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Abstract: Research on the application of artificial neural networks to the prediction
of runoff from ungauged catchments is presented. Available catchment descriptors
have been used as input data and the index flood as output. Different types and
numbers of catchment descriptors were used to ascertain which gave the best
relationship with the hydrological behavior and flood magnitude. Different
architectures of ANN were developed and evaluated. Results show that the
selection of pooling groups of catchments either randomly or according to
geographical proximity does not produce desirable results. Therefore,
hydrologically similar catchments were clustered using the Flood Estimation
Handbook software and this improved the accuracy of the predictions. Finally, a
comparison of the ANN approach and the Flood Estimation Handbook is described
that shows the advantages of the ANN approach.
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INTRODUCTION

For crop irrigation, water supply for wban communities and more latterly, power
generation and industrial supply, human civilisation has always developed along rivers.
These advantages have been counterbalanced by the danger of flooding: the regularity of
which 13 mndicated by the levees or flood banks built along many major rivers m the past.
These and other flood alleviation techniques require knowledge of the hydrology of the
catchment area, because, to calculate water levels in a river, it is necessary to obtain
estimates of the discharge into the system from runoff. If the catchment under consideration
has a history of gauging, as is often found in developed countries, then this can be used.
However, in the case of ungauged catchments that are often found in developing countries
this is not possible. Many countries that are prone to flooding have not had the
infrastructure to collect data in the past and in these cases inproved methods for calculating
runoff from ungauged catchments are desirable.

The technique of artificial neural networks has been found to be a powerful tool for
solving different problems in a variety of applications ranging from pattern recognition to
system optimisation. A neural network 1s an mterconnected assembly of simple processing
elements, umts or nodes, whose functionality 1s loosely based on the animal neurone. It is
based on learning the process from inputs to outputs using a training data set and it mimics
these for a new set of inputs to reach corresponding outputs. The ANN technique is widely
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used as an efficient tool in different areas of water research. Tt has been used to process
ramfall-runoff relationships (Hsu ef al., 1995; Mmns and Hall, 1996; Dawson and Wilby,
1998); flow prediction based on historical flow data (Karunanithi et al, 1994), rainfall
forecasting (Luk et al., 1998), regional flood frequency analysis (Burn, 1990), stage-discharge
relationships (Bhattacharya and Solomatine, 2000) and estimation of flood at ungauged
catchments (Dawson et al., 2006). A more detailed review can be found elsewhere
(Dastoram, 2002).

The present study focuses on the application of artificial neural networlks for river flood
prediction m ungauged catchments using catchment descriptors (Dastoram and Wright,
2001). In addition, consideration has been given to identifying the factors that have the most
significant affect on flood flows from ungauged catchments as well as the most suitable
neural network architecture for this particular application (Dastorani, 2002).

In order to evaluate the use of neural networks it is necessary to have a large amount
of data for both the inputs and outputs of the neural network. Therefore, although the
purpose of the research was to study methods for ungauged catchments, it was necessary
to use data from gauged catchments to train and test the method. A comprehensive data set
is provided within the Flood Estimation Handboole (FEH) and this was used here. The FEH
gives data for the catchment characteristics and flow from each catchment. The former are
used as inputs and the latter as outputs for a neural network. In this way the swtability of
the ANN for calculations in ungauged catchments can be assessed.

Once this has been carried out and successfully tested it should be possible to use a
neural network trained on a gauged catchment to predict flow from other, similar, ungauged
catchments. Even where this 15 not possible the results identifymmg which and how many
catchment characteristics are important gives insight into the behavior of the catchment.

MATERIALS AND METHODS

This study 1s extracted from a research project which was carried out in 2008. Employed
methods and used data are explained below:

Artificial Neural Networks

A neural network consists of a large number of simple processing elements that are
variously called neurones, units, cells, or nodes. Hach neurone is connected to other
neurones by means of direct communication links, each with an associated weight. The
weights represent information being used by the network to solve a problem. Neural
networks operate on the principle of learning from a training set. They must be trained with
a set of typical input/output pairs of data called the training set. The final weight vector of
a successfully trained neural network represents its knowledge about the problem. In general,
it is assumed that the network does not have any a priori knowledge about the problem
before 1t 15 tramed. At the begimning of training the network weights are usually mitialised
with a set of random values.

There are a variety of neural network models and learning procedures. Two classes of
neural networks that are commonly used for prediction are feed-forward networks and
recurrent networks. The neural network approach is a black-box approach and it is therefore
not always necessary to have much detail about the physical processes mn constructing an
ANN. However, some physical understanding can be useful in choosing appropriate inputs.
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Fig. 1: A simple architecture of the MLP neural networlk

Neural networks are 1deally suited for the modelling of highly non-linear relationships
between inputs and outputs. In this research the NeuroSolutions software environment
produced by NeuroDimension, Ine. was used to construct the neural network models. Using
data from the Flood Estimation Handbook (FEH), ANN models with different architectures
were constructed and applied to training and validation sets of data to find the best ANN for
this application. Different values for parameters such as learning rate, number of processing
elements, munber of ludden layers, type of activation and output functions were tested for
each architecture as well as for each set of data. This allowed for the selection of appropriate
arclitectures and parameters. [t was found that the Multi-Layer Perceptron (MLP) network
with three layers, a Tangent Hyperbolic Function i the mdden layer and a Sigmoid function
in the output layer was the most accurate network for the work presented here. Figure 1
shows a simple architecture of a typical 3-layer feedforward neural network as has been used
mn this work. An advantage of the MLP in terms of mapping abilities 1s its capability of
approximating arbitrary functions.

This type of the neural network is normally trained with a backpropagation algorithm.
The backpropagation rule propagates the errors through the network and allows adaption
of the hidden processing element. Tt works with error correction learning to update the
weights. Full details of this approach can be found elsewhere (Dastorani, 2002).

In this study each set of data was split into traming data, cross validation data
(to prevent over training) and testing data to evaluate the performance of the trained model.
In each pooling group, 60% of the catchments were used for traiming, 10% for cross
validation and 30% for testing.

The number of Processing Elements (PEs) for the hidden layer of the neural networlk was
evaluated. Results were obtained for a pooling group of catchments with seven inputs and
an error measure (R*-squared correlation coefficient between predicted and measured values)
was calculated for different numbers of PEs (10, 14, 50, 100, 150 and 200). Results showed that
the vanation of the accuracy for different PEs 1s not considerable, although there 15 a
decrease when the number of the PEs passes 100. In view of these results, the number of PEs
used in this work was taken as 14 which is twice the number of input patterns.

Identification of Appropriate Model Inputs

As mentioned above, catchment descriptors talken from the FEH have been used as
mputs to the ANN. The number of input patterns chosen 1s important m neural network
modelling, as it can have considerable mnfluence on the ability of the model. A very small
mumber of inputs may cause the network to insufficiently recognise the nature of the
underlying problem when mapping the mput/output relationship. Conversely, too large a
number of mputs may lead to over-complexity of the relationship and consequent poor
performance. From a hydrological point of view the optimum state is to use the minimum

401



Asian J. Applied Sci., 3 (6): 399-410, 2010

OR train. OR test MR ave.
1.000

0.300 1
. 06001
~
0.400 4
0.200 1
0.000 .

PR LALS

]

Fig. 2: Correlation coefficient (R*) between measured flow and ANN predicted flow by using
different numbers of catchment descriptors. Lines are included to show trends

number of inputs whilst keeping the results to a desirable or acceptable level of accuracy. In
addition to the number of descriptors the type of descriptors 1s also important, as the amount
of runoff usually has a stronger relationship with some of the catchment descriptors than
others. Identification of these descriptors and the use of them will help to improve the
accuracy of the outputs and give insight into the physical processes within the catchment.

For different groups of catchments several simulations were carried out using different
numbers and types of descriptors and the results were compared to identify the best
combination to use as input to the ANN. Figure 2 shows the correlation coefficient with
different mumbers of inputs. The correlation coefficient quantifies the difference between the
measured values and the outputs from the ANN simulations. From Fig. 2, it is clear that
models with 5-9 inputs give the more accurate results. Through a heuristic process,
comparing results with different combinations of catchment descriptors, a total of
7 descriptors were selected as the optimum for further simulations. These were:

AREA = Catchment drainage area using an IHTDM-derived boundary (km?)
BFIHOST = Base Flow Index derived using the HOST classification
SPRHOST = Standard Percentage Runoff derived using the HOST classification

FARL = Index of Flood Attenuation attributable to Reservoirs and Lakes

SAAR = Standard period (1961-1990) Average Annual Rainfall (mm)

SMDBAR = Mean SMD for the period 1941-70 calculated from MORECS month end values
(mm)

PROPWET = Proportion of time when SMD was <6 mm during 1961-90

Randomly and Geographically Selected Group of Catchments

At this stage, an mitial group, containing 52 catchments (called group 1), was selected
randomly from all over the United Kingdom. After the members of the group had been
selected, all catchment descriptors were extracted from the data set and prepared for entering
mto the model. A second group, contaimng 52 catchments (called group 2), was selected
according to an initial consideration of similarity in terms of drainage area and geographical
location. All catchments in this group have an area of less than 100 km®. In each group, 60,
30 and 10% of the members were used for tramnming, testing and cross validation purposes,
respectively.

Prediction Results for Pooling Groups

The FEH software itself uses a procedure which groups catchments based on
hydrological similarities and so 1t was decided to use this to form pooling groups. The ANN
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was trained based on these pooling sets with the same split for training, cross-validation and
testing (60, 10 and 30%). In this part three pooling groups each one containing 52 catchments
were formed which called group 3 to 5.

RESULTS

Figure 3 and 4 show the results obtained from the traimng and testing phases of the
simulation using the random selected group of catchments (group 1). As can be seen from
Fig. 3 and 4, the accuracy of the results is not satisfactory, especially in the testing phase
which is important in model applicability evaluation. The correlation coefficients (R?) for the
training and testing phases for this are 0.96 and 0.67, respectively. The results taken from
geographically selected groups (selection of the catchments due to geographical proximity)
for training and testing phases are shown in Fig. 5 and 6, respectively. Despite that fact that
the second test catchments were selected from same geographical location and the same
category of dramage area (all under 100 km?), there is no considerable difference in accuracy
relative to the first group where the catchments were selected randomly. For this group the
values of R’ for training and testing phases are, respectively 0.82 and 0.62. In Fig. 5 and 6
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Fig. 3: Results obtained from ANN model for group lagamst the actual values (traming
phase)
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Fig. 4 Results obtained from ANN model for group 1 against the actual values (testing
phase)
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Fig. 5. Results obtained from ANN model for group 2 against the actual values (training
phase)
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Fig. 6: Results obtained from ANN model for a group 2 against the actual values (testing
phase)

MAMEF is mean annual maximum flood. Although, in the training phase the predicted flow
data and measured flow values show a relatively high correlation coefficient, this is not
replicated in the testing phase, which is more important in terms of the evaluation of model
performance. This shows that the model cannot learn the process well enough in the training
phase to be able to reach appropriate weights for the new set of data in the testing phase.

In view of the poor results and the absence of any improvement through the selection
of catchments by relative similarity in drainage area and geographical location, it was decided
to pursue a more sophisticated classification method for selecting hydrologically similar
catchments. Figure 7 and 8 show the results from group 3 (a pooling group of 52 catchments
for the subject site of Tay) in both training and testing phases. For this test R* was 0.92 and
0.87 for training and testing phases, respectively. For the second pooling group called
group 4 (formed for the subject site of Thurso with 52 catchments), the results are shown in
Fig. 9 and 10 in training and testing phases. For this test R* was 0.92 and 0.84 for training and
testing phases, respectively.

For these hydrologically similar pooling groups the results were improved by about
20 and 22% for the groups 3, 4 and 5, respectively (Fig. 8-10). The outputs of the model were
closer to the measured values than before especially mn the testing phase indicating that the
pooling allowed the artificial neural networks to produce weights that were more generally

404



800
700 1
600 1
5001
400 1
3001
200 1
100 1

ANN index flood (m’sec ™)

Asian J. Applied Sci., 3 (6): 399-410, 2010

+*

0

T L] L T ¥ T L}
100 200 300 400 S00 600 700 800 900
Meagured index flood (m’sec™)

Fig. 7. Results obtained from ANN model for group 3 (pooling group) against the actual
values (training phase)
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Fig. 8: Results obtamned from ANN model for group 3 (pooling group) against the actual
values (testing phase)
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Fig. 9: Results obtamed from ANN model for group 4 (pooling group) against the actual
values (training phase)

applicable across training and testing data. This appears to indicate that hydrological
similarity of catchments has a sigmficant effect on the accuracy of the neural network

results.
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Fig. 10: Results obtained from ANN model for group 4 (pooling group) against the actual
values (testing phase)
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Fig. 11: Heterogeneity factor (H,) of WINFAP-FEH and coefficient correlation between
predicted and measured peak flow (R*) in testing phase for 6 pooling groups

Relationship Between Accuracy and Group Homogeneity

Given the considerable improvement i accuracy after forming the groups of
hydrologically homogenous catchments, it was decided to analyse the relationship between
the accuracy of the model results and the homogeneity of the pooling groups. The purpose
was to consider the effects of homogeneity of the formed groups on the outputs of the ANN
models. To meet this purpose, more pooling groups for subject sites located in different parts
of the UK were formed and used to predict the flow. The R’ was plotted against
heterogeneity factor for each pooling group, H,. H, shows the degree of heterogeneity for
the catchments in each group with a lugher value of H, representing a ligher degree of
heterogeneity.

Initially the number of pooling groups was increased from 2 to 6. The correlation
coefficient for each of these is plotted in Fig. 11 and this confirms the clear effect of forming
hydrologically similar groups of catchments on the performance of the artificial neural
network. It can be seen that for the groups where the homogeneity 1s poor the model
accuracy is also poor. The FEH suggests that a pooling group is homogenous when H,<2,
heterogeneous when 2<H,<4 and very heterogeneous when H, 4. Using this definition, the
results presented here show that for homogenous pooling groups there is a good agreement
between predicted and measured flow.
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Fig. 12: Relaticnship between the H, (pecoling group hetercgeneity factor) and the R’
(squared correlation coefficient between predicted and measured flow) in training
and testing phases of ANN for the pooling groups formed by WINFAP-FEH

The mumber of pecling groups was extended further to 12 and the results for H, and R’
are given in Fig. 12. Again, it can be seen that a decrease in the heterogeneity factor leads
to an increase in the correlation coefficient. This confirms this trend and demonstrates the
unportance of pooling m the construction of neural networks for ungauged catchments.
Another noteworthy feature mn this figure can be seen by compering the training and testing
phases: homogeneity has a greater effect on accuracy in the testing phase than during the
training. This demonstrates that whilst a neural network may be able to model heterogeneous
data in the traming phases, it is to an extent over-trained and unable to reproduce this
accuracy on the heterogeneous testing data set. This also emphasises the general pomt that
good performance in the training phase should not be taken as an indication of general
suitability of a neural networle: the testing phase is still required.

Comparison of the Results to FEH Method

The results presented above show that neural networks can be successfully used to
estimate run-off from an ungauged catchment. Further, they demonstrate the importance of
pooling hydrologically similar catchments. However, the pooling used was based on the FEH
which raises the question of whether the neural network 1s any better than using the FEH
approach alone. The FEH presents a method to estimate annual maximum flood (QMED) for
rural catchments (JRBEX<0.025) using catchment descriptors. In this method QMED is
predicted using following formula (FEH volume 3):

AE 1.560 2642
QMED =1.172AREA {SAARJ FARL [§E§EQ§I

1211
0.0198RESHOST (1)
1000 100

AF 1s the area exponent calculated by:

AEzlfoﬂlﬂn{AREA} (2)
0.5
RESHOST is a residual soils term obtained from HOST data:

~0.987 3)

RESHOST=IHHHOST+130{§EE§E§IJ
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Results using this formula were compared to results from the testing phase of the neural
network for four pooling groups. Both groups of catchments (groups 3 and 4) had an
urbanisation factor less than 0.025 as stipulated for the above method. R2 for the results of
FEH for groups 3 and 4 were, respectively 0.66 and 0.76 while for the results of ANN these
were, respectively 0.87 and 0.84. The total number of catchments contributed in this
comparison (both groups) was 32.

These results show that the neural network approach is capable of presenting results
with higher accuracy mn comparison to the FEH method, as for all cases of this research
neural networks give significantly improved accuracy.

DISCUSSION

When an ANN model for randomly or geographically formed groups of catchments was
constructed the initial results obtained were not satisfactory. However, after employing the
FEH to form pooling groups, the accuracy of the results produced by neural networks was
umproved considerably. This 1 due to the homogeneity of the catchments selected m pooling
groups. In clustering the catchments by this method hydrological factors are considered and
hydrological responses through the members of these pooling groups are more similar than
the catchments clustered randomly or according to geographical proximity. Using descriptors
extracted from hydrologically similar catchments in the ANN model gives a more realistic
representation of the whole drainage area. Tt is interesting to note that, as found in other
applications, the ANN, despite being a black-box method, is sensitive to the physical
situation 1 the underlying data. The output of the model i the testing phase compared with
the training phase was sigmificantly improved by the pooling, which demonstrates that the
neural network has captured the situation applying to the whole pooling group rather than
being trained to the specific sub-set chosen for training.

It was also found that specific catchment descriptors have a particularly ligh influence
on flood magmitude. The following descriptors were found to have most influence on the
results: AREA, SAAR, BFTHOST, SPRHOST, FARL, SMDBAR and PROPWET. These
descriptors represent characteristics such as drainage area, rainfall, river base flow index,
lakes and reservoirs and catchment soil property and moisture and can be seen to be the
most relevant physically, thereby confirming the ability of the neural network to identify the
dominant input parameters. These characteristics are very important in runoff analysis and
are generally those used in empirical methods of flood prediction.

Consideration of the pooling group heterogeneity factor and the closeness of the
predicted results to the measured values indicate that the forming of the pooling groups is
efficient only when the groups have a high enough level of homogeneity. In this study, for
the groups with H, (heterogeneity factor) less than 1, the neural network model produces
predictions close to the measured values. It can be said that ANN seems to be an appropriate
tool to model river flow and predict peak flows for ungauged catchments or catchments with
a short record period when a suitable method is used to identify hydrologically similar
catchments in the region. This work has shown that selection of the catchments to form
pooling groups based on geographical proximity i1s not efficient. Homogeneity of the
catchments should be considered based on hydrological parameters, which show the general
similarity in reaction to precipitation, runoff generation and hydrological responses of the
catchments.

By comparing the results of the ANN procedure presented in this research to those
produced by the FEH method, 1t was shown that the accuracy of the outputs presented by
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Table 1: Coefficient of efficiency (R?) between the measured flow and predicted flow by ANN (presented in this research)

and FEH
Coefficient of efficiency (R?)
Groups FEH ANN
Derwent. 0.745 0.812
Thurso 0.766 0.842
Urel 0.501 0.633
Tay 0.658 0.836

ANN is higher. For both pocling groups considered, R* for the ANN method is higher than
for the FEH method. The difference in R’ is between 21 and 8%, respectively for groups 3 and
4. This comparison shows that ANN can be an appropriate alternative to produce more
practical predictions in ungauged catchments.

Finally, it can be summarised that in addition to worl on the type of neural networks
best suited to this problem, the type and number of catchment descriptors needed to obtain
acceptable accuracy was assessed. When choosing the right type and number of catchment
characteristics as inputs, this techmque gives an efficient tool to solve the problem of sites
where the lack of data limits the efficiency of other modelling tools. In terms of flow
prediction for such sites, it was found that appropriate selection of the members of the
pooling groups was necessary. It 13 concluded that thus should be done using a
sophisticated method, which can select the catchments according to their similarity in
response to the hydrological events. Other measures such as geographical proximity do not
give as good results. Tn comparison to predictions from the equation given in the FEH, the
results obtamed from this research were more accurate.

From this work it can be stated that if a suitably pooled group of catchments 1s found
where gauged data is available for a number of the catchments, a neural network can be used
to make predictions for the ungauged catchments.

As mentioned earlier, Dawson et al. (2006) used ANN for estimation of floods at
ungauged sites in United Kingdom and compared the results of ANN to those of step-wise
multiple regression (SWMILR) and also FEH methods. For index flood and in rural condition
(which is also the subject of present study), they calculated the coefficient of efficiency 0.88,
0.71 and 0.81, respectively for the mentioned methods. These support the findings of the
present research in which ANN can predict floods mn ungauged sites and in comparison to
most of existing methods, the results of ANN show higher accuracy. Table 1 shows that the
results of this study is almost to those of Dawson et al. (2006).

In future work it would be of interest to use neural networks to automatically sort and
pool the catchments into groups (Hall and Minns, 1999).

LIST OF SYMBOLS
ANN = Artificial Neural Network
FEH = Flood Estimation Handbook
MLP = Multi-Layer Perceptron
R = - XX
2

i(xminhs)

P
PE = Processing Element
R’ = Squared coefficient of correlation between predicted and measured values,

calculated by the following equation:
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AREA = Catchment drainage area using an THTDM-derived boundary (km2)
BFTHOST = Base Flow Index derived using the HOST classification

SPRHOST = Standard Percentage Runoft derived using the HOST classification

FARL = Index of Flood Attenuation attributable to Reservoirs and Lakes

SAAR = Standard period (1961-1990) Average Annual Rainfall (mm)

SMDBAR = Mean SMD for the period 1941-70 calculated from MORECS month end

values (mm).
PROPWET = Proportion of time when SMD was <6 mm during 1961-90

MAMF = Mean Annual Maximum Flood.

UK CEH = United Kingdom Centre for Ecology and Hydrology

H2 = Heterogeneity factor

WINFAP-FEH = Windows Interface Flood Analysis Program-FEH

QMED = Annual maximum flood for rural catchments

URBEX = Urbanisation factor

HOST = Hydrology of Soil Type.

RESHOST = Residual Soils term obtained from HOST data
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