ized Mean Squared Error), MAE (Mean Absolute Error) and R2

(coefficient of determination) are applied as the other parameters
for the calculation of error in this modeling (Eqs. (10)–(14)). In
brief, this technique prediction is optimum if R2, MAE, NMSE and
MSE are found to be close to 1, 0, 0 and 0, respectively.

MSE¼

PN
i ¼ 1 Oi�Tið Þ

2

N
ð10Þ

NMSE¼
1

s2

1

N

XN

i ¼ 1

Oi�Tið Þ
2

ð11Þ

MAE¼
XN

i ¼ 1

Oi�Tið Þ

N
ð12Þ

R2
¼ 1�

PN
i ¼ 1 Oi�Tið Þ

2PN
i ¼ 1 Oi�Tmð Þ

2
ð13Þ

Tm ¼

PN
i ¼ 1 Oi

N
ð14Þ

where Oi is the ith numerical value, Ti is the ith predicted value,
N is the number of data and s2 is the variance of numerical data.

2.3. Numerical solution process

The basic equations, which describe conservation of mass,
momentum and scalar quantities, can be expressed in the following
vector form, which is independent of the coordinate system.

dr
dt
þdiv rV

!� �
¼ Sm ð15Þ
d rV
!� �
dt

þdiv rV
!
� V
!
� T
!� �
¼ S
!

v ð16Þ

dðrfÞ
dt
þdiv rV

!
f� q
!

� �
¼ S
!

f ð17Þ

Where r, V
!

and f are density, velocity vector and scalar quantity

respectively, T
!

is the stress tensor and q
!

is the scalar flux vector.
The latter two are usually expressed in terms of basic dependent
variables. The stress tensor for a Newtonian fluid is

T
!
¼�P I

!
ð18Þ

and the Fourier-type law usually gives the scalar flux vector:

q
!
¼Gfgradf ð19Þ

In this study, k�e model is used for turbulence flow. The
discretization of the above differential equations is carried out
by applying a finite-volume approach. First, the solution domain
is divided into a finite number of discrete volumes or cells, where
all variables are stored at their geometric centers. The equations
are then integrated over all the control volumes by utilizing the
Gaussian theorem. The discrete expressions are presented to refer
to only one face of the control volume, namely, e, for the sake of
brevity. For any variable f (which may also stand for the velocity
components), the result of the integration yields:

dn
dt
ðrfÞnþ1

p �ðrfÞnp
h i

þ Ie�Iwþ In�Is ¼ Sfdn ð20Þ

where, I’s are the combined cell-face convection Ic and diffusion
ID fluxes. The diffusion flux is approximated by central differ-
ences. The discretization of the convective flux requires special
attention and it causes to develop the various schemes. A
representation of the convective flux for cell-face (e) is:

Ic
e ¼ r:V :A

� �
e
fe ¼ Fefe ð21Þ

The value of fe is not known and should be estimated from the
values at neighboring grid points by interpolation. The expression

for the fe is determined by Second order Upwind scheme. The
final form of the discretized equation from each approximation is
given as:

Apfp ¼
X

m ¼ E,W ,N,S

AmfmþSf’ ð22Þ

Where A’s are the convection-diffusion coefficients. The term Sf’

in Eq. (22) contains quantities arising from non-orthogonality,
numerical dissipation terms and external sources. For the
momentum equations, it is easy to separate out the pressure-
gradient source from the convection momentum fluxes.

VOF ideas have been utilized to simulate two-phase fluid
(water and air). The VOF model can model two or more immis-
cible fluids by solving a single set of momentum equations and
tracking the volume fraction of each of the fluids throughout the
domain. The tracking of the interface between the phases is
accomplished by the solution of a continuity equation for the
volume fraction of one of the phases. For the qth phase, this
equation has the following form:

1

r
r: aqrq n

!
� �

¼ Spqþ
Xn

p ¼ 1

_mpq� _mqp

� �" #
ð23Þ

where _mpqis the mass transfer from phase q to phase p, and _mqpis
the mass transfer from phase p to phase q. Spq is the source term
which in this problem is zero. The volume fraction equation will
not be solved for the primary phase. The primary-phase volume
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fraction will be computed based on the following constraint:

Xn

q ¼ 1

aq ¼ 1 ð24Þ

The volume fraction equation may be solved either through
implicit or explicit discretization. In this research, implicit is used.
X/C

C
p

0 0.2 0.4 0.6 0.8 1

1

Fig. 4. Effect of grid sizing on pressure distribution on the surface of the

NACA4412 hydrofoil for an AOA¼51 a, Fc¼1 and h/c¼1.

Table 1
Settings for numerical simulation.

Flow Turbulent

Solver 2-D double

precision

Momentum equation

solver

Second order

upwind

Solver SIMPLE

Turbulent model k�e

Fc

C
L

0.8 1 1.2 1.4

0.6

0.8

1

1.2

1.4
Experimental
Numerical

Fig. 5. Comparison of lift coefficient for numerical and experimental data for
3. Results

3.1. Computation simulation output

The data sets used in this study are achieved from Computa-
tional Fluid Dynamic (CFD) laboratory and they include numerical
simulation. In the numerical simulation, grid, domain indepen-
dency, and comparison with currant result and published data
should be investigated. The grid structure in CFD simulation is
created by a structured mesh. In this simulation, H-type grid is
used and boundary condition is illustrated in Fig. 3. At the inlet,
velocity is prescribed. At the outlet, the pressure is fixed. Slip
boundary conditions are utilized on upper walls of the domain
and wall boundary conditions are applied for hydrofoil surface.

According to Fig. 3, the dimension of domain has been obtained
by doing several various lengths and independent lengths have been
selected. The grid sizing is determined after grid independence that
is found by doing several different trials which demonstrate surface
pressure coefficient distribution at hydrofoil with NACA4412 area
section, AOA¼51, h/c¼1 and Fc¼1. The effect of grid size is
illustrated in Fig. 4. For other cases, the above process is utilized
for grid and domain independences.

In this study, the Froude number (Fc) is equal 1 (according to
the chord of hydrofoil). The setting of numerical simulation has
been confirmed in Table 1.

To validate the numerical simulation, lift coefficient of
NACA4412 hydrofoil is compared with the experimental data
(Kouh et al., 2002). Fig. 5 indicates the lift coefficient of hydrofoil
NACA4412 for an AOA¼51 and h/c¼1. Comparisons demonstrate
that the numerical results are in a good agreement with experi-
mental data.

In this research, the effect of the camber and thickness of the
hydrofoil has numerically been investigated in different angle of
attack and various submerge distances. However, the lift and drag
coefficients and lift to drag ratio have been analyzed at three
special angles of attack 2.51, 51 and 7.51 degrees; moreover, the
submerge distance in the study falls into three main categories:
h/c¼0.5, 0.7 and 1. Besides, to attain the best mathematical
modeling of floating hydrofoil performance, the camber and thick-
ness of hydrofoils should be taken into consideration; therefore,
Fig. 3. Dimension and boundary condition of 2D domain.

NACA4412, AOA¼51 and h/c¼1.
a broad range of them are designated and both of them are divided
into three segments. The non-dimensional camber is slightly
changed from 0c to 0.02c and 0.04c; also, the non-dimensional
thickness is gently varied from 0.09c to 0.12c and 0.15c. For
example, the hydrodynamic characteristics of five different 2D
hydrofoils, NACA0012, 2412, 4412, 4409, and 4415, are examined
according to assumed cambers and thicknesses. Table 2(a)–(e)
represents the lift and drag coefficients and L/D in the variant
angles of attack as varying submerge distances. Indeed, the tables
demonstrate some significant trends; for instance, the lift has an
downward trend for all cases when the hydrofoils approach closely
to the free surface of water. In almost all of the cases, the lift
coefficients are dramatically risen by a gradual growth of the
camber and also a slight drop of the thickness. The same is true for
drag coefficients (Djavareshkian et al., 2010).
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3.2. Estimation process

After numerical simulation, the data are obtained, but they are
like a point in the search space. These data are not continuous and
they have a nonlinear behavior. Nonlinear system identification is
becoming an important tool, which can be achieved by robust
fault-tolerant behavior. The data have a nonlinear behavior and
the type of system that is between input and output variables is
not known. Therefore, ANFIS model is utilized to know the
system. In this modeling, the camber, the thickness, the angle of
attack and the submerge distance are used as an input and lift to
drag (L/D) ratio is utilized as an output. In order to model L/D,
a computer program is performed under MATLAB (version 7.7.
The Math Works Inc., USA) environment by applying the ANFIS
toolbox. A hybrid-learning algorithm is utilized for the model
training, and the number of epochs is elected as 100. For the
generation, sub clustering is applied, and the parameters for
clustering genfis are in Table 3. The number of the member-
ship function is 2 for each input and the total rules are 16,
(2�2�2�2), respectively. The type of the membership function
is ‘‘gaussmf’’ and it is symmetrical function. For instance, Fig. 6
demonstrates membership function for camber/c.

The total number of data acquired at the time of this study is
added up to 81, which have been collected by performing the
same different sampler. To introduce the database to the model,
Table 2
Lift and drag coefficients and L/D ratio of hydrofoils (a) NACA0012, (b) NACA2412,

(c) NACA4412, (d) NACA4409, and (e) NACA4415.

AOA (deg) h/c

0.5 0.7 1

CL CD CL CD CL CD

2.5 0.152 0.0593 0.213 0.0622 0.285 0.0642

5 0.294 0.0727 0.377 0.0783 0.477 0.0826

7.5 0.421 0.0942 0.537 0.1048 0.667 0.1131

(a)

2.5 0.235 0.0659 0.314 0.0699 0.418 0.0720

5 0.374 0.0807 0.480 0.0879 0.620 0.0929

7.5 0.509 0.1048 0.646 0.1170 0.807 0.1255

(b)

2.5 0.332 0.0823 0.447 0.0884 0.572 0.0892

5 0.472 0.0992 0.622 0.1099 0.758 0.1133

7.5 0.613 0.1259 0.776 0.1408 0.981 0.1504

(c)

2.5 0.339 0.0685 0.435 0.0729 0.570 0.0738

5 0.483 0.0867 0.614 0.0951 0.779 0.0993

7.5 0.630 0.1154 0.784 0.1285 0.985 0.1379

(d)

2.5 0.341 0.0989 0.455 0.1061 0.597 0.1087

5 0.485 0.1160 0.601 0.1261 0.788 0.1316

7.5 0.620 0.1435 0.782 0.1589 0.995 0.1689

(e)

Table 3
Parameter for clustering genfis.

Range of influence 1

Squash factor 2

Accept ratio 0.5

Reject ratio 0.15
it needs to be randomly broken down into two groups: training
and testing. This new approach is trained by using the training set
data and the test set is utilized to evaluate the predictive ability of
the ANFIS. The training is continued as long as the computed error
between the actual and predicted outputs for the test set is
decreased. Typically, 74% of the data are applied for training and
the rest are categorized as testing. The testing set is used to
evaluate the accuracy of the newly trained ANFIS by providing the
mentioned model a set of data, which have been never consid-
ered, before. During the testing, the learning is turned off and the
chosen data set is fed through the model. The model output
Fig. 6. Membership function for camber/c.

Table4
ANFIS performance values for train and test.

MSE NMSE MAE R2

Train 0.021 0.0135 0.1091 0.9867

Test 0.0351 0.0298 0.1487 0.9732

y = 0.9865x + 0.0702
R2 = 0.9867
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Fig. 7. Numerical results versus ANFIS predicted values of L/D: (a) training data,

and (b) testing data.
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is collected and a report is then generated for confirming the
testing results.

The efficiency of this approach is evaluated whenever the L/D

measured values and estimated ANFIS ones are compared. Table 4
illustrates the method performance in the terms of MSE, NMSE,
MAE and the coefficient of determination R2. The low value of the
sundry error types especially NMSE and high amount of R2

particularly in train. Consequently, the results of the test errors
reveal the accuracy of the model.

In Fig. 7a and b, the prediction values versus numerical ones of
L/D are depicted in the training and testing sets. As a result of
2

3

4

5

6

7

8

0 10 20 30 40 50 60

L/
D

Sample Number

ANFIS Predicted Value
Sampler

Fig. 8. Comparison of the ANFIS predicted and numerical values of lift to drag

ratio in train.
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Fig. 9. Comparison of ANFIS prediction and numerical results of lift to drag ratio

in test.

Fig. 10. Generalization of best-fitted surfaces predi
these figures, the coefficient of determination is found to be
0.9867 in training and 0.97332 in testing set, where both are well
close to 1. The superior agreement between numerical data and
the prediction results indicates that it can be used as a powerful
method for the prediction of L/D.

The numerical and prediction lift to drag ratio values of the
training and testing data sets are illustrated in Figs.8 and 9. As it
can be observed in Fig. 8, the lines representing the CFD values
and the results estimated by the ANFIS are so close that they are
indistinguishable in training. Fig. 9 illustrates the assessment
of trained system with 21 data. It is obvious that prediction lift
to drag ratio by using this model and numerical values are found
in a perfect match in the testing data and there is no recognizable
deviation.

As it is known, either humans or other computer techniques
can utilize ANFIS, with its significant ability to derive meaning
from complicated data, to extract patterns and detect trends that
are too complex to be noticed.

Figs. 10–12 demonstrate the 3D plots of the model obtained
from ANFIS by using training data. In these modeled figures, lift to
drag ratio is plotted versus camber, thickness, the angle of attack
and submerge distance. To illustrate the accuracy of the obtained
model, L/D numerical values are depicted versus different para-
meters on the 3D model. Considering these figures, it is obvious that
the model surfaces close to the numerical data, appropriately.

Fig. 10 shows L/D ratio versus AOA and camber. It can be seen
that increasing AOA causes L/D ratio to grow. This treatment is
well estimated by the new approach. In addition, the high value of
the camber increases L/D ratio in the large AOA.

Fig. 12 illustrates the effect of submerge distance (h/c) and the
thickness effect. The effect of h/c surges towards a straight line, so
the rising of h/c causes an increase in L/D ratio. The figure
confirms that pressure on the upper surface of hydrofoil is
changed more by enhancing h/c. Also, Fig. 12 shows the effect
of hydrofoil thickness on L/D ratio and it can be observed that
escalating thickness leads to decline in the L/D ratio. When the
thickness of hydrofoil becomes more, drag coefficient is picked up
and consequently the L/D ratio is mounted. Hence, this model is
very strong and it predictes physical treadment, very well.
4. Conclusion

Prediction of hydrofoil performance and free surface wave
generation are necessary in order to design a marine engineering.
Researchers have carried out tremendous work dealing with
cted with ANFIS based camber/c, AOA and L/D.



Fig. 11. Generalization of best-fitted surfaces predicted with ANFIS based camber/c, thickness/c and L/D.

Fig. 12. Generalization of best-fitted surfaces predicted with ANFIS based thickness, h/c and L/D.
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submerge hydrofoil, but they failed to give a simple mathematical
model for these structures to predict the generated wave and
floating hydrofoil. In this paper, a robust fuzzy knowledge based
rules has been developed to predict hydrodynamic performance
of a marine vehicle model and it is compared with the numerical
data. Both numerical and predicted results are found to be valid
within the acceptable limits. On the other hand, computer
simulation on train and test data of ANFIS model demonstrates
the effectiveness of the approach in terms of statistical measures,
such as determination coefficient, mean square error and normal-
ized mean-squared error. Moreover, the developed model can be
used as a reference for future hydrodynamic performance studies
on the marine vehicle model.
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