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ABSTRACT 
 
    In univariate quality control, the S  Chart have been useful in determining whether the 
process dispersion is in-control or not. It would be very useful to have a similar chart 
applied to the multivariate case. The existing methods do not provide all the information 
that a quality control practitioner would like to possess such as the indication of which 
variables are causing the process to be out-of-control. In this paper, we propose a method 
which allows us to simultaneously control the overall process quality characteristics and 
to identify the responsible variables leading to an out-of-control condition. This method 
is based on the adequate selection of the symmetric square root of the correlation matrix.  
    The associated critical region is also discussed. The process considered is assumed to 
be multivariate normal with parameters known from historical data or estimated from a 
large sample. We call this method, "Multivariate Shewhart Chart (MS Chart)", because it 
reduces to the Shewhart Chart when the process involves only one variable. The 
procedure has been illustrated with the help of two examples. 
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INTRODUCTION 
 
    Quality control problems in industry may involve more than a single quality 
characteristic, i.e. a vector of characteristics, and when these characteristics are 
correlated, a more appropriate approach would be to monitor them simultaneously. This 
has formed the basis of extensive work performed in the field of multivariate quality 
control. Shewhart, who is famous for the development of the statistical control chart 
(Shewhart Charts) first recognized the need to consider quality control problems as 
multivariate in character. The general multivariate statistical quality control problem 
considers a repetitive process where each item is characterized by p-quality 
characteristics, pXXX ,...,, 21 . Because of the chance causes inherent in the process, 
these quality characteristics are random variables. Because of the independency between 
the characteristics, the random variables, are correlated. The problem thus requires a 
multivariate approach. The underlying probability distribution of the p quality 
characteristics is assumed to be multivariate normal with mean vector µ  and covariance 
matrix Σ . The multivariate approach to quality control was first widely publicized in 
1947 and 1951 by Hotelling [16] in the testing of bombsights. 
    In a set of related papers, Jacson [17, 18] and Jackson and Morris [21] use an elliptical 
control region and extended Hotelling’s procedure for use the principal components in 
monitoring a photographic process. Ghare and Torgersen [12], Alt [3, 5], and Alt et al. 
[6] examined the simultaneous control of several related variables when the data is in the 
form of rational subgroups. Some of the conclusions and results presented in the papers 
by Jackson [17, 18] and those discussed in Ghare and Torgersen [12] require certain 
alterations. Specific details are in Alt [4, 5]. Alt and Deutsch [7] determined the 
appropriate sample size and control chart constant by extending the univariate scheme of 
to multivariate data. Alt et al. [8] developed control charts for when there is correlation 
across the data vectors as well as within each vector. In the univariate case, the process 
dispersion is monitored by sigma charts or range charts. Alt [3] and Alt et al. [1] develop 
and present the multivariate counterparts. 
    There are two distinct phases of control chart practice. Phase I consists of using the 
charts for (1) retrospectively testing whether the process was in control when the first 
subgroups were being drawn and (2) testing whether the process remains in control when 
future subgroups are drawn. These are two separate and distinct stages of analysis.  
    Phase II consist of using the control chart to detect any departure of the underlying 
process from standard values ),( 00 Σµ . In this paper, we consider Phase II. 
 
 
 
Notations and Assumptions 

µ -Mean vector, σ -standard deviation, Σ -covariance matrix, R -correlation matrix, 2
1

R -
square root of the covariance matrix, X ′ - transpose of X , 2

1, αχ −n  -chi square value. The 
process considered, is assumed to be multivariate normal and process parameters, µ and 
Σ known or estimated from a large sample. 
 
 



CONTROL SHEWHART CHARTS FOR DISPERSION ( MS CHARTS ) 
 
    It was assumed that the process dispersion remained constant at 0Σ . This assumption 
must be validated in practice; methods for investigating it are presented in this section.  
Several different control charts for process dispersion will be presented since different 
statistics can be used to describe variability. To lay the groundwork for the development 
of control charts for multivariate data, first consider the case of one quality characteristic. 
    Let 2S  denote the (unbiased) sample variance for a random sample size n from a 

process. When the process variance is 2
0σ , then 2
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, and an 2S -chart is 

obtained by pivoting on this expression. The control limits are presented as Case1a in 
Table 1. For successive random samples of size n, this control chart can also be viewed as 
repeated tests of significance of the form 2

0
2

0 : σσ =H  vs. 2
0

2
1 : σσ ≠H . A control chart 

for S  is obtained by taking the square root of these limits (Table 1, Case 1b). Both charts 
are presented in Guttman and Wilks [14]. 
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    The next two process dispersion charts do not utilize the complete distributional 
properties of the sample statistic but only the first two moments. It can be shown that 

20)( cSE ′= σ  and )1()( 2
2

2
0 cSVar ′−= σ , where tables of 2c′  for n=2,…,25 are given in 

Johnson and Leone [21]. Since most of the probability distribution of S  is contained in 
the interval )(3)( SVarSE ± , it seems reasonable that a control chart for S  would have 
control limits corresponding to this interval (Table 1, Case 2). The lower control limit is 
replaced by 0 for 6<n . Since S  is not normally distributed, these control limits can not 
be thought of as probability limits [11]. The same rationale applies in development of 
what is traditionally referred to as the sigma chart, except that V is used in place of S , 
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(Table 1, Case 3). Tables of 2c  and the 1B  and 2B  factors 

are available in Duncan [11]. 



    Although the range chart and the standardized range chart are used widely to monitor 
univariate process dispersion, they will not discuss here since the multivariate analog is 
intractable. 
    For multivariate data, the first chart to be considered is the along of the 2S -chart 
(Table 1, Case a1), which is equivalent to repeated tests of significance of the form 

2
0

2
0 : σσ =H  vs. 2

0
2

1 : σσ ≠H . Here 00 : Σ=ΣH  vs. 01 : Σ≠ΣH . Using the asymptotic 
likelihood ratio test result [9], one would compute the following statistic for each random 
sample: 
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    Where Α  denotes the sum of squares and cross-products matrix and tr is the trace 
operator. Note that Sn )1( −=Α , where S  is the ( pp× ) sample variance-covariance 

matrix. If the value of this test statistic plots above the UCL=
2

,2/)1( αχ +pp , the process is 
deemed to be out of control. Refer to Table 2, Case 1. Korin [24] found that the 
asymptotic chi-square approximation, slightly modified, is quite good even for moderate 
n. he proposes an F  approximation that appears to be better. 
 
    Table 2: Multivariate Dispersion Control Charts (Phase II) 

Statistic LCL CL UCL 
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    a. Refer to Multivariate Quality Control [2] 
 
    A widely used measure of multivariate dispersion is the sample generalized variance, 
denoted by S , where S is the ( pp× ) sample variance-covariance matrix. The sample-
generalized variance is the basis for the other multivariate dispersion charts to be 
considered. However, Johnson and Wichern [23] present three sample covariance 
matrices for bivariate data that all have the same generalized variance and yet have 
distinctly different correlation, r=0.8, 0.0, and -0.8. "Consequently, it is often desirable to 
provide more than the single number S  as a summary of S." Thus a control chart for S  
should be used in conjunction with the univariate dispersion charts. Suppose there are 
two quality characteristics. Since 2

1
2

1

0/)1(2 Σ− Sn  is distributed as 2
42 −nχ . This yields 

the control chart limits in Table 2, Case 2. 
    When there are more than two quality characteristics, one may employ Anderson's 
asymptotic normal approximation [9] or the approximation suggested by Gnanadesikan 
and Gupta [13]. 
    Another S -control chart can be constructed using only the first two moments of S  

and the property that most of the probability distribution of S  is contained in the interval 

)(3)( SVarSE ± . The control chart limits are presented in Table 2, Case 3. 
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    The Multivariate Shewhart Charts is presented beginning with the simplest case of a 
multivariate quality control problem as follows: Consider a process that depends upon 
two characteristics 1X  and 2X  that are completely independent of each other. Suppose 
these two variables are normally distributed with mean zero and variance 11211 == σσ . If 
one sets an overall type I errorα , then both of the critical regions depicted in Figure 1-a 
& 1-b can be used to monitor the process mean. 
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                                  Fig 1-a: Square Critical Region                          Fig 1-b: Circular Critical Region 
 
Therefore, we can find a radius r and a length l such that 
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For example, when 05.0=α , the radius and the length will be 4477.2991.5 ==r and 
237.2=l (See Table 3 for different values of α  and p .) The value 5.991 is 

precisely 2
95.0,2χ .  

 
      Table 3: Table of critical values for different values of P andα  

5 4 3 2 1 α−1  
2.311 2.227 2.114 1.949 1.645 0.90 
2.570 2.491 2.388 2.237 1.960 0.95 
3.089 3.028 2.934 2.804 2.577 0.99 
3.290 3.227 3.114 3.023 2.808 0.995 
3.720 3.668 3.590 3.488 3.298 0.999 

     
    To control the process using the square as the critical region, we calculate the sample 
mean ),( 21 XnXn . If the point lies inside the box with corners at ),( ll ±± then the 

process is in control. If not, either lXn >1  which makes the first characteristic to be 

out-of-control and/or lXn >2  which, makes the second characteristic out-of-control. 

In either case, the process would be considered to be out-of-control. However, since 
1,0,0 => iX i  then, the lower limit for either case is zero. 

Now consider the matrix 
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and, let C be such that RCC =′ . The random variable CXY =  has a bivariate normal 

distribution with mean zero and correlation matrixR . If we let )2( θρ Sin= ,
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some of the choices for matrix C are 
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According to relation between Sinus and Cosinus, we have, 
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    Note that among these, the matrix oC is symmetric. The decompositions lC and uC are 
called the lower and upper triangular decomposition of R (Chelovsky decomposition) and 
pC is the one used in principal component decomposition. In general any choice of C for 

the decomposition of R is of the form TRC 2
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    We denote this general form of the decomposition of the correlation matrix R as tC . 

Note that when t = 0 we obtain the symmetric decompositions 2
1RCo = and when 

θ±=t  we get the triangular decompositions lC  and uC . When 4π=t , we get the 
decomposition pCC =4π . The transformations XC′  (for any choice of C such that 

RCC =′ ), transforms the circle with radius r to the ellipse 
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    The transformations XCl , XCu , XCp , and XRXCo 2
1

= will transform the square with 
corners ),( ll ±± to the regions lℜ , uℜ , pℜ  and oℜ respectively. Note that in general, the 

transformation tC is a composition of a rotation T and a transformation under 2
1RCo = . 

 
 
 
 
 
 
 
 
 
                    Fig 2-a: Critical Region lℜ                                                       Fig 2-b: Critical Region uℜ  

 
 
 
 
 
 
 
 
           Fig 2-c: Critical Region pℜ                                                               Fig 2-d: Critical Region oℜ  

 
    If X has a bivariate normal distribution with correlation matrixR , the variable 

XCZ t
1−= has a standardized normal distribution with correlation matrix I. If we are only 

interested in the overall control of the process mean, that is, we are not concerned with 
the variables that cause the out-of-control condition, then for any given type I error α  
choose a region ℜ  such that  
 

α−=∫∫ℜ 1),( 2121 dxdxxxf  
 

Where, ),( 21 xxf is the density function of a bivariate normal distribution with correlation 
matrix R . 
Then, 1S ,  2S (With given n sample (Large sample) of size m ) has a approximately 
bivariate normal distribution with: 
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then, choose a decomposition tC of R and take a sample of size n and calculate the 
statistic: 
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    If the point ),( 21 ′kk  lies outside the region, ℜ  we may conclude that the process is 
out-of-control. An equivalent procedure would be to find the image of the region ℜ under 
the transformation made by tC to get tℜ and plot the point ),( 21 SS . If this point lies 
outside the region, tℜ  we may conclude that the process is out-of-control. 
    But if we are concerned about which variable causes the out-of-control condition, we 
must choose a region tℜ whose image under some transformation 1−

tC  is the square with 
corners at ),( ll ±± . The adequate choice of tℜ  and the adequate choice of tC is needed in 
order to draw the right conclusions about the state of the process standard deviation. As 
far as Multivariate Statistical Quality Control (MSQC) is concerned, any transformation 
tC can be used for the purpose of statistical control. 

    The above ideas can be extended to the case of 2>p . The following computational 
procedure can be used to, identify the errant variable(s). 
 
PROCEDURE 
     
    Consider a process involving p characteristics pxxx ,...,, 21 that we wish to control. 

Suppose the mean ),...,,( 21 pµµµµ = variances 22
2

2
1 ,...,, pσσσ and the correlation matrix 

R of this process, are known. Given n samples of size m taken from a multivariate 
normal population, we can normalize the data by subtracting the mean of each 
characteristic and dividing by the corresponding standard deviation. Therefore, we can 
assume that the sample is taken from a multivariate normal population with mean 0 and 
correlation, matrix R . To control the process standard deviation, first set an overall type I 
error α  with individual iα 's satisfying the condition  

)1)...(1)(1(1 21 pαααα −−−=−  
 

    Set all iα 's to be equal if all variables are equally important. In this case the values for 
the individual type I errors is given by 

p
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    Find the values 

i
zbi α= . Find the ),...,,( 21 pSSSS =′ .  calculate the value of the 

statistic: 
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where, ),...,,( 21 pSSSS =′  is the sample standard deviation of the n observations. 



    If 
i
zZi α< for all i's, the process will be in-control. If on the other hand 

i
zZi α> the 

process, will be out-of-control and the variable ix  is responsible for this out-of-control 
condition. 
 
    The above procedure can be displayed in a Chart, supplying information about the 
behavior of the individual characteristics in a multivariate process. Note that if p=1, we 
have the Shewhart S  chart. To illustrate the above procedure, consider the following 
example. 
 
 
EXAMPLE I 
     
    Consider the data for a Carton industrial, Rctcd and Cctcd (two characteristics for 
stiffness of carton) the standard values, either derived from a large amount of past data or 
selected by management to attain certain objectives, are  

x0σ = 2.838, y0σ =4.345, ρ = 0.84 
 

In matrix notation, we have 
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Where, R is the correlation matrix. 
Let the overall type I error be α =0.05 with 

21 αα zz = =2.237. 
Setting )2( θSin = 0.84, θ = 0.498642 and  
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Therefore, square root of correlation matrix will be 
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The values ),( 21 KK , are obtained by the formula 
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    Given 40 samples of size 5, the values ),( yhxh SS , and h=1, 2... 40 along with ),( yhxh SS , 

),( 21 hh KK (for h = 1, 2… 40) are presented in the Table 4. 
    Another multivariate control chart for despersion is S -chart [2], that upper and lower 
limits are  
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Then, 

LCL=1.07089                UCL=146.036 
 

And, 
S =3.09020 

     According to multivariate charts for standard deviation S -chart and recent approach, 
standard deviation of the process is in control. 
 

Table 4: Sample data for Example I, along with the correspondence phK  values 

n xhS  yhS  hK1  hK 2  
1 1.35839 2.23284 -0.56803 -1.78449 
2 0.87563 1.12722 -1.08801 -1.87215 
3 1.50713 1.48628 -0.40782 -1.75748 
4 2.64747 2.11528 0.82045 -1.55041 
5 1.11596 1.23241 -0.82915 -1.82851 
6 1.08588 0.95356 -0.86155 -1.83397 
7 1.31293 0.96703 -0.61699 -1.79274 
8 2.06162 2.09190 0.18943 -1.65679 
9 0.90037 1.18799 -1.06136 -1.86766 

10 1.63316 1.29558 -0.27207 -1.73459 
11 0.80697 0.63251 -1.16196 -1.88462 
12 2.62240 2.79263 0.79344 -1.55496 
13 1.94903 2.17228 0.06816 -1.67724 
14 2.60508 1.71951 0.77479 -1.55811 
15 1.73163 1.56012 -0.16601 -1.71671 
16 1.16484 2.42740 -0.77650 -1.81963 
17 2.27074 3.15219 0.41467 -1.61882 
18 2.53400 2.82669 0.69823 -1.57102 
19 1.22268 0.84206 -0.71420 -1.80913 
20 1.26810 1.54573 -0.66528 -1.80088 
21 1.51699 1.12490 -0.39720 -1.75569 



22 2.20065 1.79217 0.33918 -1.63155 
23 1.99978 1.11309 0.12282 -1.66802 
24 1.21487 0.70610 -0.72261 -1.81055 
25 2.65055 3.70319 0.82376 -1.54985 
26 2.21610 1.53397 0.35582 -1.62874 
27 3.52817 2.66840 1.76905 -1.39049 
28 2.10705 1.80385 0.23836 -1.64854 
29 1.97382 0.64751 0.09486 -1.67274 
30 2.37516 1.68241 0.52714 -1.59986 
31 1.74485 2.02604 -0.15177 -1.71431 
32 1.60755 1.19873 -0.29965 -1.73925 
33 1.26172 2.18296 -0.67215 -1.80204 
34 1.83433 0.76881 -0.05539 -1.69807 
35 1.35289 1.03336 -0.57395 -1.78549 
36 3.28812 3.69191 1.51049 -1.43408 
37 2.05870 2.45654 0.18628 -1.65732 
38 2.99180 3.10227 1.19133 -1.48789 
39 0.98688 0.46198 -0.96818 -1.85195 
40 2.37587 2.59248 0.52791 -1.59973 

 
EXAMPLE II 
 
    As an example of a higher dimensional problem, consider the data for a carton 
industrial, grammage( 1X ), cobb( 2X ), burst( 3X ) and density( 4X ) (four characteristics 
for stiffness of carton) The standard values, either derived from a large amount of past 
data or selected by management to attain certain objectives, are. In this example p=4, and 
the variances, and the correlation matrix are given as follows: 
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The inverse of the square root of the matrix R is given by 
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From Table 3, for p=4 and α =0.05, the critical value is 2.491.  
    Given 40 samples of size 5, the values ),,,( 4321 hhhh SSSS , such that h=1,2...40 along 
with  are presented in the Table 5. 



Table 5: Sample data for Example II 
h  hS1  hS2  hS3  hS4  
1 3.335 11.491 54.245 27.743 
2 5.584 137.058 13.229 37.634 
3 6.314 7.508 13.874 178.718 
4 2.550 13.736 23.875 167.471 
5 5.587 11.802 38.308 22.874 
6 4.329 4.367 17.103 57.839 
7 6.753 20.799 4.183 29.254 
8 5.605 67.409 10.954 63.581 
9 21.730 47.574 26.315 33.856 
10 6.489 36.578 42.220 82.597 
11 6.908 16.534 20.187 33.294 
12 4.143 12.213 34.351 71.123 
13 8.220 26.556 15.572 84.118 
14 4.456 14.589 42.778 47.741 
15 3.407 5.399 9.618 37.043 
16 3.948 11.685 38.987 39.004 
17 2.123 20.916 15.411 27.770 
18 5.869 3.262 24.884 27.763 
19 15.989 21.446 9.354 33.038 
20 2.754 30.229 6.124 30.080 
21 3.687 16.051 12.042 42.753 
22 8.446 37.545 8.944 47.366 
23 25.904 40.077 23.822 56.679 
24 1.354 10.014 6.708 31.856 
25 2.478 162.822 17.464 22.753 
26 3.210 75.678 29.283 28.780 
27 10.561 6.965 25.884 12.915 
28 0.766 2.958 16.583 16.832 
29 6.205 23.524 11.180 49.835 
30 5.670 18.677 21.909 32.384 
31 4.123 18.358 23.076 14.387 
32 11.063 1.534 25.243 44.505 
33 3.335 10.544 22.361 48.073 
34 5.584 3.780 6.519 55.908 
35 6.314 42.073 10.368 17.401 
36 2.550 5.745 34.946 66.651 
37 5.587 2.751 12.550 16.483 
38 4.329 36.652 33.466 17.421 
39 6.753 51.752 19.243 30.369 
40 5.605 1.117 14.405 20.376 

 
The values of ),,,( 4321 KKKK  are computed and presented in Table 6. 

 



Table 6: The correspondence phK  values for Example II 
h  hK1  hK 2  hK3  hK 4  
1 -2.53993 -4.23017 -0.65044 -3.09095 
2 -1.736 -1.56984 -2.33872 -1.80666 
3 -1.80074 -4.13596 -4.04825 1.8551 
4 -2.50476 -3.88064 -3.22024 1.45986 
5 -2.04049 -4.53765 -1.68744 -3.09851 
6 -2.12607 -4.93318 -3.232 -1.87367 
7 -1.59334 -4.89857 -3.83615 -2.5534 
8 -1.79924 -3.31556 -3.1716 -1.33617 
9 0.84038 -3.60287 -2.59488 -2.51302 
10 -1.90726 -3.41731 -1.55259 -1.19192 
11 -1.68536 -4.68048 -2.87975 -2.59617 
12 -2.27538 -4.31194 -2.13616 -1.5855 
13 -1.4347 -4.17041 -3.37051 -0.95722 
14 -2.2708 -4.23131 -1.47628 -2.36416 
15 -2.22309 -5.18672 -3.57468 -2.4335 
16 -2.33121 -4.44059 -1.68526 -2.60965 
17 -2.46393 -4.72958 -3.0068 -2.69004 
18 -1.90848 -4.98968 -2.63752 -2.87038 
19 -0.05006 -4.68037 -3.74044 -2.50079 
20 -2.28145 -4.63772 -3.54645 -2.49116 
21 -2.18281 -4.817 -3.36968 -2.22953 
22 -1.3254 -4.23125 -3.52791 -1.96519 
23 1.55648 -3.67271 -3.02354 -1.83957 
24 -2.54722 -5.16865 -3.64794 -2.53852 
25 -2.26483 -0.9187 -1.71644 -2.16614 
26 -2.3176 -2.9826 -1.71685 -2.51828 
27 -1.10383 -4.92469 -2.58293 -3.32407 
28 -2.71983 -5.2682 -2.99181 -3.11967 
29 -1.74032 -4.56757 -3.45825 -1.97422 
30 -1.90671 -4.60639 -2.71959 -2.62641 
31 -2.17394 -4.71864 -2.52374 -3.18445 
32 -1.02976 -4.88004 -2.83341 -2.38209 
33 -2.32331 -4.73703 -2.7778 -2.18684 
34 -1.83682 -5.1525 -3.92774 -1.84234 
35 -1.68537 -4.28877 -3.20443 -2.86572 
36 -2.55752 -4.51534 -2.09105 -1.75575 
37 -1.86669 -5.31205 -3.36152 -3.1049 
38 -2.19336 -4.00952 -1.7375 -3.09653 
39 -1.66675 -3.77504 -2.63766 -2.50374 
40 -1.87971 -5.29581 -3.27656 -3.01095 

 
    If, hK1 , hK 2 , hK3 and hK 4  are greater than 2.491, the first, second, third, and fourth 
variables are out-of control for h-observations, respectively.  
    But, another multivariate control chart for despersion is S -chart [2], that upper and 
lower limits are  
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Then, 

LCL=
7

105299287.7 ×                 UCL=
14

105.673138×  
 

 
And, 

S =
13

10319343.4 ×  

 
     According to multivariate charts for standard deviation S -chart standard deviation of 
the process is in control, and recent approach, shows the standard deviation of Cobb, 
Burst and Density is out of control for some cases that present in following graphs 
(Graph1-4). 
 
 

 
 
 

Graph 1 

Multivariate Shewhart Chart for Grammage
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Graph 2 

Multivariate Shewhart Chart for Cobb
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Graph 3 

Multivariate Shewhart Chart for Burst
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Graph 4 

Multivariate Shewhart Chart for Density
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CONCLUSIONS 
 
    Many quality control related problems are multivariate in nature. Treating such 
problems as a series of independent univariate problems for monitoring purposes may 
lead to incorrect conclusions. In this paper, we have suggested a multivariate chart for 
standard deviation of process, MS Chart, which is based on the extension of the 
univariate Shewhart S  Chart. This charting technique has the advantage of directing the 
investigators to the possible cause(s) of an out-of-control signal. We believe that a good 
extension of this research would be in developing corresponding charting techniques for 
the Range structure of multivariate processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
We can easily proof that: 
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If, given m samples of size n then: 
SBLCLS 3= , SCLS = , SBUCLS 4=  (Shewhart Chart for Standard Deviation) 

Where, 
m

SSS
S m+++

=
...21 . 

Factors for Constructing Variables Control Charts 
Factors for Center Line Factors for Control Limits Observations 

in Sample, n  4C  41 C  3B  4B  
2 0.7979 1.2533 0 3.267 
3 0.8862 1.1248 0 2.568 
4 0.9213 1.0854 0 2.266 
5 0.9400 1.0638 0 2.089 
6 0.9515 1.0510 0.030 1.970 
7 0.9594 1.0423 0.118 1.882 
8 0.9650 1.0363 0.185 1.815 
9 0.9693 1.0317 0.239 1.761 
10 0.9727 1.0281 0.284 1.716 
11 0.9754 1.0252 0.321 1.679 
12 0.9776 1.0229 0.354 1.646 
13 0.9794 1.0210 0.382 1.618 
14 0.9810 1.0194 0.406 1.594 
15 0.9823 1.0180 0.428 1.572 
16 0.9835 1.0168 0.448 1.552 
17 0.9845 1.0157 0.466 1.534 
18 0.9854 1.0148 0.482 1.518 
19 0.9862 1.0140 0.497 1.503 
20 0.9869 1.0133 0.510 1.490 
21 0.9876 1.0126 0.523 1.477 
22 0.9882 1.0119 0.534 1.466 
23 0.9887 1.0114 0.545 1.455 
24 0.9892 1.0109 0.555 1.445 
25 0.9896 1.0105 0.565 1.435 

 

For 25>n :           
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