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Abstract: This paper presents a decision making approach for mid-term scheduling of large 
industrial consumers based on the recently introduced class of Stochastic Dominance (SD)-
constrained stochastic programming. In this study, the electricity price in the pool as well as 
the rate of availability (unavailability) of the generating unit (forced outage rate) is 
considered as uncertain parameters. The self-scheduling problem is formulated as a 
stochastic programming problem with SSD constraints by generating appropriate scenarios 
for pool price and self-generation unit's forced outage rate. Furthermore, while most 
approaches optimize the cost subject to an assumed demand profile, our method enforces 
the electricity consumption to follow an optimum profile for mid-term time scheduling, i.e. 
three months (12 weeks), so that the total production will remain constant. 
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1 Introduction1 
The purchase allocation problem is one of the most 
important problems which large electric energy 
consumers under market environments face as they need 
to reduce their production costs and risks to take the 
advantage of economic opportunities and to increase 
their profits. The cost of electricity, especially in cases 
where it serves as the main source of energy for 
industries, dominantly influences their production costs. 
Therefore, strategic plans resulting in the consumption 
of cheaper electric energy lead to higher profits. 

The uncertainty and the volatility associated with 
electricity prices and the rate of availability 
(unavailability) of the generating unit (forced outage 
rate) make the process of optimizing the energy 
consumption from different energy sources more 
difficult and risky. This paper proposes a method to 
optimize the consumption of electric energy for 
industrial consumers based on the concept of stochastic 
dominance formulated in the form of a stochastic 
programming problem. The attractiveness of the SD is 
non-parametric, in the sense that its criteria do not 
impose explicit specifications of decision-maker 
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preferences or restrictions on the functional forms of 
probability distributions and just rely on general 
preferences [1]. The SD (Stochastic Dominance) is a 
well-established concept in decision making theory and 
allows risk management from a different perspective to 
mean-risk approaches. The search for the best decision 
is replaced by seeking an acceptable decision and then 
optimizing over them [2, 3]. 

As another novelty, while most approaches optimize 
the cost subject to fixed amount of electricity 
consumption in each hour, this paper enforces the 
electricity consumption to follow an optimum profile 
for mid-term time scheduling, i.e. three months (12 
weeks), so that the total production of the industry 
remains constant. 

Several researches have been conducted on the 
problem of electricity procurement, which large 
consumers confront. Daryanian has proposed an 
approach to derive the consumer's reaction to spot prices 
in the electricity market [4]. The optimal demand for a 
consumer in a deregulated power market has been 
presented by Yan and Yan [5]. In [6], presenting a 
formulation which precisely models the price-maker 
capability of altering market-clearing prices, the self-
scheduling problem for a price-maker is determined so 
that its profit is maximized. Kirschen has investigated 
the problem of medium-term profit maximization for 
retailers [7]. Liu has raised the problem of purchase 
allocation for dual electric power markets [8]. Modeling 
the sequential nature of purchase allocation by 
conditional stochastic characteristics and price volatility 
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are explicitly considered in [8]. An optimization model 
for medium-term management of a thermal and 
electricity supply system for an industrial consumer 
under restructured electricity market has been presented 
in [9]. This model presents the optimal contracting 
decision by the minimization of the costs for overall 
annual energy supply. Conejo et. al. have provided a 
procedure that allows a large consumer to determine his 
optimal electric energy procurement supplied from 
different electricity sources, namely, bilateral contracts, 
the pool, and self-production [10]. In another work, 
Conejo et. al. have proposed a framework for electricity 
procurement by large consumers considering the risk 
associated to cost volatility [11]. In addition, the optimal 
amount of self-produced energy to be sold to the pool 
by the large consumer is determined. However, they did 
not consider uncertainties associated with the 
consumer's demand. Carrion et. al. have developed a 
decision-making technique based on the stochastic 
programming for electricity procurement by the large 
consumer who owns a self-generating facility [12]. 
They considered the risk aversion through the CVaR 
methodology. In the decision framework presented in 
[12], procurement of energy from different contracts is 
carried out at the start of each week. However, it seems 
that it should be more advantageous to decide on energy 
procurement according to prices during each week. In 
[11, 12], the availability of self-generating unit is not 
considered and the consumer's demand is also assumed 
to be known. As an alternative approach to stochastic 
programming, the Information Gap Decision Theory 
(IGDT) has also been utilized by Zare et al. [13, 14] for 
energy procurement problem. In IGDT the error 
between actual and forecasted values of uncertain 
parameters is modeled and no assumption on the 
structure of uncertain parameters is required. However, 
in the study conducted by Zare et al in [13, 14], only 
pool price uncertainties have been taken into account 
and Forced Outage Rate (FOR) of self-generation 
facility has been ignored. Furthermore, since IGDT 
models the error between actual and forecasted 
parameters, it seems it cannot model the FOR of the 
self-generation facility. 

This paper focuses on developing a decision making 
tool for mid-term planning problems which large 
industrial consumers face, subject to the volatility of 
electricity price, and the rate of availability 
(unavailability) of the generating unit (forced outage 
rate). Significant contributions of this paper are 
summarized as follows: 

1 Considering and minimizing the risk by 
minimization of electricity procurement from 
market, subject to (SSD). 

2 Optimization of the hourly demand profile 
assuming that the consumer's load profile is 
unknown. 

3 Introduction of the risk factor γ in the SSD 
constraint which helps to reflect the level of the 
risk-aversion. 

4 Analyzing the impact of the self-generation 
forced outage rate (FOR) on the procurement 
from the pool, contracts and the self-generation. 

It's also worth highlighting that in the proposed 
stochastic programming approach based on the SSD 
constraints, to different objective functions can be 
considered. In fact, SSD-constrained stochastic 
programming formulation allows us to consider two 
different functions as the objective function and in the 
SSD constraints. Hence, a different function other than 
cost or profit, which better reflect the preference of the 
decision-maker, can be used as the objective function 
and economic issues, e.g. cost or profit optimization, 
can be done through the SSD constraint and using a pre-
determined benchmark profile. 

The paper is organized as follows: The SSD 
Constrained Stochastic Programming is introduced in 
section 2. Section 3 formulates and characterizes the 
decision-making problem for minimization of 
procurement through markets subject to the second 
order stochastic dominance (SSD). Simulation results 
are presented in section 4. Finally, section 5 presents 
conclusions. 
 
2 SSD Constrained Stochastic Programming 

2.1  Multi Stages Stochastic Programming 
When decisions are made based on certain 

circumstances, the decision-maker may adopt the 
decision confidently. On the other hand, when 
uncertainties prevail, the decision-making problem turns 
to a challenging task. In real world, decision-making 
processes often encounter uncertainty and vagueness of 
information and data. Stochastic programming, 
established based on the probability theory, has found 
many applications in linear programming in the 
optimization of problems involving uncertain 
information and data [15, 16]. In this paper, multi-stage 
stochastic programming approach has been utilized for 
the minimization of procurement from the market. The 
second order stochastic dominance has been adopted as 
the ranking method. The consumer's hourly demand 
profile over the planning horizon has determined, and 
procurement is done from available energy sources, 
including electricity pool, bilateral contracts and a 
limited capacity self-generation facility, while the 
energy procurement cost is enforced to stochastically 
dominate a reference profile. 
 

2.2  Concept of Stochastic Dominance 
Mean-risk approaches consider the risk measure by 

adding a weighing term related portion as the risk 
measure to the original objective function. This may 
lead to a linear compromise between risk and the 
original objective function, which may not be suitable in 
all circumstances. Furthermore, according to some 
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findings, the mean-risk models are not capable of 
modeling the entire gamut of risk-averse preferences 
[16]. A major challenge in using the optimization to 
risk-averse decision-making in the case of uncertainties 
is how to specify an acceptable level of risk. On the 
other hand, stochastic optimization with Stochastic 
Dominance (SD) constraints, proposed by Dentcheva 
and Ruszczynski [17], tries to find an answer which is 
suitable (i.e. Acceptable with respect to a reference 
decision) but more prospective, i.e. less risky. Based on 
this idea, the decision maker should first specify a 
reference decision and then find the optimal solution of 
the problem subject to a constraint enforcing the 
selected outcome to stochastically dominate the 
reference decision. 

The main theme of stochastic dominance relies on 
the fact that, when a decision maker has to choose 
between two actions with uncertain consequences, he 
will choose the one which promises higher possibilities 
[3]. In this paper, a more detailed discussion on the 
concept of SSD, and its mathematical formulation, 
where smaller outcomes are preferred, are presented. 

Definition 1 [17]: Random variable X is said to be 
stochastically dominating random variable Y in the 
second order in terms of smaller outcome (X 2≥ Y) if, 

( ) ( ),
−∞ −∞

≥ ∀ ∈∫ ∫x YF F R
η η

η η η                                     (1) 

Proposition [17]: Let ky  with 1, 2,.... dk k= be the 
realizations of reference variable Y, then the above 
equation is equivalent to,  

( ) ( ) , 1,...k k dE y X E y Y k k
+ +

− ≥ − = …  ……     .(2) 

where, (.)+ means max(0, .). 
If it is intended to reflect the level of risk-aversion of 

a large consumer, definition 1 will be unsatisfactory. To 
overcome this shortcoming, we propose the concept of 
γ -constraint stochastic dominance, as presented in 
definition 2 that could help us (to) reflect the level of 
risk-aversion. 

Definition 2: ( γ -constrained stochastic dominance): 
Let ky and with 1,2,.... dk k= be the realizations of 
reference variable Y, then we define γ -constrained 
second order stochastic dominance as, 

( ) ( )( ) , 1,...k k dE y X E y Y k kγ γ
+ +

× − ≥ × − = ….(3) 

Most practical decision problems involve a sequence 
of decisions that react to outcomes that evolve over the 
time. A variety of models i.e. chance-constrained 
models, two- and multi-stage models, models involving 
risk measures have been developed by stochastic 
programming theory to handle the presence of random 
data in the optimization of such problems [15]. We will 
consider the stochastic programming approach for these 
multistage problems. 

The stochastic programming problem subject to 
second order stochastic dominance constraint can be 
stated as:  

( )[ ]( )XHEMin , s.t 2 0X Y , X X≤  ∈ ………   ……..(4) 

where, X is the decision vector, Y is the reference 
decision and ( )H X  is the objective function [18]. In 
this paper, to compute the value of ( )[ ]XHE , we use 
finite realization of random variable X, known as 
scenarios. The pool price and availability of self-
generation facility constitute the randomness of our 
decision-making problem. 
 

2.3  Scenario Generation 
Various methods have been developed for scenario 

generation in stochastic optimization. Scenarios may be 
generated by sampling time series or statistical models 
[19]. In this paper, Monte-Carlo simulation is employed 
to generate market price and availability of unit 
scenarios. In this approach, it is assumed that 
predictions on market price and its variance are 
available. These are produced by using time series 
forecasting methods. Then, Monte-Carlo simulation is 
carried out for a large number of iterations (say M) to 
generate scenarios with equal probability for the price 
(equi-probable price scenarios). It must be noted that the 
Monte-Carlo simulation is applied for each period 
separately and may lead to coupling information at 
consecutive periods [20]. 

In case of unit's FOR we use the following 
equations, as stated in [21], for statistical modeling of 
availability of self-generation facility,  

f aMTTF ln( u )λ = − ×                                              (5) 

r bMTTR ln( u )μ = − ×                                              (6) 

where fλ and rμ are mean time between failures and 
mean time to repair respectively. au  and bu are random 
variables uniformly generated in the range of [0 1]. 

A large number of generated scenarios hinder 
finding a solution to the stochastic optimization. Hence, 
applying a proper scenario reduction technique seems 
inevitable. Accordingly, we use the scenario reduction 
technique proposed in [21-22], which is developed 
based on the idea of eliminating scenarios with lower 
probability and bundling close scenarios. A probability 
measure is used to compute the distance between 
scenarios, then the scenario reduction technique creates 
a sub-set of price scenarios. It must be noted that in the 
case of unit availability scenario, due to the presence of 
binary variables, the probability measure is not 
applicable. Therefore, we have used the idea presented 
in [23] for the reduction of scenarios of unit availability. 
The probabilities for reduced scenarios are so calculated 
that the reduced probability metrics are closest to the 
original probabilities [21]. 
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3 The Structure of the Proposed Approach 
Large industrial plants, as energy consumers, 

commonly include several production units in their 
production process chain. Each unit may have its own 
technical limitations such as rated capacity, minimum 
time to be in service, etc. The typical structure of an 
industrial consumer, in addition to production units, 
normally includes some reservoirs as illustrated in Fig. 
1. In this figure, the production line is assumed to be 
composed of four production units along with three 
reservoirs. The proper economically- and technically-
efficient production scheduling is of crucial importance 
for every industrial producer. A cost-effective planning 
for an industrial producer should determine the 
production pattern of producing units, while the 
technical restrictions are taken into account for a given 
production level over a planning horizon. 

We restrict our study to a cement producing 
complex with four production lines, each composed of 
four units including, the crusher (CR), the raw mill 
(RM), the kiln (KL) and the cement mill (CM) [24]. The 
produced material at each stage can be directly sent to 
the next production unit, or may be stored in storing 
facilities, ST1 to ST3, for future usage. The input 
material for each production unit can be directly 
provided from the previous stage or may be received 
from the reservoir. The required electricity for 
production units may be supplied by either one of three 
different sources or a combination of them, namely, the 
electricity market, bilateral contracts and self-
production facility. 
 

3.1  Decision Framework 
We consider a situation where the industrial 

consumer has to decide upon an optimal procurement 
and hourly demand profile with partial information 
about the data involved, i.e. the market price and the 
availability of the self-generation unit. Implicitly, it is 
known that the procurement from bilateral contract has 
to be determined prior to the realizations of pool price 
and availability of the self-generation unit. It is also 
known that procurement from pool, self-generation and 
the hourly demand profile, as the recourse action, allow 
us to observe the future (through realization of the 
scenarios) and the selection of bilateral contracts. 
Therefore, a multi-stage dynamics of decision and 
observation problem emerges. In our approach, we first 
select bilateral contracts. Then procurement from 

selected contracts, self-generation and the hourly 
demand profile shaping are carried out through 
realization of pool price and availability of the self-
generation unit. 
In our proposed framework, decisions made for 
procurement of energy in the first week of each month 
consists of 2 stages, while decisions for procurement of 
energy for any other week are carried out in one stage 
only; therefore a five-stage stochastic programming 
problem is implemented. The sequence of decision 
framework for each month is as follows: 

Stage 1: Selection of contracts used during the first 
week. 

Stage 2: Energy procurement from contracts, pool 
and self-generation during the week, shaping hourly 
demand profile during the first week and selection of 
contracts used during the second week. 

Stage 3-5: Stage 2 continuing similarly to the other 
weeks up to the last (fourth) week. 
 

3.2  Problem Formulation 
In our approach, we are trying to minimize the 

purchase from the pool subject to SSD and the other 
operational constraints of the industrial consumer. For 
this purpose, first the minimum cost for procurement of 
required energy from available energy sources is 
derived as the reference profile. Then the acceptable 
decision (i.e. minimization of purchase from the pool) 
with respect to the reference profile and the risk factor γ 
is obtained by means of SSD-constrained stochastic 
programming. The mathematical formulation for the 
stochastic minimization of the purchase from the pool 
with recourse is stated by Eq. (7). 

1

T
m m

k t ,k t ,k
k N tT

minimize  p Pλ
∈ =
∑ ∑                                     (7) 

( )1 ,

. .
: l k l k

s t
SSD y f X z− ≤

                                        (8) 

2 ,
1

:
TN

k l k l
k

SSD p z a
=

≤∑                        (9) 

( ) ,max 0, , 1,2,......, , 0,l l l k

k

a E y y l L z

X R

γ⎡ ⎤= − × = ≥⎣ ⎦
∈

(10) 

Constraints in Eqs. (8)-(10) are related to the 
calculation of SSD. These constrains formulate the 
calculation of the SSD in terms of generated scenarios 
[17]. The parameter γ sets the level of risk-aversion by 
the consumer. In constraint (8) and (9), the SSD 
equation controls the excess of cost over the reference 
profile. The parameter γ  in Eq. (10) can be interpreted 
as the excessive cost (with respect to the reference 
profile of cost) which the decision-maker tolerates to 
achieve a more reliable decision and is always larger 
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OP1,1
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Fig. 1. Production diagram of an industrial consumer with 4 
production units and 3 storing facility. 
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that one. The upper bound on parameter γ  is set 
through the risk-preferences of the decision maker. For 
instance a value of 1.1 for γ  means that the decision 
maker is sacrificing 10 percent of its reference cost to 
get more reliability. Based on the presented discussion, 
the smaller values of γ  correspond with the more risky 
behavior of the consumer and vice-versa. 

( ) ( ), , , , , , , ,
1 1 1

T T T
m m c c SG

k t k t k i t k i t k t k t k
t i I t t

f X P P C Pλ λ
= ∈ = =

= + +∑ ∑∑ ∑  

                                                                                    (11) 

, ,
, , 2

m c
t k t ic

i t k
λ λ

λ
+

=                                                    (12) 

The cost function in constraint (11) is composed of 
three terms expressing the costs incurred by the pool, 
bilateral contracts and self-generation units respectively.  

In Eq. (12) the price of bilateral contracts is defined 
as the average value of two components; one of which is 
the market price and the other one is a constant 
component (price) as stated in [12]. The production cost 
of the self-generation facility is expressed by a three-
block piecewise linear function [12]. The piecewise 
linear production cost of the self-production unit is 
modeled as Eq. (13). 
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                                                                      (13) 
Also, contract contraints are as follows: 
,min ,max

, ,
i

e c e
i i t k i

t T

P P P
∈

≤ ≤∑                                          (14) 

, , 0c
i t k iP if t T= ∉                                            (15) 

max
, ,0 c

i t k iP P≤ ≤                                                         (16) 

The maximum and minimum levels of purchased 
energy from bilateral contracts are stated by constraint 
(14). Constraint (15) implies that the purchase of energy 
through contract i can only be made during its validity 
period lT . Constraint (16) imposes the maximum power 
that can be supplied through contract i in each period. 

Self-Generation contraint is as follows: 
,max

, ,0 SG SG
t k k tP U E≤ ≤ ×                                               (17) 

Constraint (17) shows the generation limits of the 
self-generation unit. 

Industrial consumer's constraints are as follows: 

( )
{ }

,1 ,2
, , , , , ,

, , ,

SG m c n n
k t t k t k i t k n t t

i I n

U P P P KWhT op op

n CR RM KL CM
∈

× + + = × +

 =                                                           

∑ ∑

                                                                                    (18) 

( ) ( )1 ,1,1 1
1

, ,                                                                 

nn n n
n t t t tr op sto op stin

n CR RM KL

+ +
+ × + = +

=
                                                                                    (19) 

,2n n
t top stin=                                                              (20) 

,maxn n
tst st≤                                                              (21) 

,1 ,2 ,maxn n n
t top op op+ ≤                                             (22) 

1 , , ,n n n n
t t t tst st stin sto n CR RM KL−= + − =          (23) 

0 0
n

nst st=                                                                 (24) 

1 2d n , n ,
t t tP op op , n CM= +   =                                         (25) 

1

T
d D

t total
t

P P
=

=∑                                                 (26) 

Constraint (18) states that the sum of supplied 
demands by the pool, bilateral contracts and self-
generation must always be equal to the demand of the 
consumer. 

Based on the constraint (19) the amount of input 
materials to each unit must be equal to the amount of 
the output materials, considering factor nr , where in 
this equation, the factor nr  for a unit is defined as the 
ratio of the weight of output materials to the weight of 
input materials. Constraint (20) states that the second 
output of a unit is sent to the corresponding storing 
facility. Constraint (21) sets the maximum storing 
capacity of the storing facilities. Constraint (22) bounds 
the production rate of every unit. Constraint (23) defines 
the remaining amount of materials in the storing 
facilities. Constraint (24) sets the initial volume of the 
storing facilities. Constraint (25) states the final 
production of the factory a time t. The total production 
intended by the industrial consumer is set by constraint 
(26). 

The above mentioned problem is solved by a 
stochastic mixed-integer programming with recourses. It 
is solved by using CPLEX with GAMS software [25]. 
So far, attention has not been paid to operational 
constraints as detailed as in our approach. The 
optimization problem consists of 772594 variables 
including real, binary and integer variables. 
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4 Case Study 
To evaluate the proposed approach, we used it to find 
the optimum decision to supply the required electricity 
during a 3 months planning horizon. The electricity pool 
prices have been obtained by using average prices of 
energy sold to Iranian Electricity Market by electric 
utilities located in our region (Khorasan Province). It 
should be mentioned that Iranian Electricity Market is a 
pool based whole sale electricity market. In this market, 
utilities are paid for the capacity they offer as well as for 
electricity admitted on a pay as bid clearing mechanism. 
 

4.1  Data 
The technical parameters of cement producing units 

are presented in Table 1. Related parameters of self-
generation facility for piece-wise linear cost model are 
given in Table 2. 

Based on the idea presented in [12], each day has 
been divided into three periods, namely peak, shoulder 
and valley, as follows, Valley = {1, 2, 3, 4, 5, 6, 7, 8}, 
Shoulder = {9, 10, 15, 16, 17, 18, 23, 24}, Peak = {11, 
12, 13, 14, 19, 20, 21, 22}. 

Three bilateral contracts for the three daily time 
periods are assumed. These contracts are referred as; 
peak (P), shoulder (S) and valley (V) contracts. Each 
contract is specified by its duration, minimum and 
maximum levels of energy consumption and the 
contracted price for electricity during the period. In our 
simulations, the contracted period is assumed to be one 
week. Table 3 shows limitations for energy 
consumption in bilateral contracts during the contract 
period. 
 

Table 1 Technical data for production units of the cement plant. 
CM KL RM CR Process 

10200 10500 10000 2000 rated consumption 
37 23 31 1.5 KWhTn (KWh.Ton-1) 
0 110 0 0 Min_opn (Ton.h-1) 

200 125 300 800 Max_opn (Ton.h-1) 
1.04 0.6 1.2 1 rn 

17600 50000 15000 22000 Stn,max 
 

 
Table 2 Production cost of the self-generating facility. 

E1 
(MW) 

E2 
(MW) 

ESG,max 
(MW) 

MC1 
($.MW-1) 

MC2 
($.MW-1) 

MC3 
($.MW-1) 

30 45 60 29 32 35 
 

Table 3 Consumption limits of bilateral contracts (MWh). 
Contract  e ,m in

iP  ,maxe
iP  

m ax
iP  

Peak 1050 3500 350 
Shoulder 775 2950 30 

Valley 550 2570 265 
 

 
The uncertainties of pool price and unit availability 

are modeled by using scenarios described in section 2.3. 
The electricity prices of the mainland Spain market are 
used for scenario generation in this paper [26]. Each 
price scenario involves 252 price values over the study 
horizon. We consider 200 scenarios for pool price and 

then apply the scenario reduction technique to reduce 
the number of price scenarios. Then, the optimization 
problem is executed for different numbers of reduced 
scenarios as far as a significant change (e.g. 5%) 
appears in the objective function. In this paper, we 
reduced the number of price scenarios to 20. 

To consider the unavailability of units, we generated 
1000 initial scenarios and then reduced them to 25 
scenarios. Then, the price and availability scenarios 
have been merged to produce 500 scenarios to solve the 
stochastic problem defined by the Eqs. (7)-(24). 

Before solving the main problem with SDD 
constraints, we need to generate reference profiles. In 
order to derive this profile, we first run an expected cost 
optimization program with 500 price and unavailability 
scenarios generated earlier. Then, we use the optimal 
solution found by the optimization process and select 20 
benchmark values using a clustering technique 
presented in [27]. The probability of each benchmark 
value is computed as the sum of probabilities of the 
members in its cluster. This procedure is repeated for 
unavailability values of 0, 0.02, 0.04, 0.06, and 0.08. 
 

4.2  Results 
To investigate the impact of the consumer's risk 

aversion on electricity procurement, various simulations 
were executed with different values of γ , including 
1.01, 1.02, 1.05, 1.08, and 1.1, and values of FOR 
including 0, 0.02, 0.04, 0.06, and 0.08. Multiplying the 
benchmark profile by different values of γ , new 
benchmark profiles are generated. This way, for each 
value of unavailability, five different benchmark 
profiles will be generated. These profiles can be used to 
analyze the impact of factor γ  and unavailability on 
demand allocation problem. Figs. 2 and 3 show the 
Cumulative Distribution Function (CDF) of benchmark 
profiles and the corresponding cost profiles for FOR = 0 
and second and fifth benchmarks for this value of 
unavailability, respectively. It is clear from these 
Figures that the benchmark 5 has higher cost but less 
restrictive than the benchmark 2. The expected cost in 
the case of benchmark 2 is 3.18 million dollars while 
this value is 3.43 million dollars in the case of 
benchmark 5. 

For a more detailed analysis on performance of the 
proposed strategy, the procurements from the pool, the 
self-generation and contracts during different periods 
are depicted in Figs. 4 and 5. Clearly, due to lower 
prices of electricity during valley hours, large portions 
of the demand are shifted to these hours. It is worth 
mentioning that, in contrast with procurement from the 
pool, the procurements from the self-generation and 
contracts have been used more frequently during 
shoulder and peak periods than that during valley hours. 
This is mainly due to the higher variations of the pool 
price during these periods, leading to more 
uncertainties. 



 

160                                                         Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 2, June 2012 

3.1 3.15 3.2 3.25

x 106

0

0.2

0.4

0.6

0.8

1

cost $

P
ro

ba
bi

lit
y

 

Cost
Benchmark 2

 
Fig. 2 Cumulative distribution function (CDF) of benchmark 2 
( γ= 1.02). 
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Fig. 3 Cumulative distribution function (CDF) of benchmark 5 
( γ = 1.1). 
 

Furthermore, as shown in Fig. 4, by increasing γ the 
use of bilateral contracts increases. This work results in 
a more robust and stable situation of the consumer. 
Therefore, it can be concluded that increase in value of γ 
results in robustness and reliability of the consumer. In 
fact, larger values of γ allows higher procurement costs 
in return for higher robustness against pool price 
variations. 

Analyzing the energy procurement through contracts 
during the first and the third months, as shown in Fig. 6, 
shows another interesting result. Based on this figure, 
the procurement from contracts in the first month is 
higher than the last month. This result can be explained 
by using Fig. 7 taking into account the prices of the first 
and third months, we can obviously that state the prices 
of energy supplied through contracts and that supplied 
through pool are closer to each other as compared with 
those prices in the third month. Hence, a larger portion 
of procurement from contracts has happened in the first 
month. 

Shaping the hourly demand is another important 
goal of our decision making tool. The results for this 
task are presented in Table 4, implying that a 

considerable portion of production has been shifted to 
valley and shoulder periods. 
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Fig. 4 Procurement of electricity from pool, bilateral contracts 
and self-generation for different γ 's and F.O.R.=0. 
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Fig. 5 Procurement of electricity from pool, bilateral contracts 
and self-generation for different FORs and γ =1.05. 
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Fig. 6 Procurement from contracts in the first and third 
months. 
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Fig. 7 Pool and contracts prices. 
 
Table 4 Production of different units during different periods 
(ton). 

Unit 
Period CR RM KL CM 

Peak 23.7 7029.7 6250.5 1642.2 
Shoulder 70.7 13793 6387.6 4460.4 

Valley 1722.5 24221 7414.6 27464 
 
5 Conclusion 

This paper presented a SSD-constrained stochastic 
programming approach for mid-term self-scheduling 
problem, faced by large industrial consumers. In 
contrast to the most published studies, which consider a 
fixed demand profile for the consumer, in the proposed 
approach demand profile optimization was also 
conducted, as it is highly incentivized by electric 
utilities. In the proposed decision making approach, 
based on the SSD constrained stochastic programming, 
we aimed at minimization of the cost of energy 
purchase from pool subject to SSD constraints. The 
SSD constraints provide decisions which are more 
probable compared to the given benchmark decision, i.e. 
the expected cost. Furthermore, a risk factor was 
introduced into SSD constraints to account for the level 
of risk-aversion of the consumer. The simulation results 
for a cement-producing complex confirm the validity of 
the proposed method in the electricity procurement 
problem to create an optimal demand profile. The 
proposed decision making framework can be employed 
by consumers to decide on energy procurement in 
market environment as well as following the demand 
optimization. 
 
Appendix 

Nomenclature 
Since there are large numbers of variables, functions 

etc. throughout the paper, the descriptions of all 
notations are summarized in this section. 
 
Real variables 

uE  Total output of self-generation unit up to unit u 
(MWh) 

,1n
top  Output of unit n fed into unit n+1 at time t (ton) 

,2n
top  Output of unit n fed into store n at time t (ton) 

n
tstin  Input of store n to unit n at time t (ton) 

, ,
c

i t kP  Procurement from contract i for scenario k 
(MWh) 

d
tP  The final production of the consumer at time t 

(ton) 

,
m

t kP  Procurement from market for scenario k and time 
t (MWh) 

,
SG

t kP  Procurement from self-generation for scenario k 
at time t (MWh) 

n
tst  Stored material in store n at time t (ton) 

n
tsto  Output of store n to unit n+1 at time t (ton) 

kX  Optimal procurement for scenario k 

 
Stochastic Variables 

,
m
t kλ  Market price for time t and scenario k ($/MWh) 

fλ  Time between two consecutive unit failures 
(hour) 

rμ  Repair time of unit (hour) 

 
Binary Variables 

au  Random variable related to mean time to failure 

bu  Random variable related to mean time to repair  

,t kU  Self-generation availability at time t and 
scenario k 

 
Constants 

la  
A probability used in stochastic dominance 
constraint related to lth realization of reference 
cost 

,maxSGE  
Maximum capacity of self-generation unit 
(MWh) 

nKWhT  The required energy for production of one tone 
of output by production unit n (KWh/ton) 

uMC  Marginal cost of block u of self-generating unit 
($.MWh-1) 

MTTF Mean time to failure (hour) 

γ  Proposed risk-aversion factor used in stochastic 
dominance constraint 

,
c
t iλ  Deterministic price for contract i at time t 

($/MWh) 

, ,
c
t i kλ  Contract price for time t and contract i in 

scenario k ($/MWh) 

kp  Probability of scenario k 

nr  The ratio of output material to input material of 
unit n 

MTTR Mean time to repair (hour) 
,mine

iP  Minimum amount of energy for contract i 
(MWh) 

,maxe
iP  Maximum amount of energy for contract i 

(MWh) 
,maxnop  Rated capacity of unit n (ton/hour) 

max
iP  Maximum energy that can be supplied by 

contract i in one period (MWh) 
,maxnst  Maximum capacity of store n (ton) 

_Max op  Maximum operational capacity of unit n 
(ton/hour) 



 

162                                                         Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 2, June 2012 

_Min op  Minimum operational capacity of unit n 
(ton/hour) 

y  Reference profile of cost (Dollar) 
D

totalP  Total demand of large industrial consumer in 
scheduling horizon (MWh) 

ly  lth Realization of reference expected cost 
(Dollar) 

0nst  Initial capacity of store n (ton) 
 
Numbers 
L  Number of reference profile 

cN  Number of bilateral contracts 

T  Schedule period (252 periods) 

pN  Number of initial price scenarios 

prN  Number of reduced price scenarios 

fN  Number of initial availability scenarios 

frN  Number of reduced availability scenarios 

TN  Total number of scenarios 

,
b
t ku  Number of self-generation blocks used in 

scenario k, at time t 
bn  Number of blocks of self-generation unit 

 
Set 

0X  Set of feasible decisions 

I  Set of bilateral contracts 

iT  Validity periods for contract i 
 
Index 
k  Scenario index 
l  Index of Reference Expected cost 
i  Contract index 
u  Index  of self-generation blocks 
t  Period index 
n  Units in their production process 
 
Function 

xPr  Probability distribution function of random 
variable x 

xF  Cumulative distribution function of random 
variable x 

( )E x  Expected value of random variable x 

, ,( )SG
t k t kC P  Self-generation cost for scenario k at time t 

( )kf X  Cost of scenario k (Dollar) 

( )H X  Objective function used in definition of SSD-
constrained stochastic programming 

, ,X Y η  Random variables used in definition of SD and 
SSD-constrained stochastic programming 
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