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Abstract: In this study, an artificial neural networks (ANN) was used to optimise the results
obtained from a hydrodynamic model of river flow prediction. The study area is Reynolds Creek
Experimental Watershed in southwest Idaho, USA. First a hydrodynamic model was construcled io
predict flow at the outlet using time series data from upstream gauging sites as boundary
conditions. The model, then was replaced with an ANN model using the same inputs. Finally a
hybrid model was employed in which the error of the hydrodynamic model is predicted using an
ANN model to optimise the outputs. Simulations were carried out for two different conditions (with
and without data from a recently suspended gauging site) (o evaluate the effect of this suspension
in hydrodynamic, ANN and the hybrid model. Using ANN in this way, the error produced by the
hydrodynamic model was predicted and thereby, the results of the model were improved.

Keywords: Hydrodynamic modelling, flow prediction, flow forecasting, river flow, ariificial neural

A HYDRODYNAMIC/NEURAL NETWORK APPROACH FOR ENHANCED RIVER

networks, hybrid model, ANN, optimisation, error prediction.

1. INTRODUCTION

Prediction of river flow generally requires
the collection of rainfall data, river level and
other meteorological data and catchment
characteristics, and an assessment of that
information. A main criterion is the size of
the catchment. In a flood prediction system,
especially for large river catchments, a
combination of rainfall-runoff and routing
models may be used. A rainfall-runoff model
is normally used for tributaries while a
hydrodynamic or routing model for the main
river reaches. The computational models
used to predict river floods are in most cases
one-dimensional. River floods are normally
gradually varied unsteady flows and so a
time-dependent  simulation is  required.
Different software packages have been

developed to carry out this type of
simulation.

Machine learning techniques such as
artificial  neural  networks,  genetic

programming and fuzzy logic have been
widely applied to different aspects of water

International Journal of Civil Engineering, Vol. 2, No. 3, September 2004

engineering during the last decade [I].
Despite some similarities, each of these
techniques works with its own procedure,
which of course is different from the others.
The main type of neural networks, which are
supervised networks operate on the principle
of learning from a training set. They must be
trained with a set of typical input/output
pairs of data called the training set. The final
weight vector of a successfully trained neural
network represents its knowledge about the
problem. In general, it is assumed that the
network does mnot have any a priori
knowledge about the problem before it is
trained. At the beginning of training, the
network weights are usually initialised with a
set of random values. There are a variety of
neural network models and learning
procedures.

This research uses a combination of the two
above mentioned tools in a new approach to
river modelling where the artificial neural
networks (ANN) are used to improve the
accuracy of the results obtained from a
hydrodynamic model of river flow. After
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consideration of the study area and the most
important factors such as climate conditions,
precipitation characteristics, flow regime and
the data gauging network in the RCEW,
modelling works are explained. Models were
developed using hvdrodynamic and artificial
neural networks separately to predict flow at
the outlet of the catchment, and their
performances were evaluated. An MLP
neural network model was adopted to
optimise the outputs of the hydrodynamic
modelling procedure by predicting the error
produced by the hydrodynamic model.

2.REYNOLDS CREEK EXPERIMENT-
AL WATERSHED (RCEW)

This research was completed using data
from the Reynolds Creeks Experimental
Watershed (RCEW), a typical intermountain
region of the western United States. It is
located in Owyhee Mountains of south-
western Idaho, about 80 km south-west of
Boise, Idaho with a 239km2 drainage area.
The main stream flows from south to north
in the Owyhee mountains at an elevation
exceceding 2200 m. The topography of the
study area is generally rugged except in the
broad valley floor in the north-central part of
the watershed. It ranges from a broad, flat
alluvial valley to steep, rugged mountain
slopes. The elevation ranges over 1100 m
through the catchment, resulting in a strong
climatic gradient. The lower boundary of the
catchment is determined by the outlet weir
location, which is ncar the head of a small
canyon through which Reynolds Creek flows
before entering the Snake River about 12 km
to the north. The lowest elevation on the
watershed is 1101 m above the sca level and
the highest eclevation is 2241 m at the
southern boundary of the catchment. The
castern boundary rises to about 1525m and
the western to 830 m above sea level. The
climate of the RCEW and more localised
distribution of soils and vegetation are
largely controlled by the elevation and local

topography. The catchment’s main percnnial
stream flow is generated at the highest
clevations in the south and northwest where
deep and late lying snow packs arc the main
source for water. Local slopc and aspect
strongly influence the hydrology of the
catchment by controlling the incoming solar
radiation and snow deposition patterns [2].
Annual Precipitation varies considerably
from low clevations to high elevations. At
the northern low elevation near the outlet it
is about 230 mm while in the southern part it
is over 1100mm of which more than 75%
occurs as snowfall [3]. Annual water yicld
varies over the watershed from a few mm in
small sub-drainages in lower portions of
RCEW to over 583 mm in the higher
clevation at the south western edge of
RCEW [4]. For the catchment outlet the
average annual water yield has been
measured at 0.564 m’/s or 77 mm p.a. The
variation of runoff is considerable from year
to year. The largest recorded flow at the
outlet gauging sitc is over 107 m’/s. This
occurred on December 23, 1964, duc to a
rain-on-snow event with a frozen soil
surface.

2.1. RCEW main reach

The RCEW main river reach between the
Tollgate weir upstrcam and the Outlet weir
downstream has been modeled in this study.
This reach is a perennial stream with 14.082
kilometers length of stream course (the
detailed surveyed thalweg length has been
calculated as 17.073 kilometers). The
downstream end of the reach (the Outlet
weir) is also the outlet point of the RCEW. It
is a self-cleaning overflow V-Notch (SCOV)
weir draining all 239 km? of the catchment
area, and located in a narrow canyon at low
elevation of the catchment (1108 meters
above sea level), and about 12 kilometers
south of the confluence of Reynolds Creek
and the Snake River. The upstream end of
the reach is limited to the Tollgate weir. It is
a gauging station with a Drop-Box V-Notch
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located at an elevation of 1410 m above sea
level. The drainage area above this weir is
54 57km?, ranging from 1410m to 2241m
elevation with precipitation mostly in the
form of snow. Fig. 1 gives more detail about
the reach.

Salmon Creek

Quilel weir

Macks Creck O Gaugngsiation

—=  Modelled reach

Modelled reach

Tolleate weir

SN

Fig. 1. Modclled river reach and the gauging stations
used to collect data for this research.

The longitudinal slope of the modeled
waterway in upper parts of the reach is
relatively greater than in lower parts. A total
of 53 cross sections have been drawn by

surveying the distance between two weirs to
provide the data required for calibration of
the models. '

3.DEVELOPING A 1D NUMERICAL
MODEL

A 1D model was constructed for the reach
between the Tollgate and Outlet weirs using
MIKE 11 and was used to predict flow at the
Outlet for a flood wave occurring in the
period of February-April 1982, Flow data
were entered into the model from Tollgate,
Macks Creck and Salmon Creek located
upstream of the outlet weir as the boundary
conditions. These three gauging sites, which
drain three main sub-catchments can be used
to model the main river reach, while all other
gauging sites are located In headwater
tributaries of the sub-catchments and not
delivering flow directly to the main river. 53
cross sections with associated photographs of
the main channel and flood plain in each
cross section location were used to define
geometry and roughness (Manning’s n) Lo
the model. A Q-H relationship at the outlet
weir section was used as the downstream
boundary condition of the model.

30

Time (hr}

- Cutlet]

----- M{T) - - M(2)

Fig. 2. Bstimated flow for the outlet of the RCEW using MIKE 11 versus the measured values (with and without
data from Macks Creek).
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In the first stage this model was just used to
predict flow at the Outlet using data from the
three sites mentioned above. Fig. 2 shows
the related hydrograph predicted by the
model against the measured values. As the
figure shows, the estimated values are not
close enough to the measured values
especially for the peak flow, which is mostly
underestimated. As a result the output of the
model at this stage may not be accurate
enough for practical applications.

As the operation of Macks Greek has been
suspended since 1991, the second stage in
this part was to evaluate how this gauging
site suspension affects the hydrodynamic
modelling and how ANN might be able to
bridge this gap in order to improve the
results of the hydrodynamic model affected
by this shortage of measwred data.
Therefore, another simulation was carried
out but this time using data from only two
stations where gauging has been continued
(Tollgate and Salmon Greek). The estimated
flow hydrographs at the outlet for this
simulation are also compared to the
measured values in Fig. 2. As can be seen
from the figure results are not satisfactory
and much worse than the first simulation.
This clearly shows the effect of the absence
of the Macks Creek as a source of data for
the model. In the other word, suspension of
the operation of this gauging site causes
problems for the model.

4. DEVELOPING A NEURAL NET-
WORKS MODEL

A neural network model was developed and
used to predict flow at the outlet point of the
RCEW wusing the same input data as the
hydrodynamic model. In this way the
hydrodynamic model was replaced by a
neural network model. The artificial neural
network architecture used was a three-layer
perceptron  feedforward (MLP) network.
This type of network is normally trained
with the backpropagation algorithm. The

backpropagation rule, propagates the errors
through the network and allows adoption of
hidden processing elements. One hidden
layer with a tangent hyperbolic transfer
function was used, while the output layer
function was a logistic one. To prevent the
model from over training, a small part of
data (10 percent of the measurements) was
specified and entered as a cross-validation
data set. In the first simulation all three
upstream gauging sites (Tollgate, Macks
Creek and Salmon Creek) were used as
sources of data to the model. The data was
divided into three parts to use as training,
testing and cross validation data sets.
February 1 to March 10 was used to train the
model to establish the relationship between
input and output patterns, while the data of
March 11 to April 16 was used as a testing
set to evaluate the performance of the model.
Each set covers at least a peak flow period.
The remaining data (April 17-30) was used
as cross validation data set. The period of
data specified for testing phase was similar
to the period of data used in MIKE 11 in
previous section to be able to compare the
results produced by these two models for a
specific flood. As in the hydrodynamic
modelling, the simulation was repeated here
without data from the suspended gauging site
(Macks Creek) to see how this technique
deals with the problem of data source
reduction. Fig. 3 shows the outputs of the
model in testing phase in both first and
second simulations. It must be mentioned
that in testing phase, trained model has been
evaluated by using new data, which had not
been used in training or cross-validation.

Fig. 3 shows that removal of the Macks
Creek data from the ANN model actually
caused a significant improvement in the
predictions. In addition to the figure the
values of R? and RMSE indicate this
improvement quite clearly. R increases from
0.54 for the result of the first test (using all
three sites) to 0.80 for the results of the
second test (without data from suspended
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Fig. 3. Estimated flow for the outlet of the RCEW using ANN versus the measured values (with and without
data from Macks Creek).

site). RMSE also decreases from 2.814 in
first test outputs to 1.081 in the second test
outputs. This behaviour was not what was
expected. In view of the above it was
decided to carry out a simulation after
removing a second source of data (Salmon
Creek) and therefore use data only from
Tollgate, which is located across the main
stream and for which the data shows more
correlation to those of the outlet. Results of
this simulation however showed that
removing Salmon Creek data from the
model has affected the results by decreasing
the accuracy. R* and RMSE were calculated
as 0.788 and 1.327 for the outputs of this
simulation. Therefore the neural network
model has produced its best possible results
in the second simulation (using data from
Tollgate and Salmon Creek).

5. DEVELOPING A HYBRID MODEL

In this part a combination of two techniques
(hydrodynamic and ANN) was used to
predict flow at the outlet of the RCEW. To
improve the accuracy of the hydrodynamic
model, an artificial neural network was
employed to estimate the errors of

hydrodynamic modelling results. Different
architectures such as Radial Basis Function,
Recurrent Network, Time Lag Recurrent
Network and Multi-layer Perceptron (MLP)
were used and the predicted errors were
compared to the actual errors. The MLP gave
the most accurate results and therefore it was
selected as the neural network architecture to
be combined with the hydrodynamic model.
The error of the hydrodynamic model

estimations was calculated using the
following formula:
Ep = Xobs ~ Xest

where E, is the error of the estimated pattern,
Xops is the observed value and Xy is the
estimated value. The ANN model was
trained using Tollgate measured flow data
and MIKE 11 outputs for the outlets as input
to the ANN model and the difference
between MIKE 11 outputs and the measured
values for outlet (error of MIKE 11
estimation, EP) as output of the neural
network model. Hourly flow data for the
period of February 1 to April 30, 1982 was
used for this simulation (similar to that used
in hydrodynamic and ANN models in
previous sections). The prediction of error
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Fig. 4. Optimised results of the MIKE11 for the outlet of the RCEW using ANN versus measured values (with
and without data from Macks Creek).

for the first (using all three stations) and
second (without Macks Creek)
hydrodynamic simulations was carried out
separately. The data sets for training, testing
and cross validation were the same as in the
previous ANN modelling. By consideration
of the predicted errors, the results of
MIKE11 were improved (Fig. 4). This
improvement was obtained by addition of
the amount predicted as the error of MIKET 1
(by ANN model) to the outputs of MIKE 11.
The combination of a hydrodynamic model
and ANN caused a clear improvement in the
results. It would appear that the combination
of these two techniques for this specific
application uses the potential of both
methods (Fig. 4). The optimised flow
hydrograph of the MIKE11 model for the
outlet of the RCEW using ANN after
suspension of the Macks Creek gauging site
(without using data from this site) is also
shown in Figure 4. The results have been
improved considerably in comparison to
Fig.2, which shows the results of the
hydrodynamic model for the same
conditions (with and without data from
Macks Creek). The results shown in figure 4

also indicate an improvement in prediction
of the peak flow in comparison to the results
of the ANN model (Fig. 3). In general, the
predicted values for the low flow period
seems closer to the actual values compared
to the high flow period predictions (the peak
flow period of the hydrographs). For
example the ANN model using all three
gauging sites (Fig. 3) performed very well on
prediction of the low flow but its output for
peak flow period is overestimated. To view
the performance of the models for peak flow
prediction with  greater clarity, the
hydrographs produced by the hydrodynamic
model together with optimised hydrographs
for both first and second simulations have
been shown in Fig. 5.

For the hydrodynamic model alone, the
outputs are generally underestimated. This is
mostly due to the absence of a part of the
catchment runoff as a boundary condition of
the model. The south sector of the catchment
has the most precipitation and runoff and
most of this flow is measured at the Tollgate
site. The flow measured in two other main
tributaries (Macks Creek and Salmon Creek)
are also considered to the model but there are
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still several small tributaries draining about
40% of the catchment that have no data to
enter in the model. Underestimation of
predictions from the hydrodynamic model is
10 be expected as part of the catchment is not
contributing to the model. The unsatisfactory
results produced by the ANN model alone is
in fact a complicated task, which needs to be
explained here. Neural network modelling is
a black box method and establishment of an
efficient input-output relationship is strongly
the case and data dependent,

] /.‘ 7 \\\
=15 If T JII
s \
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T s
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S =
4 7 10 13 16 19 22 25 28 kA
Time (hr}
[==M{3) == M(2) -~ M+ANN[T) —— M+ANN{Z) —— Measured
(a)
3.5
2.5
=
Y

=ov T = NN N Mmoo g g
Time {hr)
—e—M(1) —— (2} —— ANN {1) = ANN (2} |
== MEANN(T)  —a— M+ANN(2) -8 Actual flow |
(b)

Figure 5 Output of the models for (a) a period of high
flow (b) a period of low flow

The reliability of the outputs is mostly
dependent on these relationship established
between the inputs and outputs. A strong
relationship in the training phase normally

gives the most accurate output in the testing
phase (as long as the testing data set is in the
range of training data and the model is not
over trained). The strength of this
relationship depends on the correlation
between the data series used as inputs and
outputs. In most cases this correlation
depends on the range, order and nature of
data sets rather than closeness of the values
or the number of input patterns. Removing
the data of a gauging site in the present case
removes the flow data of a part of catchment
from the hydrodynamic model boundary and
causes undercstimation of the outputs.
However, in the neural network model
removing the Macks Creek data caused
better correlation between the combination
of Tollgate and Salmon Creek data and the
outlet data, and finally leads to better
performance of ANN model. Even
simulation with only one input pattern
(Tollgate data) produced results better than
the simulation with three input patterns due
to the facts came in previous sentences. In
modeling with this technique there are no
certain rules to set all the required
parameters to reach desirable results, and
trial and error is the only way to improve the
output accuracy. Replacement of the
hydrodynamic model by a neural network
model with the same input data produced
results completely different from the
hydrodynamic meodel. For the low and
normal flow discharge, ANN produced
results which are quite close to the measured
values. However, in prediction of the high
flow discharge (flood wave) the outputs are
considerably over estimated in contrast to the
hydrodynamic model. A combination of
these two techniques produced outputs that
were more accurate than the results of the
models individually. To evaluate the
accuracy of the results statistically, two
criteria were used: coefficient of efficiency,
RQ, and root mean square error, RMSE. For
the first simulation (before suspension of a
gauging site in the caichment), the
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coefficient of efficiency, R?, increased from
0.643 for the results of the hydrodynamic
model to 0.915 for the results of the
combined model. The root mean square error
(RMSE) also decreased from 0.936 m’/s to
0.718 m’/s. For the second simulation (after
suspension), neural networks improved the
results by increasing R? from 0.237 to 0.872
and decreasing RMSE from 1.324 to 0.980.

6. CONCLUSIONS

This study, which investigated the role of the
ANN technique as an output corrector of the
hydrodynamic modelling procedure, shows
that artificial neural networks can play a
very effective role in obtaining more
accurate results from  hydrodynamic
modelling. This clearly indicates that new
machine learning techniques like neural
networks can be coupled with existing
hydrodynamic approaches to produce more
sophisticated  results, which will be
practically helpful. In addition to usefulness
of this combination in practical water related
projects and plans, it opens up new research
opportunities to enhance ability of the
existing methods.
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