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SUMMARY

We extend a hybrid DSMC/Navier–Stokes (NS) approach to unify the DSMC and the NS simulators in
one framework capable of solving the mixed non-equilibrium and near-equilibrium flow regions efficiently.
Furthermore, we use a one-way state-based coupling (Dirichlet–Dirichlet boundary-condition coupling)
to transfer the required information from the continuum region to the rarefied one. The current hybrid
DSMC–NS frame is applied to the hypersonic flows over nanoflat plate and microcylinder cases. The
achieved solutions are compared with the pure DSMC and NS solutions. The results show that the current
hybrid approach predicts the surface heat transfer rate and shear stress magnitudes very accurately. Some
important conclusions can be drawn from this study. For example, although the shock wave region would
be a non-equilibrium region, it is not necessary to use a pure DSMC simulator to solve it entirely. This
is important when the researchers wish to predict the surface properties such as velocity slip, temperature
jump, wall heat flux rate, and friction drag magnitudes accurately. Our investigation showed that our hybrid
solution time would be at least 40% (for the flat plate) and 35% (for the cylinder) of the time that must be
spent by a pure DSMC solver to attain the same accuracy. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Literature shows that the simulation of rarefied microgas/nanogas flow can remarkably help to
improve the design of microelectromechanical systems/nanoelectromechanical systems [1]. Indeed,
the microelectromechanical system/nanoelectromechanical system devices experience different
rarefaction regimes. To describe the degree of gas flow rarefaction, the Knudsen number is defined
as the ratio of mean free path of gas molecules, �, to the one characteristic length in the flow field,L,
that is, KnD �/L. The rarefaction regimes can be generally categorized as slip (0.001 < Kn < 0.1),
transition (0.1 < Kn < 10), and free molecular (Kn > 10) ones. There are different methods to
simulate rarefied microflow/nanoflow regimes. The Navier–Stokes (NS) solutions are valid for the
slip regime provided that the velocity slip and the temperature jump boundary conditions are suitably
incorporated in solving rarefied/nonrarefied microflows/nanoflows. Alternatively, the DSMC [2] is a
powerful numerical approach to solve the fluid dynamics problems in the entire rarefaction regimes.
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However, the computational cost of DSMC cannot be justified as the flow approaches the continuum
status. In continuum flow fields, the NS equations are a better choice to simulate the flow field
efficiently. Therefore, the efficient simulation of gas flow fields with a large length scale variations
needs advanced scheme such as a hybrid DSMC–NS frame. In a hybrid DSMC–NS frame, the
stochastic particle solver is used to simulate the rarefied regions, and the continuum solver is used
to simulate the near-equilibrium regions.

Different hybrid frames have been proposed to couple the continuum and stochastic particle
solvers for the last decade. The flux-based coupling has been the most common coupling algorithm.
In this algorithm, the fluxes of mass, momentum, and energy are first determined by the DSMC
particles at the continuum–molecular interface. Then, they are imposed as the macroscopic flux into
adjacent cells located in the continuum region. Similarly, the fluxes approximated by the NS solver
are first calculated using the gradients of macroscopic flow variable distributions. Then, they are
used to create the distribution of DSMC particles at the interface region. Wadsworth and Erwin [3]
developed a flux-based hybrid DSMC–NS scheme and applied it to 1D shock problems. Hash and
Hassan [4] used a flux-based coupling algorithm to simulate rarefied hypersonic gas flows. They
concluded that the Marshak condition can be considered as the most accurate coupling algorithm.
The Marshak condition calculates the properties at the interface using the conservation equations.
Bourgat et al. [5] presented a coupled NS/Boltzmann approach to simulate the rarefied hyper-
sonic flows. They proposed a kinetic model in the boundary layer coupled through wall friction
forces to a global NS solver. Le Tallec and Mallinger [6] developed an adaptive coupling for a
hybrid Boltzmann and NS equations and simulated the rarefied hypersonic flows. The coupling
was achieved via matching half fluxes at the interface of the Boltzmann and NS domain. The two
domains were automatically determined through computing the local kinetic residuals on a prelim-
inary NS solution. Tiwari and Klar [7] presented a domain decomposition approach to couple the
Boltzmann and Euler equations. They employed both adaptive time and space discretizations and
created a direct coupling procedure. They reported that this strategy would lead to considerable
gains in CPU time compared with the CPU time of a full Boltzmann equation. Garcia et al. [8] and
Wijesinghe et al. [9, 10] used a hybrid DSMC/Euler solver with an adaptive mesh and algorithmic
refinement scheme to solve the Euler equations. The adaptive mesh refinement method provided
local grid refinement while the algorithm refinement feature allowed a transition to the DSMC
solver where needed. The difficulty with the flux-based coupling is that the statistical scattering
appearing in the DSMC solution usually affects the interfacial fluxes and eventually corrupts the
NS solution. Therefore, the flux-based coupling techniques require one to choose a high number of
DSMC samples to reduce their statistical scattering. Alternatively, Roveda et al. [11,12] suggested a
state-based coupling technique using a Dirichlet–Dirichlet boundary-condition coupling at the inter-
face. A state-based coupling considers an average number of particles inside a DSMC cell adjacent
to the interface to obtain the macroscopic values such as velocity, temperature, and density. These
averaged magnitudes provide the required Dirichlet boundary-conditions for the NS solver at the
interface. Similarly, the solutions of the NS equations for the state variables at the continuum side of
the interface are used to generate particles required at the DSMC boundary cells. Aktas and Aluru
[13] studied the flow field in microfilters using a hybrid DSMC/continuum solver incorporated with
a state-based coupling algorithm. Wang and Boyd [14] and Sun et al. [15] used a hybrid information
preservation scheme [16] and the NS equations to study rarefied hypersonic gas flows and low speed
microflows. Degond et al. [17] presented a hybrid model capable of constructing a smooth transition
from a rarefied domain to a continuum one. The main feature of their method was that the continuum
and kinetic equations would be coupled in a small buffer zone in which the true solution was approx-
imated by adding up the solutions of two set of equations. Unlike a typical domain decomposition
method, the advantage of this coupling was that it did not require any boundary condition. Wu
et al. [18] developed a parallel coupled DSMC–NS scheme using three-dimensional unstructured
grids. They used a domain overlapping strategy with Dirichlet–Dirichlet boundary-condition cou-
pling. Kolobov et al. [19] developed a unified flow solver to simulate rarefied and continuum gas
flows. The developed unified flow solver was able to adapt the computational grid dynamically
and to introduce and remove kinetic patches automatically. This may provide substantial saving
because the molecular scale solution domains could be restricted only to the required regions.
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Schwartzentruber et al. [20, 21] used an explicit state-based DSMC/NS coupling scheme to study
2D hypersonic gas flows over blunt bodies such as cylinders. Abbate et al. [22] used the state-based
coupling for efficient simulation of transient flows in 1D shock tube and 2D pressure-driven slit
flows. Their simulations showed that the results of the state-based method would be independent
of the size of the overlap region and the NS/DSMC interface position, as long as the NS equations
were used in the limits of their applicability, that is, Kn < 0.1. John and Damodaran [23] used
the hybrid NS–DSMC scheme with state-based coupling for simulation of the rarefied flow field
in the hard disk interface microgap. Degond et al. [24] developed a multiscale kinetic–fluid solver
to efficiently solve fluid dynamic problems with non-equilibrium localized regions. They proposed
breakdown conditions of fluid using a new criterion based on the distribution function itself. Degond
and Dimarco [25] presented a novel numerical algorithm to couple the DSMC method with a finite
volume method for solving the Euler equations. To avoid inherent spurious oscillations in their
DSMC solutions, they used a new moment-guided Monte Carlo technique [26], which permitted to
reduce the variance of their particle method solution suitably.

In this work, we extend a hybrid DSMC–NS frame using a state-based coupling algorithm
to simulate the rarefied microgas/nanogas flows. Comparing with the previous studies [18, 20],
our hybrid solver is totally one way; that is, the NS equations are not solved in the near-
equilibrium region during the hybrid procedure. This feature increases the efficiency and simplicity
of hybrid simulations while the surface properties (such as the slip/jump, shear stress, and heat flux
magnitudes) are estimated very accurately. Application of one-way DSMC–NS coupling had been
reported for simulation of high-altitude plume flow [27–29]. However, our literature survey shows
that the past one-way hybrid algorithms have mostly used a fixed interface location between the
continuum and molecular solvers, whereas our hybrid algorithm benefits from an adaptive inter-
face location; see Section 2.3.2. Additionally, this work is the first one that uses the one-way
hybrid coupling to treat the rarefied hypersonic external flows. Therefore, the current paper can
be considered as the first application of one-way adaptive surface hybrid frame to treat the external
hypersonic flows.

Using our experience in developing different continuum [30–36] and stochastic particle [37–44]
solvers, we extend our hybrid DSMC–NS frame in the context of OpenFOAM [45]. The NS solver
implements the velocity slip and the temperature jump boundary conditions at the solid walls, where
they are required.

2. COMPUTATIONAL APPROACH

2.1. Boltzmann equation

The Boltzmann equation, which describes the time evolution of velocity distribution function (VDF)
of molecules, in the absence of external forces, is written as follows [2]:
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n2.f 0 f 01 � f f1/cr�d� dc (1)

where n is the number density, r is the space vector, c is the velocity space vector, cr is the
relative velocity between a molecule with velocity class c and one with velocity class c1, �d�
is the differential cross section for the collision of a molecule of class c with another one having
class c1 such that their postcollision velocities become c0 and c01, respectively, and functions f , f1,
f 0, and f 01 are the corresponding VDFs for one molecule and its collision partner before and after
the collision. The first term in Equation (1) describes the time rate for the number of molecules.
The second term describes the number of molecule changes due to the molecular movements. The
term on the right-hand side is called the collision integral term. This term describes the change of
molecular velocities after the molecular collisions.

2.2. Description of DSMC method and algorithm

DSMC is a computational tool to solve the Boltzmann equation on the basis of the direct statistical
simulation of molecular processes described by the kinetic theory [2]. It is considered as a particle
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method in which each particle represents a large number of real gas molecules. The DSMC method
applies a splitting approach to the particles’ VDF to obtain a solution for the Boltzmann equation.
If S�t ,hQCD presents the solution of Equation (1), the splitting approach relies on an approximation as
follows [46]:

S
�t ,h
DCQ � S

�t
D S

�t ,h
Q (2)

where D stands for the free particle motion, Q describes the particle binary collisions, h stands for
the cell size, and �t is the time step. Equation (2) expresses the primary principle for the DSMC,
that is, the decoupling of motion and collision of the simulated particles over the time step intervals,
which are small if compared with the local mean collision time. The flowchart of DSMC method is
observed in Figure 1. Generally, the DSMC simulation has three main steps of binary collision, free
molecular movement, and sampling. They are explained as steps 1, 2, and 3 here [2, 47].

Step 1: binary collision modeling
There are three major tasks that need to be performed in this step. First, it needs calculating
the number of maximum particle pairs Ncollision�max for a binary collision using

Ncollision�max D
N.N � 1/Fnum.�Tcr/max�t

2Vc
(3)

whereN is the number of particles per cell, Fnum is the weighting factor, that is, the number
of real molecules that is represented by each particle, .�Tcr/max is the maximum value of
collision cross section multiplied by the particle relative velocity in the corresponding cell,
and Vc is the cell volume.

Read Data, Set Constants

Start

Initialize Molecules and Boundaries

N > Niteration?

Yes

No

Stop

Reset Molecule Indexing

Compute Collisions

Sample Flow Properties

Move Molecule, Compute interaction with boundaries

Figure 1. Flowchart of the DSMC algorithm.
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Second, benefiting from the acceptance–rejection technique, each pair of particles chosen
randomly in the cell is checked for a collision probability using

.�Tcr/

.�Tcr/max
>Rf (4)

where Rf is a uniformly distributed random number between 0 and 1.
Third, if the collision is accepted, the particle velocities are updated to their post-collision
magnitudes. The conservations of momentum and energy require that the magnitude of the
relative velocity of collision pairs (i , j ) remains unchanged during the collision, that is,�
jc0rj D jcr j D

ˇ̌
ci � cj

ˇ̌�
. Next, the following procedure is used to calculate the direction of

post-collision velocities. First, collision (") and deflection angles (�) are calculated using
two independent random numbers as follows:

"D 2�Rf ,1

cos�D 2R1=ˇf ,2 � 1
(5)

Using a transformation from the Cartesian coordinates to the collision plane, the compo-
nents of the post-collision relative velocity are calculated from

u0r D cos�urC sin� cos "
�
v2r Cw2r

�0.5

v0r D cos�vrC sin�.crwr cos "� urvr sin "/=
�
v2r Cw2r

�0.5

w0r D cos�wr � sin�.crvr cos "� urwr sin "/=
�
v2r Cw2r

�0.5

(6)

Accordingly, the velocity components of the colliding particles can be approximated using

c0i D
1

2
�
.ciC cj/C c0r

�
c0j D

1

2
�
.ciC cj/C c0r

� (7)

Step 2: free molecular movement
The distance traversed by the particles in each direction is equal to the chosen time step
.�t/ multiplied by the corresponding velocity components .ci /. This yields

xi D x0,iC ci�t (8)

Indexing of particles is performed after each particle movement. The boundary conditions
should also be applied during the movement step. There are two major types of boundary
conditions. The first type is the wall boundary condition. In this type, the velocity of a
particle reflected from a diffusive wall is randomly attributed using the one half-range
Maxwellian distribution, which is determined via the wall temperature magnitude as
follows [2]:

uD
p
� log.Rf/Vmpf sin.2�Rf/

v D
p
� log.Rf/Vmpf

w D
p
� log.Rf/Vmpf cos.2�Rf/

(9)

where Vmpf D
p
2RT is the most probable speed of the particles at the wall temperature

and R is the gas constant. In case of reflection from a symmetry boundary, the reflection
is considered specular; that is, the normal velocity component is being reversed while the
tangential component remains unchanged.
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The second type of boundary condition is the free stream boundary condition. In this type,
the incoming flow velocity U in and temperature Tin are normally given for the supersonic
flow cases. Assuming a Maxwellian VDF for the incoming particles, Bird [2] derived the
density flux (F ) of incoming particles from the free stream boundary j using

Fj D
nj

2
p
�V 0mpf,j

®
exp

�
�s2j cos2 v

�
C
p
�sj cos vŒ1C erf.sj cos v/�

¯
(10)

where sj D UjV
0

mpf, V 0mpf D 1=
p
2RT , v is an angle equal to either zero for the inlet

boundary or 2� radians for the outlet boundary, and erf is the error function. The thermal
velocity of particles entering into the domain can be calculated according to the acceptance–
rejection technique. Considering this point, the resulting velocity components (cx , cy , c´)
for the particles, which enter into the domain from the inlet boundary, are obtained from

cx D
�
Uj C 3V

0
mpf

�
Rf

cy D A cos	

c´ D A sin	

(11)

where AD
p
� ln.Rf/V

0
mpf and 	 D 2�Rf .

Step 3: sampling procedure
In this step, the macroscopic flow properties are sampled in each cell using the molecular
velocities as soon as the flow reaches the steady-state condition. The sampling process is
continued long after reaching the steady solution to suppress the inherent statistical scatters,
which normally show up in the DSMC solutions. In such extent, the flow velocity and
temperature magnitudes are obtained from [47]
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�
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where Ni is the number of particles in one cell at the i th sampling time step and N is the
total number of particles sampled during the total time steps ofNt in the corresponding cell.

2.2.1. The current DSMC solver. We have performed major contributions in developing a general
DSMC solver named dsmcFoam [48] under the framework of OpenFOAM [45]. This solver was
developed as a joint venture research work between Sharif University of Technology, University
of Strathclyde, and OpenCFD, Ltd. OpenFOAM is a flexible set of efficient, object-oriented CCC
modules for solving complex fluid flows [45]. It is mainly a finite-volume package designed to
solve systems of differential equations for a wide range of fluid flow applications. Furthermore,
dsmcFoam is a parallel DSMC solver that can model arbitrary geometries and arbitrary number of
gas species on parallel computers. It uses the Variable Hard Sphere (VHS) collision model and the
Larsen–Borgnakke internal energy redistribution model [2] to simulate the intermolecular collisions.
In general, the features of dsmcFoam are quite comparable with other famous DSMC codes such
as MONACO [14, 15] and Parallel Direct Simulation monte Carlo (PDSC) [18]. These three codes
are able to simulate flow in arbitrary geometries using the 3D unstructured meshes. Moreover, dsm-
cFoam is one module of a general open source code with a hierarchical structure. The inheritance
features of the dsmcFoam let any new user benefit from many features of OpenFOAM without a
deep knowledge of coding.
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DSMC

Clouds Parcels Submodels

Inflow Boundary
Models

Wall Interaction
Models

Binary Collision
Models

Figure 2. Directory of the dsmcFoam solver.

2.2.2. The dsmcFoam structure. In the dsmcFoam solver, the calculations are performed through
using functions classified in three main categories of ‘Parcels’, ‘Clouds’, and ‘Submodels’, as
shown in Figure 2. The category ‘Parcels’ includes the classes that trace the properties for one
particle. However, the ‘Clouds’ category considers the evolution of a set of particles. For example,
the ‘Parcels’ category contains functions that read and calculate the individual particle properties
(such as velocity, position, internal energy, species type, and owner cell). Additionally, it traces
the particle’s movement. The interactions of particles with boundaries are also treated using the
functions defined in this category. The ‘Clouds’ category, on the other hand, contains some other
key functions, which are used in some important DSMC steps including the initialization of the
simulation and the intermolecular collisions. The functions defined in the ‘Clouds’ category benefit
from the physical models defined in the ‘Submodels’ category for binary collisions, wall-interaction
collisions, and flux and velocity of the incoming particles, that is, inflow boundary conditions. These
models were described previously.

More details on the dsmcFoam algorithms can be found in reference [48]. Briefly, the dsmcFoam
sub-algorithms can be categorized in two major parts:

1. Particle tracking in unstructured, arbitrary, polyhedral meshes: Indeed, the particle tracking
algorithm of dsmcFoam has been inherited from the algorithms originally extended for the
molecular dynamics solver of the OpenFOAM. The full details of the tracking algorithm can
be found in reference [49].

2. Particle distributing in arbitrary cell volumes for initial random configuration of the parti-
cles and uniformly allocating incoming particles from the free-stream boundaries: In prac-
tice, to distribute particles in the cells volume and free-stream faces, each cell/face is first
divided into a number of tetrahedral/triangle cells. Selecting a random number, particles are
positioned in the corresponding tetrahedral/triangle, whose volume/area fraction is larger than
the random number.

2.3. Description of the NS equations and the utilized numerical scheme

The compressible NS equations can be derived from the Chapman–Enskog (CE) expansion of the
Boltzmann equation. These equations, namely the conservations of mass, momentum, and the total
energy, are written as follows [50]:

@


@t
Cr � .
V /D 0 (15)

@.
V /

@t
Cr � .V .
V //CrpCr � � D 0 (16)

@.
E/

@t
Cr � .V .
E//Cr � .V p/Cr � .� � V /Cr � q D 0 (17)

where 
 is the fluid density, p is the pressure, E D eC jV 2j
ı
2 is the total energy, e is the internal

energy per unit mass, q is the conductive heat transfer, and � is the shear stress tensor, which is
related to the velocity field via the Stokes law as follows:
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� D�2� dev.D/ (18)

DD 0.5ŒrV C .rV /T� (19)

where� is the dynamic viscosity and dev denotes the deviatoric of a tensor, that is, D�.1=3/ tr.D/I ,
where I is the unit tensor and tr is the trace of a tensor. In the present study, we consider a calorically
perfect gas for all simulations. So, p D 
RT and e D cvT , where cv is the specific heat at constant
volume and R is the gas constant.

2.3.1. Discretization of the NS equations. In this work, we use the ‘rhoCentralFoam’ module
of OpenFOAM as our NS solver [51]. RhoCentralFoam is an explicit, collocated finite-volume,
density-based solver to simulate viscous compressible flows. In the finite-volume method, the
governing equations are integrated over all cell volumes. The divergence and gradient terms are
then replaced with integrals over the cell surface using the Gauss’s theorem. These integrations
require the flux evaluation over the cell faces, which are subsequently approximated using suitable
interpolations of the neighboring cell center values. In ‘rhoCentralFoam’, the required interpola-
tions are performed using the second-order semi-discrete, non-staggered schemes of Kurganov and
Tadmor (KT) [52] and Kurganov, Noelle, and Petrova (KNP) [53]. Here, we briefly describe the
discretization of a general tensor (� ) field by interpolating the values of cell centers to approximate
the values at the faces of the same cell [51, 54].

The ‘convective terms’ in the NS equations, .r � Œ
V �,r � ŒV .
V /�,r � ŒV .
E/�Cr � ŒV p�/, are
integrated, interpolated, and linearized over a control volume. They eventually yieldZ Z Z

#

r � ŒV � �d# D

Z Z
S

dS � ŒV � ��
X

f
S f � ŒV f� f �D

X
f

	f� f (20)

where †f denotes a summation over the entire cell faces and 	f D S f �V f is the volumetric flux.
For compressible flows, the fluid properties are transported by both the flow motion and the wave
propagation. This point necessitates the fact that the flux interpolation needs to be established on
the basis of a full convective–diffusive transportation and wave propagation behaviors. They hence
take into account the impact of all directions in the target interpolations. This should be achieved via
employing the KT and KNP methods. In this regards, the interpolation technique is separated into
directions corresponding to flow out–to and into the face of owner cell. The directions are denoted as
fC for CS f direction and f � for �S f direction, where S f is the face area vector. Considering
the above descriptions, Equation (20) reduces to the following [54]:X

f

	f � f D
X
f

Œ˛	fC� fCC .1� ˛/	f �� f �Cwf .� f � �� fC/� (21)

The first and second terms in the right-hand side of Equation (21) indicate the flux evaluations at
the fC and f � directions, respectively. These fluxes, which are associated with the local speeds of
propagation, can be calculated from

� fC Dmax.cfCjS f j C 	fC, cf �jS f j C 	f �, 0/ (22)

� f � Dmax.cfCjS f j � 	fC, cf �jS f j � 	f �, 0/ (23)

Here, cf˙ D
p
�RTf˙ are the speeds of sound at the cell face. In the KT method, the fC and

f � contribute equally so that the weighting coefficient becomes ˛ D 0.5. Consequently, the KT
method is classified as a ‘central’ scheme. However, the KNP method calculates ˛ on the basis of a
one-sided local speed of wave propagation. Evidently, the weighting should be biased in the upwind
direction. Therefore, this scheme is called ‘central-upwind’. Considering the above descriptions, the
weighting factor can be generally defined as

˛ D

´
0.5 KT method

�fC
.�fCC�f�/

KNP method
(24)
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The third term in the right-hand side of Equation (21) is only required in cases where the convection
term is a part of a substantive derivative, that is r � ŒV .
V /� in Equation (16), for which @.
V /=@t
completes the substantive derivative of 
V . This diffusive volumetric flux .wf / is calculated from

wf D

´
˛ max.� fC,� f �/ KT method

˛.1� ˛/.� fCC� f �/ KNP method
(25)

The current method derives the � fC and � f � face interpolated magnitudes for different variables
such as temperature and density from the values of adjacent cell center values. The interpolation
procedure uses a limiter to switch between the low and high order schemes on the basis of a flux
limiter function ˇ.r/, where r > 0 represents the ratio of successive gradients of the interpolated
variables. On a polyhedral mesh and for the f + direction, r is given by

r D 2
d � .�r/p

.rd� /f
� 1 (26)

where .�r/p is the full gradient of � at the owner cell P with a linear interpolation and
.rd� /f D �N ��P is the gradient component normal to the face, scaled by the length jd j, where
d is a distance vector that connects the centroid of the owner cell P to that of the neighboring cell
N. The � fC and � f � are interpolated using the primitive first-order upwind and second-order
linear interpolation schemes. In fact, the chosen limiters are those of the total variation diminishing
scheme, in which ˇ.r/=r D ˇ.1=r/, for example Minmod ˇ.r/ D maxŒ0, min.1, r/� and van Leer
ˇ.r/D .rCjr j/=.1Cr/. Considering the above descriptions, the magnitude of� in the f + direction
is obtained from

� fC D .1� gfC/� pC gfC�N (27)

where gfC D ˇ.1 � wf /. It is seen that ˇ D 0 results in a pure upwind interpolation, ˇ D 1 in a
linear interpolation, and ˇ D 2 in a downwind interpolation.

Back to Equations (16) and (17), the ‘gradient terms’ in the NS equations are integrated and
converted to the following [54]:Z Z Z

�

r�dv D
Z Z

S

�dS �
X
f

S f � f (28)

However, the KT and KNP methods split the interpolation magnitude considering the fC and f �
directions as follows: X

f

S f � f D
X
f

Œ˛S f � fCC .1� ˛/S f � f �� (29)

where the � fC and � f � interpolations use the preceding described limiters.
Back to Equations (16) and (17), the Laplacian terms can be generalized using a general diffusion

coefficient definition of  . These terms are initially discretized toZ Z Z
v

r � .r� /dv D

Z Z
S

dS � .r� /�
X
f

f S f � .r� /f (30)

where �f is interpolated linearly using its neighboring cell center values. It is because we assume
that the diffusion is a function of cell temperature. Considering a general case in which the face is
non-orthogonal, that is S f is not parallel to d , the evaluation of S f � .r� /f is divided into two
parts including an orthogonal part (which considers the neighbor and owner cell values) and a non-
orthogonal part, which takes into account a full gradient (which is calculated at the cell centers and
interpolated at the cell faces) as follows:

S f � .r� /f D A.�N ��P/C a � .r� /f (31)

where AD jSf j
2

Sf �d
and aD S f �Ad .
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2.3.2. Solution algorithm of the NS equation. ‘RhoCenteralFoam’ is an explicit solver; that is, all
new solutions at the current time step are calculated explicitly from the known magnitudes of previ-
ous time step. Because the explicit approaches are faced with a time step limit, a sequential operator
splitting approach is employed to consider the diffusive terms as suitable implicit corrections of an
approximate inviscid solution. There are three main steps in the solution algorithm [51]:

Step 1. Solve the inviscid equations, which are given by�
@.
V 0/

@t

	
inv
Cr � .V .
V 0//CrpD 0 (32)

�
@.
E 0/

@t

	
inv
Cr � .V .
E 0C p//Cr � .� � V /D 0 (33)

where the time derivative terms represent the time rate of only inviscid fluxes. Note that the
prime denotes the quantities calculated on the basis of the inviscid assumption.

Step 2. Update the primitive variables, for example, V and T , from the solution of Equations (32)

and (33). For the temperature, it is updated from T D
�
�.�E 0/
�
� jV

0j2

2

�
=Cv .

Step 3. Solve a diffusion correction equation implicitly for an array of primitive variables. In this
case, the time derivative represents the part due to diffusion only, that is, .@=@t/vis. Then,
the velocity and temperature fields are updated via solving suitable diffusion correction
equations as follows: �

@.
V /

@t

	
vis
�r � .�rV /�r � .�exp/D 0 (34)

�
@.
cvT /

@t

	
vis
� .�rT /D 0 (35)

where � is the heat conduction coefficient. In all above equations, the stress tensor is treated
explicitly.

2.3.3. Wall boundary conditions. The NS equations are typically valid in the slip regime if we
suitably apply the velocity slip and temperature jump boundary conditions [30, 35–37]. To extent
the applicability of the NS solver in a hybrid algorithm, we employ the first-order Maxwell velocity
slip and Smoluchowski temperature jump boundary conditions at the walls as follows [54, 55]:

Vg �Vw D�
2� �u

�u
�rn.S �V/�

2� �u

�u

�

�
S � .n �…mc/�

3

4

�




S �rT
T

(36)

Tg � Tw D�
2� �T

�T

2�

.� C 1/Pr
�rnT (37)

where n represents the unit normal vector to the surface and � is the dynamic viscosity. Addition-
ally, the subscripts g and w refer to gas adjacent to wall and wall, respectively. �u and �T are the
tangential momentum and thermal accommodation coefficients, respectively. � is the specific heat
ratio and Pr is the Prandtl number. The tensor S D I � nn, considering I as the identity tensor,
removes the normal components of any nonscalar field. …mc is expressed as

…mc D �.rV/T � .2=3/Itr.rV/ (38)

where the subscript tr denotes the trace. To be consistent with DSMC simulations presented here,
we consider both of the accommodation coefficients equal to one. Moreover, we use the power-law
relation to present gas viscosity as a function of temperature magnitudes as follows [2]:
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�D �ref



T

Tref

�!
(39)

�ref D
15
p
m�kTref

2�D2
ref.5� 2!/.7� 2!/

(40)

where ! is the macroscopic viscosity temperature exponent, D is the molecular diameter and k is
the Boltzmann constant. We apply the power-law relation to be consistent with the VHS model used
in our DSMC solver.

2.4. The hybrid strategy

2.4.1. The breakdown parameter. Any extended hybrid algorithm should address the locations of
continuum-stochastic interface properly using an appropriate continuum breakdown parameter. A
hybrid solver can enhance its computational efficiency by restricting the DSMC solutions to only
non-equilibrium regions suitably. A continuum breakdown parameter can be also used to locate
the interface between continuum and non-equilibrium regions. This parameter can be derived
from relations between the Boltzmann and NS equations. Different breakdown parameters were
suggested by previous researchers. For example, Tiwari [56] proposed a criterion on the basis
of Grad’s 13 moments expansion to perform an automatic domain decomposition and that to
couple the Boltzmann and Euler equations. Levermore et al. [57] derived nondimensional, non-
negative definite matrices from the moments of a molecular distribution. The breakdown criteria
were obtained on the basis of the deviations of the eigenvalues of this matrix from their equilibrium
values. A key breakdown parameter is the local Knudsen number based on the gradient’s local length
(GLL) of the flow properties. It is defined as

KnGLL� D
�

	
jr	j (41)

where 	 is an arbitrary flow parameter and KnGLL D max.KnGLL,�, KnGLL,jV j, KnGLL,T ,
5� .Ttr � Trot/=Trot/ [58]. KnGLL,jV j is computed on the basis of the velocity magnitude, that is,

jV j D
p
u2C v2Cw2. It should be noted that the normalization of velocity gradient in KnGLL,V

is carried out using the local speed of sound a in low-speed regions of the flow. The last term in
the KnGLL considers the non-equilibrium condition between translation and rotational degrees of
freedom. The local mean free path used in the gradient-length Knudsen number is calculated using
the VHS formula as follows [2]:

�D
2.5� 2!/.7� 2!/

15

r
m

2�kT



�




�
(42)

Another interesting breakdown parameter is the B parameter, which is taken as the maximum value
of the normalized shear stress and heat flux magnitudes [59]. It is defined as

B Dmax
�
jq�i j, j�

�
ij j
�

(43)

where the normalized heat flux and shear stress magnitudes are calculated from

q�i D�
�

p



2m

�T

�0.5

rT (44)

��ij D
�

P



V i ,j C V j , i �

2

3
V k,kıij

�
(45)

whereP is the pressure, V is the velocity vector. Indices i , j , and k stand for the three velocity com-
ponents. The continuum breakdown occurs whenever KnGLL > 0.05 [58] or if B > 0.1 [59]. In this
work, we use KnGLL as the breakdown parameter to determine the continuum–molecular interface.
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Although KnGLL has been widely used to determine the continuum breakdown [14,15,20,21], there
are some inherent limitations and approximations in this parameter. In particular, this parameter
does not successfully capture the continuum breakdown within the boundary layer [60]. As stated
by Wang and Boyd [60], KnGLL successfully captures the breakdown at the wall but not in most of
the boundary layer region. To simulate boundary layers with a hybrid frame efficiently, Lian et al.
[61] recently suggested a new continuum breakdown parameter on the basis of the pressure magni-
tude. According to this new parameter, the thermal equilibrium generally remains well in most of the
boundary layer region. They reported improved hybrid cycle efficiencies using their new breakdown
parameter.

In order to calculate the gradient in Equation (41), it is assumed that the flow parameters (	) vary
linearly within each cell in both x and y directions. As a result, this gradient can be calculated in
any type of unstructured grids using

	 � 	0 ��	 D�x	xC�y	y C�´	z ��X �r	 (46)

where 	0 is the parameter magnitude at the cell center or node. Considering the nodes surrounding
the centre node, a matrix equation can be subsequently constructed as follows:2

66664
�x1 �y1 �´1

�x2 �y2 �´2

�x3 �y3 �´3

�x4 �y4 �´4
W W W

3
77775
8<
:
	x

	y

	´

9=
;D

8̂̂̂
<̂
ˆ̂̂̂:

�'1

�'2

�'3

�'4
W

9>>>>=
>>>>;

(47)

The number of coefficients .�xi ,�yi ,�´i / depends on the number of neighboring nodes sur-
rounding the center node. This equation is generally overspecified. To find the gradient vector, the
matrix can be inverted using the least-squares approach. The resulting gradients are then substituted
in Equation (41).

2.4.2. The hybrid cycle. We consider a small overlap region at the interface between the two
solvers. Evidently, both solvers are expected to result in valid solutions in the overlap region.
The benefit of using the overlap region is that the hybrid solution is not influenced by the exact
position of the interface. Our hybrid cycle is a one-way, state-based frame and is a major modifi-
cation of the schemes reported by Wu et al. [18] and Schwartzentruber et al. [20, 21]. In fact, our
hybrid algorithm is the first application of one-way hybrid coupling to solve the external hyper-
sonic flows. The flowchart of the proposed hybrid algorithm is shown in Figure 3. It consists of the
following steps:

1. Obtain the NS solution for the entire domain. This solution is inaccurate in non-equilibrium
regions but it is acceptable in the near-equilibrium regions.

2. Apply the breakdown parameter to the NS solution and determine the non-equilibrium
(DSMC) regions.

3. Extend an overlap region in the NS domain in a manner to specify a small region of the
NS domain as the overlap (non-equilibrium) region. The overlap region is a location where
KnGLL ��Kn<Kn<KnGLL. The criterion �Kn is specified by the user.

4. Use the DSMC solver to obtain solution in the rarefied and overlap regions. Boundary
conditions at the overlap region are supplied from the NS solution. The details are provided
shortly.

5. Check the convergence criterion using

AAE®D
iDNcellsX
iD1

ˇ̌̌
ˇ .®Hybrid � ®Exact/

®Hybrid

ˇ̌̌
ˇ
Surface or overlap outer boundary

< " (48)

This criterion is defined on the basis of the accumulated absolute error (AAE) of any property
(	) on the outer boundary of the overlap region or on the surface. The parameter 	 can be
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Obtain the NS solution
for the entire region

Divide the domain using Kn GLL magnitude, 
Extend the overlap region

Solve non-equilibrium region 
using DSMC   

Check if AAE ( ) <

Apply continuum breakdown parameter

Yes

No

Solution converged

Extend the 
overlap region 

Figure 3. Flowchart of the hybrid frame.

any parameter of interest. The accumulation is performed over all the overlap/surficial cells.
Of course, to check the convergence, we need the exact solution on the surface or interface. The
exact solution can be obtained from the experimental measurement. It can also be a full DSMC
or Boltzmann solution (typically available from the literature). If the convergence criterion is
satisfied, the hybrid cycle is finished.

6. If AAE > ", extend the overlap region inside the NS domain. This could be carried out by
decreasing �Kn or alternatively by any other suitable strategy.

7. Go to step 4, use the previously created particles in the DSMC region at the preceding iteration
and create particles in the new DSMC cells applying the Maxwellian VDF.

8. The hybrid iteration continues until the convergence parameter (AAE) indicates that the
interface location does not need any more changes at the current stage.

One additional row (or column) of cells in the NS domain adjacent to the overlap region is
considered as the particle buffer region. Particles are created in the overlap region according to the
thermal and hydrodynamic properties, (T , V , 
), and their gradients in the buffer region employing
the Maxwellian velocity distribution. In other words, the NS boundary conditions are transferred
into the DSMC solver through determination of the number of particles and their properties such as
the most probable speed of particles in the buffer zone. Even though the NS solution is consistent
with the CE VDF [20, 21], the generated CE distribution is not necessarily the correct velocity
distribution for a DSMC solver, as the DSMC and NS solutions do not necessarily need to agree
well on the whole interface [62]. This point will be later shown; see Figure 13. Consequently, we
generate DSMC particles at the buffer zone according to a less-expensive Maxwellian distribution.
Of course, because the number of injected particles through the interface, whose ‘approximated
distribution functions’ differ from their real distributions, is small compared with the total number
of injected particles through the interface, this simplification does not degrade the accuracy of our
proposed hybrid frame solution.

Unlike the hybrid algorithm suggested by Schwartzentruber et al. [21], we do not solve the NS
equations in the near-equilibrium region during our hybrid procedure. In other words, our hybrid
frame is one way; that is, only the NS boundary conditions are transferred into the DSMC region.
The benefit of this procedure is to simplify the implementation of a hybrid algorithm. We will
show later that the main objective of our hybrid frame is to predict the surface properties such as
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the velocity slip, temperature jump, heat flux, and shear stress magnitudes accurately. In a hybrid
simulation of a hypersonic external flow, the calculation of these parameters is performed by the
DSMC solver because the flow over the surface is usually taken as non-equilibrium, which is con-
sistent with the DSMC solution. Consequently, we do not focus on the solution of the flow field far
from the main object. This would justify the use of a one-way hybrid algorithm in the current work.

The size of overlap region plays a critical role in the current algorithm. If the first estimate of
�Kn is small, more iterations should be performed during the procedure. However, a larger approx-
imation for�Kn would result in more computational time for the DSMC solver in our hybrid frame.
Our experience has shown that the computational costs would decrease considerably if we choose
a slightly over-expanded size for the interface region between the computational zones of the two
solvers. It is because this strategy results in less number of visits to steps 4 to 6. Our first estimate is
taken as �KnD 0.01 for all simulations, which is described in Section 3.

Indeed, this hybrid algorithm is designed for solving steady-state problems. In our hybrid code,
the data switch should be performed manually. This means that the user should specify new
boundary conditions for the DSMC solver at step 3 above. Our experience showed that the number
of iterations would not exceed 2 or 3 for the test cases solved in Section 3.

It should be noted that the suggested frame could be extended to 3D applications without needing
drastic changes. In 3D applications, the hybrid interface will be a face rather than a line. However,
the determinations of interface location and the boundary transfer process are performed similar
to those performed in 2D case. However, a dynamic implementation for a hybrid algorithm is an
important issue, and it highly depends on the original DSMC and NS codes structures. A dynamic
process requires the addition of some functions to the code to extract data from the NS solver
at the target interfaces. These dynamic functions should also split the original NS domain into
the near-equilibrium and rarefied regions and allocate the rarefied region to the DSMC solver.
These functions should provide the required boundary conditions for the DSMC solver from the
NS solution. They should also update the interface location during the solution procedure.

At this stage, there might be a question how one may efficiently check the convergence crite-
rion when one deals with a DSMC fluctuating solution. Indeed, Degond et al. [24] have reported
some remedies for suppressing the negative fluctuation effects over the interface for the flux-based
hybrid solutions. Because our hybrid algorithm is a state-based one, there is no need to evaluate the
fluxes at the interface. As is known, the fluxes are more prone for fluctuations than the macroscopic
properties. Additionally, employing a one-way hybrid algorithm, we do not need to transfer any pos-
sible DSMC fluctuating solutions into the NS region because that region is not updated during the
hybrid iterations and it does not require any boundary condition taken from the DSMC solution. On
the other hand, any fluctuations in the macroscopic quantities may affect the convergence criterion
magnitude. These fluctuations would occur when the bulk velocity of the flow is much smaller than
the most probable thermal velocity, that is, in low speed subsonic flows. In such cases, we need to
employ a flux-corrected filter to post-process the noisy DSMC solutions [63], as is first suggested by
Reference [64]. Because the present work focuses on high speed flows, there is no need to employ
any post-process filtering because the interfacial solution is almost smooth.

It should be noted that the numbers of interfacial cells for the DSMC and NS solvers are not
normally the same. In practice, the number of NS solver interfacial data is much less than that of
the DSMC cells at the interface. To remedy this problem, the NS solution at the interface and their
cellular information are stored in an array. Then, these data are suitably interpolated to drive the
magnitudes at the exact locations of the DSMC interfacial cells. We benefit from such storage and
data manipulation in our hybrid solver.

3. RESULTS AND DISCUSSION

In this section, we present the results of our extended hybrid DSMC–NS solver. We have chosen
two test cases to illustrate the capabilities of our hybrid solver. They are the flow over a nanoscale
flat plate and a microscale cylinder. For validation purposes, we used the Bird DSMC2D code [2]
to derive results for the flow over the nanoplate test case. On the other hand, the results of cylinder
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flow can be found in the past studies [65,66]. Therefore, we can readily evaluate the accuracy of our
hybrid solver.

3.1. Test 1: nanoscale flat plate

We first examine the hypersonic flow over a nanoscale flat plate. Figure 4 shows the geometry
of plate and the imposed boundary conditions. The gas is monatomic argon. The plate length is
100 nm, and the height of the computational domain is 60 nm. The inlet Mach and Knudsen numbers
are 4.38 and 0.00129, respectively. The Knudsen number is defined according to the plate length.
The freestream gas is at a temperature of 300 K and a pressure of 4.14 � 107 Pa. The plate sur-
face temperature is 500 K. For the DSMC solver, we apply the freestream conditions at the inlet,
outlet, and upper boundaries. For the NS solver, we specify the velocity, temperature, and pressure
magnitudes at the inlet and upper boundaries. However, it is not necessary to specify any boundary
conditions at the supersonic outlet. We specify a short length (equal to 10% of the plate length)
to upstream of the plate leading edge as the symmetric (or specular reflector) boundary condition
for the DSMC solver in order to provide a more realistic inlet velocity profile at the beginning of
plate. This idea has been repeatedly used by the current authors in different events [30, 35, 36]. The
plate itself is considered one with a diffusive surface. The NS time step is 2 � 10�12 s. The Courant
number for the NS solver is set as 0.55.

Before applying our hybrid algorithm, it is instructive to evaluate the accuracy of our individual
DSMC and NS solvers. Figure 5 shows the grid independency test for the NS solver. This figure
shows the velocity slip and the surface pressure distributions over the flat plate surface employing
five different structured gird resolutions of 300�60, 300�180, 300�360, 300�720, and 300�900
cells. Of course, it is not necessary to refine grid in the x-direction because the variation of flow
properties in the longitudinal direction is small [67, 68]. As is seen in this figure, the solutions are
very close for the last two grids. Consequently, we use a grid with 300 � 720 cells to present our
current results.

Freestream

Specular Reflection Diffusive Reflection

No Boundary

x

y

L

Figure 4. Flat plate geometry and the chosen boundary conditions for the DSMC solver, test 1.

Figure 5. Grid independency test for the NS solution, test 1.
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Figure 6. Grid independency test for the DSMC solution, test 1.

A similar grid refinement study is performed for the DSMC solution; see Figure 6. We use six
structured grid resolutions of 300� 60, 300� 180, 300� 360, 300� 540, 300� 720 and 300� 1080
cells. We put at least 20 particles in each cell. As is observed in Figure 6, the two last solutions for
the slip velocity magnitudes are very close to each other; however, the surface pressure distributions
show much less sensitivity to the grid size. Generally, our study showed that the derived magnitudes
would not be affected that much for grids finer than 300 � 360. Considering this achievement, we
used a grid size with 300� 720 cells to perform our DSMC study. Additionally, considering the use
of two subcells in each direction, the subcell sizes would be �=2 in both x- and y-directions. The
DSMC time step is chosen to be a fraction of the mean collision time. As a result of this restric-
tion, the particles do not cross more than one cell during one time step. This ensures the decoupling
between particles’ motions and collisions. In this test case, the time step is chosen as 4 � 10�13 s,
which is about 25% of the mean collision time. Considering this time step as our relative movement
time and assuming a particle with a speed of Vmpf, we obtain

�xi � 0.25
�

Vmpf
� Vmpf D 0.25� < �xcell (49)

So, it is concluded that this particle would move around 0.25�, which is smaller than the size of cell
and subcell. Figure 7 presents the velocity and temperature contours for the NS and DSMC solvers,
separately. To validate the current solution, we compare the dsmcFoam solution with the solutions
obtained from the DSMC2D code, developed by Bird [2]. It is observed that both of our DSMC
velocity and temperature solutions are in excellent agreement with those of the DSMC2D code. Even
though the flow global Kn number is in early slip flow regime, the DSMC and NS solutions perform
differently in the shock wave and boundary layer regions. In other words, the characteristics of
this hypersonic flow cause a strong non-equilibrium behavior in these regions, which is beyond the
valid range of current slip/jump boundary conditions applied in the rhoCentralFoam solver. Other
similar investigations in the rarefied flat plate flow also report that the Maxwell velocity slip and
Smoluchowski temperature jump boundary conditions are ineffective for such high speed hyper-
sonic flows [54,69]. Can we use other extended boundary conditions to work better with hypersonic
flow test cases? Indeed, there have been alternative slip/jump boundary conditions to solve the
hypersonic flow cases; however, the results indicate that the achieved accuracy is not considerably
superior compared with that of the Maxwell/Smoluchowski boundary conditions, for example, see
the derivations and results reported in Reference [69]. Because of a higher complexity in imple-
menting such slip/jump boundary conditions, we did not take them in our study. It is because the
main focus of this work is to develop a new hybrid algorithm in the frame of OpenFOAM; therefore,
we normally apply the available boundary condition options in the rhoCenteralFoam code.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 72:937–966
DOI: 10.1002/fld



HYBRID DSMC/NS FRAME TO SOLVE RAREFIED/NON-RAREFIED MICRO/NANOFLOWS 953

a) Velocity contour (m/s), NS

b) Velocity contour (m/s), DSMC

c) Temperature contour (K), NS

d) Temperature contour (K), DSMC

Figure 7. Velocity and temperature contours over the flat plate using the NS solver and two DSMC solvers,
namely dsmcFoam (solid line) and DSMC2D code [2] (dashed line, red), test 1.

Figure 8. Comparison of gas velocity and temperature values at the flat plate surface using the DSMC and
NS (with and without the first order slip boundary conditions) solutions.

Figure 8 compares the velocity slip and temperature jump at the flat plate surface derived from the
NS (without and with the first-order slip/jump boundary conditions) and the DSMC solutions. We
extracted the slip and jump properties from the DSMC solver according to a macroscopic sampling
of properties near the surface rather than a direct sampling from the molecular velocities. This
figure shows that there are considerable velocity slip and temperature/pressure jumps at the flat plate
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surface. They are mostly due to the leading edge shock wave and the flow rarefaction along the plate
surface. Both solvers indicate that the shock starts at the same location at the tip of plate; however,
the DSMC solver predicts a stronger shock there. The NS solver subject to slip/jump boundary con-
ditions underpredicts the velocity slip and temperature jump highly at the beginning of plate leading
edge. At the end of the plate, the NS solution predicts a velocity slip about 50% higher than that of
DSMC. However, the NS temperature jump is quite close to the DSMC solution after X=L D 0.5.
From this location, both of gas velocity and temperature magnitudes are approximately constant at
the surface. The NS solver, without slip/jump boundary conditions, performs a rapid decrease in
temperature as soon as the shock wave region ends up; that is, the flow temperature decreases to the
wall temperature magnitude after the shock wave.

To investigate the problem more precisely, we are encouraged to focus on a local gradient-based
Knudsen number, that is, Equation (41), to determine the non-equilibrium regions. Figure 9 depicts
the KnGLL,max contours calculated by the NS and DSMC solvers. As is seen, both solvers show
that KnGLL,max is well above the threshold value of 0.05 in the whole boundary layer region and a
portion of shock wave adjacent to the wall. Therefore, the continuum solution cannot be counted on
in these regions. Interestingly, KnGLL,max contour shows that the shock wave is in near-equilibrium
condition far from the plate. However, as we show later, the NS flow property solutions in the shock
wave region differ from the DSMC ones, and that it cannot provide a suitable boundary conditions
for the hybrid frame unless the shock wave reaches the end of plate, where it has become suffi-
ciently weak. According to our hybrid algorithm, we apply KnGLL,max criterion to the NS solution
and simulate the regions located under the horizontal line, which include the KnGLL,max > 0.05
region, using the DSMC solver. Figure 10 schematically shows the domain attributed to the DSMC
solver in our hybrid treatment. The first interface location (excluding the overlap region) was
Y=Hinterface D 0.05. The interface location changes if the condition of AAE.	/interface < " is

Figure 9. Comparing the magnitude of KnGLL,max calculated by the current NS solver subject to slip/jump
boundary conditions (top) and DSMC solver (bottom) individually, test 1.
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Interface
Overlap Region

Figure 10. Solution domain for the hybrid solver, test 1.

X/L=0.2

X/L=0.2

X/L=0.8

X/L=0.8

Figure 11. Temperature and pressure profiles at different axial sections on the flat plate using the DSMC
and NS (with and without applying the slip boundary conditions) solvers.

not satisfied at the end of our hybrid solution iteration. Because we are interested in calculating
hydrodynamics and thermal properties over the flat plate, we use 	 D .U ,P ,T / in Equation (48).
Consequently, AAE.	/Dmax.AAE.U /, AAE.P /, AAE.T //. The value of " is set as 1 �10�3. As
was discussed in Section 2.3.2, the interface location is changed two times in the current test; that
is, it is changed to Y=Hinterface D 0.14 and 0.18 via changing �Kn.

Before investigating the boundary conditions at the interface, it is instructive to discuss the useful-
ness of employing slip/jump boundary conditions in the NS solver within a hybrid frame. Figure 11
shows the temperature and pressure profiles obtained from the NS and DSMC solvers at two cross
sections of X=LD 0.2 and 0.8. Specifically, this figure elaborates the effects of slip/jump boundary
conditions on the solution accuracy in the longitudinal direction. Close to our first overlap location,
Y=Hoverlap D 0.06, and at bothX=LD 0.2 and 0.8 sections, the use of both slip/jump boundary con-
ditions has resulted in better agreements with the DSMC solutions. Close to the Y=Hinterface D 0.19
interface location, the temperature magnitudes for the slip and no-slip considerations are close to
each other. However, the no-slip pressure distribution is in better agreement with the DSMC pressure
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distribution. Our experience showed that the latest interface would be located somewhere relatively
far from the wall boundary for both test cases investigated here. As is seen in Figure 11, there is
not a considerable benefit to employ the slip/jump boundary conditions in regions far from the wall
because this can increase the computational time of the NS solver unnecessarily. A longer solu-
tion time would be normal because the calculations of the gradient terms appeared in the slip/jump
equations, for example, Equations (36) and (37), enforce additional computation time to the pre-
ceding time. Having a fine grid at the wall, the computational cost may not suggest we use other
slip/jump boundary conditions, which can improve the solution accuracy slightly. Of course, basi-
cally, this conclusion is not applicable to internal flow cases, where the employment of slip/jump
boundary conditions can usually increase the ranges of NS equation’s applicability.

Figure 12(a–c) compares the pressure distributions derived from the DSMC and NS (subject to
the slip/jump boundary conditions) solvers at three hybrid overlap boundaries, that is, Y=LD 0.06,
0.15, and 0.19. At the first glance, the NS solution predicts a lower pressure distribution than
that of the DSMC over the shock wave zone. However, the continuum solution overpredicts the
DSMC solution after the shock. For the two other overlap sections, there is almost a constant dif-
ference between the NS and DSMC pressure distributions at the shock wave and afterward regions.
However, the regions of error decrease as the shock approaches the end of plate; see Figure 12(c).
Figure 12(d) shows the gas pressure distribution on the plate surface obtained from the DSMC
and hybrid solvers for three consecutive iterations. The first hybrid iteration results in an erroneous

a) Iteration 1 b) Iteration 2

c) Iteration 3 d) Hybrid solution on the surface

Figure 12. (a)–(c) Pressure distributions at the chosen hybrid overlap boundaries derived from the DSMC
and NS solvers and (d) gas pressure distribution over the surface in different hybrid iterations.
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Figure 13. Comparison of the velocity distribution function from the DSMC simulation with that of the
Maxwellian and Chapman–Enskog distribution; the cell location is .X=L,Y=H/D .0.65, 0.18/; see symbol

x in Figure 7(d).

solution for the entire plate including the shock region. It is due to a large error influence originated
from the NS solution into the DSMC boundary cells; see Figure 12(a). The error is transferred back
into the particle region through the boundary cells and stays in the hybrid solution. The interface
is moved further up into the NS region via decreasing �Kn. The second hybrid iteration predicts
the surface pressure at the shock wave region (up to X=L < 0.6) suitably while it underpredicts
the pressure at the end of plate. However, the third iteration correctly captures the surface pressure
despite supplying incorrect boundary conditions after X=LD 0.6; see Figure 12(c).

Figure 13 compares the VDF(cy/ derived from the DSMC simulation with the Maxwellian and
CE distribution. The interfacial cell is located at (X=L, Y=H/ D .0.65, 0.18/, which is indicated
by symbol x in Figure 7. This location is one of the most critical interfacial points because it is
almost where the maximum difference between the NS and DSMC solutions is expected to occur,
see Figure 12(c). Evidently, the real VDF would be different from both the Maxwellian and CE
distributions. As is seen, the two distributions are quite close to each other. This indicates that
there is not an obvious superiority in sampling procedure to use the CE distribution at the interface.
Schwartzentruber et al. [21] also reported similar conclusions through comparing the DSMC’s VDF
result with the CE one. Therefore, we simply employ sampling from the Maxwellian distribution in
the current work. It is also important to note that the sampling from the Maxwellian VDF has been
reported by other researchers as well, for example, see Reference [70]. They also report achieving
suitable accuracy.

Figure 14 illustrates the present hybrid solutions for the gas velocity slip and temperature jump
magnitudes and the friction and heat flux coefficients along the flat plate surface and compares
them with those of the current pure DSMC prediction. As is seen, there are good agreements
between them. The computational domain and the number of simulator particles for the DSMC
solver decrease in the hybrid frame by 66% and 53%, respectively. Comparing with a pure DSMC
solver, the current hybrid frame needs at least 40% less computational time including the time
required for hybrid cycle iterations.

3.2. Test 2: microcylinder

A hypersonic gas flow over a microscale cylinder is a suitable test case for any hybrid algorithm
because the length scales of the flow change considerably in the same solution domain. Here, we
consider the flow of argon with a Mach number of 10 over a microcylinder with a diameter of
0.3024 �m. The inlet flow temperature is 200 K while the surface temperature of the microcylinder
is 500 K. The freestream number density is 4.247 � 1026 molecules/m3, and the global Knudsen
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a) Velocity slip

c) friction coefficient

b) Temperature jump

d) heat flux coefficient

Figure 14. Distributions of different flow properties at the flat plate surface using the pure DSMC and hybrid
solvers, test 1. (a) Velocity slip, (b) temperature jump, (c) friction coefficient, and (d) heat flux coefficient.

number is 0.01 based on the microcylinder diameter and the freestream mean free path. We utilize a
time step of 2.0� 10�12 s in the current calculations. We use one million particles for a full DSMC
simulation. The Courant number for the NS solver is set as 0.40. Similar to our previous test case,
we first evaluate the performance of our DSMC and NS solutions individually. The DSMC and
NS meshes are unstructured and have totals of 30,000 and 44,000 triangular cells, respectively. We
performed our DSMC and NS solutions on different mesh sizes to ensure their accuracies. The NS
mesh size is selected after a mesh refinement study so that the final solutions reported in this paper
are surely independent from the cell size. The DSMC mesh is chosen such that (�x, �y/ < �=3.
However, the cells located behind the cylinder and in the wake region are much larger than those
located around and in front of the cylinder. In fact, as the flow becomes rarefied more seriously in
the wake region, it is necessary to use sufficiently large cells to ensure sufficient particles inside
each cell located in the region. We put at least 35 particles in each cell. As will be shown later, the
current NS, DSMC, and hybrid solutions are in proper agreement with the magnitudes reported in
the past reliable publications. They indicate that we have chosen suitable cell sizes and number of
particles in this study.

Figure 15 shows the solution domain and the applied boundary conditions for the NS (top) and
DSMC (bottom) solvers. As is seen, the computational domain is different for the two solvers. We
implement freestream boundary conditions at the inlet and outlet sections and symmetry conditions
at the centerline. First, we validate our DSMC and NS solutions against the solutions reported by
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Figure 15. Domain for the NS (top) and DSMC (bottom) solvers and the chosen boundary conditions to
treat the flow over a microcylinder, test 2.

a) DSMC solution b) NS solution

Figure 16. The current DSMC and NS temperature distributions along the microcylinder stagnation line and
comparison with DSMC (a) and NS (b) solutions of Lofthouse [65], test 2.

Lofthouse [65]. Figure 16 presents the temperature distributions along the stagnation line, that is,
a line extending ahead from the stagnation point at (0.2 �m, 0) to (0, 0). The figure compares the
current DSMC and NS solutions with those reported by Lofthouse [65]. Except a small difference
near the shock starting point, there are suitable agreements between the NS and DSMC solutions.
We next compare the full DSMC solution with the NS one. Figure 17 illustrates the velocity compo-
nents, temperature, and Mach number contours for both of our NS and DSMC solvers. The top face
contours show the NS solution, and the bottom ones show the DSMC solution. As before, the con-
tinuum and stochastic particle solutions perform differently in predicting the shock wave thickness,
the boundary layer over the microcylinder, and the wake region behind the microcylinder. Com-
paring with the NS solution, the DSMC solution provides a much thicker shock wave and locates
it upstream of the microcylinder. Otherwise, the NS and DSMC solutions perform almost similar
solutions in the other parts of the computational domain.

To determine the exact position of the DSMC–NS interface, we calculate the breakdown parame-
ter on the flow field using both the stochastic and continuum solvers. Figure 18 shows the contours
of KnGLL,max calculated by both the NS and DSMC solvers. The figure shows boundaries with
KnGLL,max D 0.05. Indeed, the regions of shock wave, boundary layer, and wake are the places
where the breakdown parameter magnitude exceeds the threshold value. These locations correspond
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b) V

d) Mach number

a) U

c) temperature

Figure 17. Comparing contours of different flow field variables using the NS and DSMC solvers, test 2.
(a) U , (b) V , (c) temperature, and (d) Mach number.

to the places where the NS solution deviates considerably from the corresponding DSMC one. In
our hybrid frame, the DSMC solver is applied in these regions. Similar to the previous test case, the
application of continuum breakdown parameter to the NS solution determines that the DSMC solver
should be used in the wake, boundary layer, and the entire shock wave regions. However, we restrict
our DSMC solver to the shock wave region having a width equal to the width of wake behind the
cylinder. We will show that this interface selection can reduce the computational costs effectively
while the solution accuracy is preserved completely. Figure 19 shows the location of final interface.
The DSMC region is expanded up to Y D 0.20�m, while the breakdown parameter predicts a height
of Y D 0.18�m for the non-equilibrium regions. In fact, a small width of Y D 0.02�m is considered
as the overlap region. Comparing with Figure 15, we observe that the DSMC computational domain
is decreased by about 40%.

Before presenting the results of our hybrid algorithm, we need to elaborate why some parts of the
shock wave have been taken outside the chosen molecular region. The first reason for this choice is
to decrease the size of DSMC domain as much as possible and consequently to increase the com-
putational efficiency of our hybrid algorithm more effectively. Schwartzentruber et al. [21] have
already discussed the physical reason for this choice. They applied a hybrid DSMC–NS simulation
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Figure 18. Contours of KnGLL,maxcalculated by the NS (top) and DSMC (bottom) solvers, test 2.

Figure 19. Simulation domain in the hybrid frame, test 2.

over a cylinder and reported that the post-shock states are almost the same for both the DSMC and
NS solutions. Therefore, they concluded that the shock wave modeling may not necessarily require
a stochastic-based solver. However, the molecular simulations are necessary for the boundary-layer
and nearwake regions. Figure 20 shows the DSMC temperature distribution at the overlap, that is,
Y D 0.2�m, and compares it with that of the NS solvers. As is observed, the post-shock solu-
tions are identical for both solvers, although the NS equations locate the shock wave a bit closer to
the microcylinder surface. Therefore, the conclusion of Schwartzentruber et al. [21] is reconfirmed
here. Although our chosen interface intersects the non-equilibrium region of shock wave, it does
not affect the accuracy of our hybrid solution for the surface properties. In other words, our hybrid
solution is converged (AAE(	/ < ") at the interface and achieves correct values for the surface heat
flux and shear stress magnitudes. The accuracy is evaluated against our DSMC solution and that of
Reference [66]; see Figure 21. We should note that the correct position of the interface can affect
the accuracy of our hybrid solution effectively. Achieving accurate solutions for the heat flux and
shear stress magnitudes, we are convinced that the chosen interface position should be correct. It
should be noted that although the simulation of cylinder flow using a hybrid DSMC–NS solver has
been already performed by Schwartzentruber et al. [21], the choice of molecular domain used in
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X ( m)

Figure 20. Comparing the DSMC temperature distribution with that of the NS solution at the interface,
test 2.

Figure 21. Heat flux (left) and friction drag per area (right) at the microcylinder surface using the current
DSMC and hybrid solvers and comparison with the DSMC solver of Su et al. [66], test 2.

this study is different from that of the reference. Additionally, unlike the reference, we did not solve
the NS equations during hybrid frame iterations. This consequently resulted in less computational
times for our hybrid frame.

Figure 21 shows the final solution for the heat flux and friction force magnitudes per unit area over
the microcylinder using both the current hybrid and DSMC solvers as well as the DSMC solution
of Su et al. [66]. The number of iterations to reach the final hybrid interface has been three. In the
current test, we aim to use the hybrid frame and to calculate the heat flux and shear stress values over
the cylinder surface. Therefore, we used 	 D .�s , qs/ in Equation (48) as the convergence criterion.
Consequently, AAE.	/ D max.AAE.�s/, AAE.qs//. The cutoff value is set as " D 10�3. The
hybrid solution agrees well with both DSMC solutions. As is observed, the current hybrid method is
able to obtain critical parameters in the flow field, such as the heat transfer rate and the friction drag
magnitudes, very accurately considering much less computational expenses. Although the upper
part of the hybrid interface is located in the shock wave region, where the boundary conditions
are supplied from the continuum solver, the hybrid solver provides the heat flux and shear stress
magnitudes much closer to the pure DSMC solution. This accuracy indirectly confirms the correct
interface location in this specific problem.
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Computational efficiency of any hybrid DSMC–NS solver strongly depends on the problem size,
number of cells, number of particles, and the convergence rate. For the microcylinder test case, the
size of DSMC computational domain is at least 40% less in our hybrid frame. This subsequently
decreased the number of required particles to 350,000 particles compared with one million particles
used for our full DSMC simulation. In other words, there is a decrease of 41% in the number of
DSMC cells. Since the DSMC simulation time linearly changes with the change of total number of
particles, the DSMC simulation time decreases to 33% using our hybrid solver. As there is negligible
NS solution overhead in using our hybrid frame, the total gain of the current hybrid frame would be
65% comparing with the time required for hybrid cycle iterations.

3.3. Comments on current hybrid solution

As was described in Section 2.4.2, the overlap region may be extended to a new location during the
eight steps of our hybrid solution algorithm. In the microcylinder test, the first interface location
was at a horizontal line crossing the KnGLL D 0.05 region. At this interface, the solutions of the NS
and DSMC weakly fitted each other. During the hybrid iteration, the interface location was traversed
a bit farther. Eventually, the hybrid algorithm converged to an interface performing a better match
between the two solutions; see Figure 20. Our conclusion was that the one-way hybrid algorithm
would not necessarily converge unless the boundary conditions supplied by the NS solver suit-
ably fitted the DSMC solution along a good portion of the achieved interface. In other words, the
achieved interface may contain some limited non-equilibrium regions. It is because the post-shock
properties are almost identical for both the DSMC and NS solvers; see Figure 20. Therefore, the
achieved interfaces for both the flat plate and cylinder cases may include some limited regions of
weak shock. This can be counted as another difference between our one-way hybrid algorithm and
those reported in literature [18, 20, 21].

It should be noted that the current hybrid algorithm can be applied only to test cases in which
there are distinguishable boundaries between the two equilibrium and non-equilibrium regions, that
is, in flows with low Kn numbers. In cases with full non-equilibrium regions, it is recommended
to apply a full DSMC method and to simulate the entire computational domain. For example, the
hybrid algorithm is not recommended to be applied for treating the transition flow regime. So, if
one wishes to repeat the test cases presented in this work at higher Kn numbers, one will find that
the shock waves become much thicker and that the rarefaction regions will cover most of the solution
domain. In such cases, it is impossible to distinct the two equilibrium and non-equilibrium regions
from each other.

There is some idea to improve the current one-way algorithm. For example, one may suggest we
assume a two-way coupling, start updating the NS boundary conditions, and solve the region via the
NS solver. Evidently, there will be some improvements in the achieved boundary conditions and that
the DSMC solution will be more accurate in the next step. As a result, this strategy can eventually
provide a suitable solution for the far-field domain. This idea is not new and can be found in the
literature [18, 20, 21]. Using this strategy, the computational cost will increase because it needs to
re-solve the NS region repeatedly. On the other hand, the algorithm needs more iteration to locate the
interface boundary. Consequently, this strategy would not be recommended in solving the test cases,
where we intend to calculate the surface properties. In such cases, the recommendation is to apply
the current one-way algorithm. As was shown previously, the hybrid solution accuracy presented in
Section 3 justifies the use of the current one-way algorithm in solving such specific problems.

4. CONCLUSION

We presented a numerical simulation tool that spatially couples a continuum solver for the NS
equation with a stochastic particle method (DSMC) for steady-state simulations of non-equilibrium
gas flows. We extended a one-way state-based hybrid DSMC–NS framework to solve the mixed
rarefied and nonrarefied flows over nanoplate and microcylinder test. We used the continuum
rhoCentralFoam solver from OpenFOAM and developed a stochastic particle method solver, that
is, dsmcFoam, to perform this study. The rarefied flow regions were solved using the DSMC solver
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while the NS solver was used to provide the required boundary conditions at the interface located in
the near-equilibrium region. We used a Dirichlet–Dirichlet boundary conditions coupling to transfer
the information from the continuum solver to the DSMC one at their interface. Our results showed
that the high speed flow over the nanoflat plate would be dominated by the shock-wave/boundary
layer interaction. Additionally, the NS equations could not predict correct velocity slip and tem-
perature jump magnitudes, especially at the shock wave/plate interaction point even though the
flow Knudsen number was quite low, that is, Kn D 0.00129. Moreover, if the rarefied domain was
small, the boundary condition errors at the hybrid interface would affect the interior domain solu-
tion. However, increasing the size of rarefied domain during the hybrid iterations would prevent
negative effects of the incorrect NS boundary conditions on the interior rarefied flow field behavior.
For the flow around a microcylinder, we observed that the NS equations would perform remarkable
inaccuracy in the shock wave, boundary layer, and wake regions. Although these regions should be
solved with a molecular algorithm, we observed that the post-shock flow properties including the
surface properties would not be influenced by the exact solution of the shock wave. Consequently,
we decreased the size of molecular region properly, used the DSMC solver, and solved only a por-
tion of the shock wave, located in the region with a height equal to the height of the microcylinder
wake. We presented the results of our hybrid solver for the slip velocity and temperature jump dis-
tributions as well as the heat flux and friction drag magnitudes and compared them with those of our
pure DSMC simulator. We achieved suitable accuracy for the hybrid method while spending much
less computational time. For example, the required computational times for our hybrid solver were
about 40% and 35% of the times required for our pure DSMC solver in solving the flow over the
flat plate and cylinder cases, respectively.
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