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Abstract In this paper, we suggest a new supervised learn-
ing method called Fourier based automated learning central
pattern generators (FAL-CPG), for learning rhythmic sig-
nals. The rhythmic signal is analyzed with Fourier analy-
sis and fitted with a finite Fourier series. CPG parameters
are selected by direct comparison with the Fourier series.
It is shown that the desired rhythmic signal is learned and
reproduced with high accuracy. The resulting CPG network
offers several advantages such as, modulation and robustness
against perturbation. The proposed learning method is sim-
ple, straightforward and efficient. Furthermore, it is suitable
for on-line applications. The effectiveness of the proposed
methed is shown by comparison with four other supervised
learning methods as well as an industrial robotic trajectory
following application,
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Central pattern generators (CPG) - Nonlinear oscillators -
Rhythmic motion - On-line trajectory generation

1 Introduction

The basic locomotor patterns of most biological systems,
such as breathing, are generated by the central pattern gener-
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ator (CPG). Central pattern generators are neuronal circuits
situated in the spinal cord of vertebrates and the segmen-
tal ganglia of invertebrates. When activated, CPG can pro-
duce a variety of rhythmic motor patterns such as walking,
breathing, chewing, flying, and swimming in the absence of
sensory or descending inputs that carry specific timing infor-
mation. CPG is composed of collective neural oscillators,
which individually provide the required signals for control-
ling the movement of each limb or movement of the body
[1.2]. Recently, CPG based trajectory generation approaches
have gained popularity in the field of biological inspired
robotics. CPG has several advantages such as demonstrat-
ing limit cycle behavior, which means the effect of tempo-
rary perturbations is quickly diminished; analytical solution
with explicit frequency, amplitude, and phase lag parameters
do exist for a number of CPGs; its parameters can be used
as control parameters; it produces smooth trajectories even
when the control parameters are abruptly changed, and it
is computationally efficient. There are two generic methods
for designing CPG to produce a rhythmic pattern. namely,
supervised learning and unsupervised learning.

Techniques involving unsupervised learning are used
when the periodic signal that needs to be generated by the
CPG is not known in advance. There are usually perfor-
mance criterions that help generate the desired trajectory.
For instance, stable locomotion and/or minimum energy con-
sumption that should be met. Among such technigues, evo-
lutionary algorithms are extensively used to design CPG
models. Hasanzadeh and Akbarzadeh Tootoonchi [3] pre-
sented a novel gait, forward head serpentine (FHS), for a
snake robot. A fitness function covering robot speed and
head link angular changes is defined. Genetic Algorithm
(GA) is used to find gait parameters resulting in maximum
speed while the head link angular changes remain in an
acceptable range. Kim et al. [4] proposed a nonparametric
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estimation based PSO (NEPSO) to search for the parameters
of CPG needed for bipedal walking. Shrivastava et al. [5]
used Genetic Algorithm to construct a trajectory generation
method for an 8 DOF robot that climbs stairs and walks on
flat terrain.

Techniques involving supervised learning are used when
the periodic signal that needs to be generated by the CPG
is known in advance. Using the desired periodic signal, an
explicit error function is defined and minimized. Examples
of such techniques include statistical learning algorithms
for dynamical systems [6], gradient-descent learning algo-
rithms for recurrent neural networks [7,8], learning for vec-
tor fields [9] and programmable central pattern generators
(PCPG) where learning is implanted into the dynamical
system. The PCPGs use a number of frequency adaptive
oscillators to learn a desired periodic signal [10]. A. J. Tj-
speert used PCPG to learn rhythmic trajectories for biped
locomotion with a simulated humanoid robot. The system
is used as an on-line trajectory generation method for the
humanoid robot. The main drawback of this approach is
its excessive time for learning. It takes more than 1000 s
for learning a specific pattern. Moreover, the return to the
limit cycle after a perturbation is relatively slow due to the
time needed to converge to the right phase lags between
the multiple oscillators. Furthermore, for complex signals,
the required numbers of oscillators are increased rapidly,
leading to a complex system structure. Another on-line learn-
ing approach is based on encoding trajectories as a limit
cycle produced by a two layered dynamical system. Gams
et al. used this system to learn periodic tasks of a HOAP-2
humanoid robot [11]. The shortcoming of this approach is
its complex structure and many numbers of constant param-
eters which must be tuned by hand. Furthermore, some of
the constant parameters are sensitive and must be carefully
determined.

In this paper, a new supervised learning method called
Fourier based automated learning CPG (FAL-CPG), is pre-
sented and utilized to learn a periodic signal used for tra-
jectory planning of robotic systems. A network of coupled
nonlinear oscillator, as a CPG model, is then used to gen-
erate the learned signal. Compared with existing supervised
learning methods, the proposed approach has several advan-
tages: itis simple, efficient and computationally inexpensive.
Required time for regenerating the desired signal is very low
which potentially makes the FAL-CPG suitable for on-line
applications. Trajectory planning is executed in two steps. In
the first step, a finite Fourier series is fitted to the desired peri-
odic signal. In the second step, based on the Fourier series, the
main parameters of the coupled oscillators are determined.

In the next sections, the main idea of the proposed system
is presented, Sect. 2, followed by the illustrative examples to
show its effectiveness. And finally, discussion and conclud-
ing remarks are presented in the last sections.
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2 Main idea

Generally, CPGs are realized with nonlinear oscillators. Har-
monic oscillators are widely used in CPGs as the main oscil-
lator model [12]. It is known that steady state or limit cycle
solution of a harmonic oscillator is sinusoidal. The main idea
of this paper originates from this simple concept. It is well
known that a cyclic pattern, desired rhythmic pattern, can
be approximated by a finite Fourier series. There is also a
relation between a sinusoidal function and the main param-
eters of a harmonic oscillator. Therefore, by direct compar-
ison of the steady-state solutions for each of the harmonic
oscillators with the corresponding terms in the approximated
Fourier series, the main parameters of the oscillators can be
determined.

2.1 Oscillator model

The harmonic oscillator selected in this paper is an ampli-
tude-controlled phase oscillator [12]. This oscillator is gov-
erned by the following equation.

9,‘ = 27“-'5
' i . .
Fi = aj [—'41[1’?,' —ri) — !‘;:l ()

The two linear differential equations determine the phase
(6;) and amplitude (r;) of the ith oscillator. The constant
parameters v; and R; determines the intrinsic frequency and
amplitude. Additionally, a; is a positive constant that deter-
mines the speed of the convergent to the limit cycle. The
solutions of the Eq. | are represented in Eq. 2.

g (r) = 2wt + 6;(0)
i ar ; i % -
ri(t)=Ri+=e” T[2ri(0)—2R; +(a;iri (0)+27:(0) —a; Ri)t]
{Steady-State response}r; (1) = R; (2)

The output signal of the ith oscillator is defined by the fol-
lowing equation.

x; () = ri(t) cos(B;(t) — Gop) (3)

where 8g; introduces a constant phase lag. Equation 3 is the
output signal extracted from the i th oscillator and is periodic.
It therefore, allows direct comparison with the terms in the
Fourier series.

2.2 Determination of CPG parameters

The parameters v; and R; are the main oscillator parameters.
The most difficult part of designing a CPG modelis to specify
these parameters to result in a desired signal. In this paper, we
introduce a simple and efficient method for identifying the
main oscillator parameters. Assume a desired rhythmic signal
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is provided. In the first step of the proposed method, a finite
Fourier series is fitted to the desired rhythmic pattern (Eq. 4).

E() =ao+ Y (aycos(nor) + by sin(nwr)) (4)

n=l1

Clearly. as the number of terms in the Fourier series increase
the desired signal is better reproduced. The complexity of the
rhythmic pattern as well as the accuracy in which the desired
signal is reproduced determines the number of terms in the
Fourier series. The required accuracy depends on the appli-
cations. For example, consider walking of a humanoid robot.
There are a number of joints such as hip, knee, ankle that must
be coordinated in order to result in a hurman-like motion. Each
joint has a thythmic signal. However, the rhythmic patterns
of certain joints are more complicated and therefore, require
more Fourier series terms for their estimation,

The Fourier series is shown in Eq. 3 may be written in
terms of cosine terms. To do this. the sine terms are trans-
ferred to the cosine by subtracting 7 /2.

i

X=ay+ Z (an cos(rwt) + b, cos (nwr — %)) (3)

n=I

This form of the series is in the same format as the output of
the oscillator (Eq. 3). For each cosine term in the series, we
need a corresponding amplitude-controlled phase oscillator
(Egs. 1, 3). By direct comparison of Eqgs. 1-3 with Eq. 3,
it can be seen that the parameters a, and b, in Eq. 5 are
the steady-state value for R; and R;.| in the oscillator. The
parameter nw is equal to 27 v; and represents the frequency
in the oscillator output. The parameter 6y; is equal to zero
and /2 for the cosine and sine terms, respectively. Further-
more, the output of the CPG must be produced from time
zero. Therefore, the initial conditions of the oscillators are
selected in a manner to initiate the output of the oscillator
from its steady-state solution (Eq. 6).

(=0,

ri(0)=Ri;; RO =0; (6)

2.3 Coupling

One of the main advantages of the CPG is its synergy prop-
erties. Coupling between oscillators makes them work with
each other to produce a specific phase relation, If a pertur-
bation is presented in any one of the oscillators, the phase
relation will be disturbed. However. the coupling between
oscillators will return the dynamic system to a stable state
and will continue to produce the desired phase relation. The
coupling method adopted in the present paper is the Kuram-
oto coupling scheme [13]. The overall nonlinear oscillator
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Fig. 2 Flowchart of the learning process

model with coupling is represented in Eq. 7.

: ; Vi
6; = 2my; + wjj sin (QJ' — —& — rf);j)
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where w;; is coupling strength and ¢;; is the desired phase
difference between ith and jth oscillators. The role of ¢;; is
similar to the 8¢; used in Eq. 3. Any of these two parameters
can induce a phase difference between oscillators. Therefore
in Eq. 7, ¢; is selected to be zero and therefore, the desired
phase difference is applied to f¢; in Eq. 3. Phase difference
for the applications presented in this paper is /2 as indi-
cated in Eq. 5. All the oscillators are coupled with the first
oscillator. The overall structure of the oscillator network is
illustrated in Fig. I.

The proposed FAL-CPG method is summarized in the fol-
lowing flowchart (Fig. 2).

As shownin Fig. 2, the learning process is straightforward
and the error of the learned signal depends on the accuracy
of the Fourier fit. In applications where the desired signal
is complex or the desired accuracy is high, the number of
Fourier terms may be large. Consequently, the number of
oscillators in the network grows as each term of the Fourier
is modeled with one oscillator. Other learning methods also
exhibit similar characteristics. In other words, as the com-
plexity of the desired signal increases so does the number of
required oscillators. In the next section, effectiveness of the
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Fig. 3 Desired rhythmic pattern

Table 1 Main CPG parameters and initial conditions

R v B r(0) F(0) 4(0)
-1 15
Oscillator 1 0.8 = Z 0.8 0 0
Oscillator 2 1 £ 0 I 0 0
Oscillator 3 —14 £ z -4 0 0
Oscillatord  —05 & o _05 0

FAL-CPG method is demonstrated and compared with four
other supervised learning methods,

3 Mlustrative examples

The goal is to design a CPG network to learn a desired
rhythmic pattern. The rhythmic pattern may then be used for
trajectory planning of robotic systems. Using CPG as a tra-
Jectory planning method has several advantages compared to
other conventional methods like polynomial trajectory plan-
ning. CPG is robust to perturbation. It can modulate between
trajectories by changing a few parameters. This makes it
suitable for some on-line robotic trajectory planning applica-
tions. Assume the following desired rhythmic pattern (Fig. 3).
Fourier analysis is applied to the rhythmic pattern. This
results into the following finite Fourier series (Eq. &).

P(t) = 0.8sin (15¢) + cos(2 x 151)
—1.4sin(3 x 15¢) — 0.5 cos(4 x 151) (8)

The sine terms are transferred to cosine terms.

P (1) = 0.8cos(157 — m/2) + cos (301)
—l.4cos(d45t — w/2) — 0.5 cos (607) (9)

The series above has four terms and therefore four oscillators
are selected. As discussed in the previous section, the CPG
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Fig. 5 Perturbation of the pattern -

parameters are also readily obtained from the Eq. 9. The ini-
tial conditions are selected in 2 manner to initiate the pattern
from the limit cycle of the oscillators. This selection insures
that the desired pattern is reproduced from the time zero, The
CPG parameters and the initial conditions for the oscillators
are listed in Table I.

Results are shown in Fig. 4.

As shown in Fig. 4, the desired pattern is reproduced with
CPG from the time zero. The learning time is near zero and
negligible. This is because only one period of the rhythmic
signal is needed for learning. Therefore, the learning time is
the time required to fit the Fourier. The negligible learning
time is one of the key advantages of the proposed method.

The couplings between oscillators make it robust to per-
turbation. To examine the robustness of the CPG network
to perturbations, « number between 0 and 100 is randomly
added to all states (», 7, #) of oscillator number two at time
0.5 s. See Fig, 5.
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Fig. 6 Modulation of the CPG parameters

After perturbation, the desired signal is quickly recov-
ered to its original behavior. Modulation is another important
property of a CPG. Modulation is necessary when the desired
pattern is needed to change to another rhythmic pattern in an
on-line manner. To examine this property, both frequencies
and amplitudes (v; and R;) of all oscillators are multiplied by
number 3 during a | s interval, during 1-2 s of the simulation
time. See Fig. 6.

As shown in Fig. 6, during 1-2 s of the simulation, the
output signal is modulated. Furthermore, at the start and end
of the modulation, the signal is changed in a smooth manner,
In the following subsections, comparison between the pro-
posed FAL-CPG methods with four other recently published
supervisory learning methods is presented. All the simula-
tions are performed in Matlab software using a computer
with 3-GHz CPU and 2-GB RAM memory.

3.1 Righetti and Ijspeert [10] scheme

Righetti and [jspeert [1 0] presented an architecture for build-
ing Programmable Central Pattern Generators, PCPG. Their
PCPG encodes arbitrary periodic trajectories as limit cycles
in a network of coupled oscillators and can be used for online
trajectory generation in autonomous robots. The same signal
as earlier shown in Fig. 3 is used. Figure 7 illustrates the
results of the learning process.

As it can be seen the learning time is about 1200 s. This
time poses a challenge for the learning process to occur in an
on-line manner. However, similar to the FAL-CPG method,
the PCPG offers on-line modulation of the signal is possi-
ble. Furthermore, in comparison, the leaming time of the
FAL-CPG method is quite insignificant as the desired signal
could be produced right after the Fourier analysis (Fig. 4).
The required time to fit the Fourier series and learn the CPG

Fig. 7 Actual and desired signal [10]

parameters for this signal is 0.0135 s. This time is rather low
and potentially negligible for some on-line applications.

3.2 Gams et al. [11] scheme

Gams etal. [11] presented a two-layered system for learning
and encoding a rhythmic signal without any knowledge on its
frequency and waveform, as well as modulating the learned
rhythmic signal. They used several examples to demonstrate
the applicability of the proposed method. One of their com-
plex desired signals, Eq. 10, is considered for comparison in
the present paper

P (1) =34 2sin(mwe) +sin(2mwe) + 2sin(dmwt + /3)
+ (1.5 sin(67 ) + cos(8m1) (10)

The signal is simulated and Fourier analysis is applied. See
Eq. 11.

P(t) =3+ 2sin(3.1421) 4+ sin(2 x 3.142r)
+0.866cos(4 x 3.1421) + 0.5 sin(4 x 3.142r)
+0.5sin(6 x 3.142¢) +cos(8 x 3.1421)  (11)

Six oscillators are used to simulate the signal. Results are
shown in Fig. 8. As shown in Fig. &, there is a slight fre-
quency oscillation of the learned pattern used by Gams et al.
method. It should be noted that, this error is because they
used fewer oscillators than the frequency components of the
desired signal. The FAL-CPG method is also applied and
desired signal is reproduced immediately after the Fourier
analysis with negligible error. Required time to fit the Fou-
rier series and learn the CPG parameters for this signal is
0.019 sec.

@ Springer



174

Intel Serv Robotics (2012) 3:169-177

8 0.4 : -
e Gams et al, | =---- Nakanishi et a].—‘
;i i | —— FAL-CPG 037 Pk 'i__% FAL-CPG ?
6t [ ”é. +  Desired | . A £l ¢ Desired
i & % 02¢ f' 1 PO 7

AP T 3 g 41 3

4 \j:, |.‘, ) AWty ]"I y L T % J
4 %ﬁ: B A ﬁ ] ﬁf i\ fu | g 01r f } ;; 4 fé 1

w1 v N A SR A
s L : LB ' Z 0p g i 4 4 ?( |
1 | 4 r Vot T / : ¥
2| 3@*{ Y I \J AR Foag g SN 1 oad
. f ¢ W iad ; E &Y ) f L%
YRt * iR B ;: 17 1
0 | i vhid i J'.f 3 :
¥ Vi ¥ ¥ 03 v/ x
|
-2 : ; : ’0‘?4[ S s 55 ; s
20 21 2 23 2 = i d) e 163
Time (sec)

Tig. 8 Desired and reproduced pattern

3.3 Nakanishi et al. [6] scheme

Their scheme encodes periodic patterns as an output of a set
of non-linear dynamical systems. The system is composed
of a canonical dynamical system with a phase oscillator. The
system also includes a dynamical transformation system and
a non-linear function approximator. The scheme is used to
encode a reference trajectory for joints of a biped robot. To
compare the performance of this scheme with the proposed

method in this paper. hip trajectory is considered. To do this,

data for the desired hip trajectory is obtained from the original
paper [6]. Next, the Fourier fit is applied withm = 6 (Eq. 12).

P) = —0.0129 — 0.2538 cos (7.811¢) + 0.02839 sin (7.811¢)
+0.066 cos(2 x 7.811¢) 4 0.05937 sin(2 x 7.8111)
+0.03964 cos(3 x 7.8117) — 0.01793 sin(3 x 7.8111)
+0.01786 cos(4 x 7.8111) + 0.009265 sin(4 x 7.8111)

+0.01092 cos(5 x 7.8111) + 0.001734 sin(5 x 7.8111)
+0.0001978 cos(6 x 7.811¢) (12)

The CPG parameters are next determined using steps out-
lined in Sect. 2.2. Results are shown in Fig. 9. Required time
to fit the Fourier series and learn the CPG parameters for this
signal is 0.0187 s. As shown in Fig. 9, the FAL-CPG method
reproduces the desired pattern. It should also be noted that
oscillator output by [6], shown in Fig Y, includes the body
dynamics such as the inertia. This is perhaps the main reason
for the difference in actual and desired oscillator output.

3.4 Dutra et al. [14] scheme

Another learning scheme is suggested by Dutra et al. [14]
where bipedal locomotion is simulated by using murually
coupled Van der Pol nonlinear oscillators as a CPG model.
Fourier analysis is first applied to a set of experimental data
for human locomotion. Next, harmonic balance method is
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Fig. 9 Joint trajectory for hip
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Fig. 10 Joint trajectory for hip

used to compute the fundamental parameters of the oscilla-
tors. Other parameters are determined manually. To compare
the performance of this scheme with the proposed FAL-CPG
method in this paper, hip trajectory is again considered. To
do this, data for the desired hip trajectory is obtained from

the original paper [14], Next, the Fourier fit is applied with
m = 3 (Eq. 13).

P () =22.06 4 0.8085cos (1.0017) 4 16.11 sin (1.001¢)
—19.6cos(2 x 1.001¢) 4 0.8905sin(2 x 1.001¢)
—0.5001 cos(3 x 1.001r) — 3.159sin(3 x 1.0011)

(13)
Six oscillators are selected to simulate the desired trajectory.
Results are shown in Fig. 10.

As shown in Fig. 10, the error of the van der Pol method
is much larger than the FAL-CPG method. Moreover, to
find the fundamental frequencies of the oscillators a set of
nonlinear equations with harmonic balance method must be
analytically solved. In comparison, the FAL-CPG method
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computes the fundamental parameters without the need to
analytically solve any linear or non-linear equations. The
computation time for learning the CPG parameters for this
signal is 0.0134 s. Tt should also be noted that, unlike the
previous study by [6], the oscillator output, shown in Fig 10,
does not include effects of body dynamics such as the inertia,

3.5 Industrial application

As a final example, an industrial application of CPG for tra-
jectory planning is considered. For more detailed informa-
tion about path planning with CPG, see [15]. A three DOF
planer robot is used to follow a periodical circular path. The
mechanical structure is modeled in SolidWorks and imported
into ADAMS software (Fig. 11).

The CPG model and control is performed using Matlab
software. To do the control, Matlab and ADAMS are linked
(Fig. 12).

thetal (rad)

Time (sec)

Fig. 13 Desired angels from inverse kinematics (-) and FAL-CPG
method angels ()
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Fig. 14 Desired versus actual path

First, the inverse kinematics is solved to obtain the
required joint angles to pass through the circular path. Next,
the Fourier analysis is applied to each of the three joint angles
to find the main CPG parameters. Figure 13 shows the desired
joints obtained from inverse kinematics and results of Fou-
rier series with m = 4. Required time to fit the Fourier series
and learn the CPG parameters for this signal is 0.0165 s.

As it can be seen from Fig. 13, the Fourier series closely
fit the desired trajectory, The desired and actual circular path
generated by the robot in ADAMS software is shown in
Fig. 14.

With the controller using the CPG to generate the desired
trajectory, the robotic system can benefit from all the features
of CPG as briefly outlined in Sect. 2. This is an approach we
have previously proposed for control of industrial robots [15].
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Table 2 Comparison between different learning methods

Error of Time to On-line On-line Computation Need for Fourier
learning learn learning modulation cost analysis
Righetti and Ijspeert [10)] Very low Very high No Yes High No
Nakanishi et al. [6] High Medium Yes Yes Medium No
Dutra et al. [14] High High No Yes Medium Yes
Gams etal. [11] low Low Yes Yes Low No
Proposed method (FAL-CPG) Very low Very Low Yes Yes Low Yes
(0.0161 s)

4 Discussion

In this section, overall performance of the proposed FAL-
CPG method is compared with the four other methods used
for comparison,

The performance ranking shown in Table 2 should be con-
sidered with great care. The stated ranking is authors’ best
knowledge and opinion. The rankings are also relative and
not absolute. As shown in Table 2, in comparison with the
other methods, the FAL-CPG method performs better than
the other methods except the need for the Fourier analysis.
Among the four methods compared, the performance of the
FAL-CPG and Gams et al. methods are most similar. The
advantage of the FAL-CPG method is its small error, the
difference between desired and actual, which depends on
the accuracy of the Fourier fit. The number of the oscilla-
tors can be increased to reach the desired accuracy. Its other
advantage is rather low learning time. The average learning
time between the four examples is 0.0161 s, which poten-
tially enables the FAL-CPG to be used in on-line applications
[16,17]. The advantage of the Gams et al. [ 1 1] method is that
the process of frequency extraction and adaptation is embed-
ded into its dynamics. However, it requires more time for
learning the desired signal compared to the FAL-CPG. The
method proposed by Nakanishi et al. [6] has the advantage of
including the robot body dynamics in the learning process.
The ability of including the dynamic effect offers certain
advantages. However, in many applications the desired tra-
jectory based on system dynamic can be generated in advance
and next learned by the CPG. Therefore, the learned trajec-
tory incorporates the body dynamics. This potentially elimi-
nates the need to simultaneously include the dynamics with
the learning process. Furthermore in the FAL-CPG method.,
after learning the desired signal, the body dynamics effects
may be applied to the CPG as external feedbacks. Once
a signal is learned the FAL-CPG offers all the traditional
advantages for its CPG. It can be modulated to adapt with
a dynamic environment and trajectories are robust to pertur-
bations. In authors’ opinion, the process of Fourier analy-
sis is not complex and could easily be applied to rhythmic
patterns. Therefore, authors believe the FAL-CPG continues
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to offer its advantage. It is not the purpose of this paper to
claim that the FAL-CPG is advantageous over all the other
presented CPGs. Instead, the authors wish to present a new
method and offer some of its advantages like simplicity and
low learning time, which makes it suitable for a wide range
of applications.

5 Conclusion

A supervised learning method, Fourier based automated
learning CPG (FAL-CPG) for learning rhythmic signals is
presented. The method automatically fits a finite Fourier
series to the desired rhythmic signal and determines the CPG
parameters. The learning time for a typical trajectory is rather
low, about 0.0161 s, and can therefore be potentially used as
an on-line learning method. It should be noted that the com-
putation time can be significantly reduced with higher power
computers as the reported time is collected using a lower end
PC. It is also shown that the resulting CPG network contains
all the basic characteristics, modulation and robustness to
perturbation, of a traditional CPG. Applicability of the FAL-
CPG method is demonstrated by learning various periodic
signals. The usefulness of the proposed method is illustrated
by comparing with four recently published learning methods.
Finally, an industrial robotic trajectory planning application
is also provided.
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