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A numerical method for simulating the complete physics of the fully nonlinear viscous wave generation

phenomenon is presented. To accomplish this objective, the motion of a solid body representing the

wave generating mechanism is modeled. In this paper, both the piston-type and flap-type wavemakers

are simulated and the results of the model are compared with those of the experiments and analytics.

The unsteady, two dimensional Navier–Stokes equations are solved in conjunction with the volume-of-

fluid method for treating the free surface. A wide range of waves from linear to nonlinear generated by

piston and flap-type wavemakers in intermediate and deep water cases are studied in this paper. The

accuracy of the numerical results is verified by a comparison with the results of the wavemaker theory,

the available experimental data in the literature, and the experiments preformed in this study. For the

cases with small wave steepness, the numerical results agree well with the theoretical and experi-

mental results for both the piston and flap-type wavemakers. However, for cases with large wave

steepness, the numerical and experimental wave heights are slightly lower than the analytics. In both

the piston and flap-type wavemakers, the numerical results are in good agreement with the

measurements.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Studying water wave impacts on costal structures and various
related coastal phenomena are often performed in physical wave
tanks and flumes, where a paddle with prescribed motion
produces the desired waves. A numerical wave tank is an alter-
native to the physical modeling because studying different wave
conditions and implementing the modifications are more con-
veniently performed using numerical models. However, there
exist some difficulties in wave-making problems using numerical
models. These difficulties include moving boundaries at the free
surface, wavemaker boundary conditions, and the selection of
appropriate nonreflecting far-field boundary conditions. In the
literature, three different approaches have been reported for
wave-making problems: analytical models, numerical models
assuming an inviscid fluid, and numerical models considering a
viscous fluid. What follows is a review of these models and the
corresponding studies.

Assuming an inviscid flow, analytical solutions for piston-type
and flap-type wavemakers are derived using linear wave theory
by Havelock (1929) and Hyun (1976). However, the experimental
measurements of Ursell et al. (1960) for varying the wave
steepness produced by a piston type wavemaker revealed that
ll rights reserved.

x: þ98511 8626541.

arsooz).
for a large wave steepness, the measured wave heights are
typically 10% below the values predicted by the linear wave
theory. Madsen (1971) extended classical linear wave theory to
second-order accuracy in order to study the generation of long
waves. The second-order theory was used by other researchers
such as (Flick and Guza, 1980; Moubayed and Williams, 1993;
Schäffer, 1996, etc.) and was developed to higher orders by
Schwartz (1974). The second-order wave theory leads to an
anomalous bump in the wave trough for large waves (Dean and
Dalrymple, 1984). Therefore, higher order solutions were pro-
posed such as third order by Borgman and Chappelear (1958) and
fifth order by Fenton (1985). Expanding the wave theory to higher
orders becomes extremely complicated. As a result, wave theories
with higher orders are studied numerically. The need for numer-
ical models also arises from the fact that studying surface waves
in the presence of an arbitrary shaped solid object cannot be
accomplished using analytical models of any order.

A numerical high-order wave theory for highly non-linear
waves based on stream function wave theory was first introduced
by Chappelear (1961) and further developed by (Dean,1965;
Chaplin, 1979; Fenton, 1988; Zhang and Schäffer, 2007, etc.).
Other numerical methods developed for generating waves are
based on internal wave generation models. These models have the
advantage of avoiding the interference with the boundary condi-
tions. Larsen and Dancy (1983) were the first to use the source
line method with the Boussinesq equations to make short waves.
Several researchers developed this approach to generate linear
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Nomenclature

a wave amplitude
c wave celerity
d still water depth
F
!

b body forces
f liquid volume fraction
H wave height¼2a

Hc height of the computational domain
k wave number
L wave length
Lc length of the computational domain
Ld1, Ld2 length of the damping zones
p pressure

S stroke
t time
Ur Ursell number
V
!

velocity vector
t duration of motion
x horizontal coordinate distance
y vertical coordinate distance
m dynamic viscosity
r density
t! stress tensor
js solid volume fraction
x(t) piston trajectory
Z free surface elevation
Dy angular span of the flapper motion
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and non-linear waves for regular waves, irregular waves and
multidirectional waves (Brorsen and Larsen, 1987; Li et al., 1999;
Wei et al., 1999; Liu et al., 2005, etc.).

The inviscid fluid and irrotational flow assumptions used in the
above-mentioned studies are not acceptable in many practical
applications. Therefore, using numerical models with viscous fluid
assumptions is inevitable. Chan and Street (1970) used a modified
version of the so called marker and cell (MAC) method introduced
by Harlow and Welch (1965) for free-surface flows to study the
propagation of a solitary wave in a shallow channel. In the
modified version, called the Stanford University modified MAC
(SUMMAC), a more accurate technique was used to determine the
velocity components at the surface cells. Tang et al. (1990) applied
a more accurate mathematical expression for the dynamic bound-
ary conditions on a free surface that included the viscosity and
surface tension effects. The SUMMAC method along with exact free
surface boundary conditions was also used by Huang et al. (1998)
to investigate the nonlinear viscous wavefields generated by a
piston-type wavemaker. The numerical scheme developed by
Huang et al. (1998) was employed by Huang and Dong (2001)
and Dong and Huang (2004) to generate different incident waves,
including small- and finite-amplitude waves and solitary waves in
a two dimensional wave flume. The same method was applied by
Wang et al. (2007) for simulating a three dimensional numerical
viscous wave tank equipped with a piston type wavemaker.

In 1981, Hirt and Nichols (1981) introduced the volume of fluid
(VOF) method for treating the flows with a free surface. Since then
many numerical wave tanks have been developed based on this
method. The literature on the use of the VOF method for wave
generation can be classified under two main categories. In the first
category named here VOF-inflow method, the inflow boundary
conditions are set based on the free surface elevation and the
velocity components obtained from analytical solution of the
desired wave. Lin and Liu (1998) were first to use this technique
for wave generation in a two dimensional wave flume. This method
was also used by Troch and De Rouck (1999) to develop an active
wave generating-absorbing boundary condition. They also pro-
vided an overview of the development of the VOF type models
with more attention to coastal engineering applications. However,
Li and Fleming (2001) and Apsley and Hu (2003) developed a three
dimensional viscous wave flume using the VOF-inflow technique.
The wave generation using this method was also used by several
researchers (Huang and Dong, 2001; Karim et al., 2009; Park et al.,
2003; Shen and Chan, 2008; Suea et al., 2005; Zhao et al., 2010a,
etc.) in various coastal applications.

The second category of the VOF based models for the wave
generation is the so called internal wave generation method in
which a mass source function is introduced in a certain region
inside the computational domain (Lin and Liu, 1999). In this
method, the fluid is alternatively injected or sucked into this
region such that it produces the same physical effect as of the
desired wave. Various types of waves including linear monochro-
matic; irregular; the Stokes second and higher orders; solitary;
and cnoidal can be generated using this method through the
proper definition of the source function (Lin and Liu, 1999). This
model has been successfully used by Kawasaki (1999) to study
wave breaking over submerged breakwater, by Hieu and
Tanimoto (2006) to simulate wave–structure interactions, and
by Hur and Mizutani (2003) and Hur et al. (2004) to determine
the transverse wave forces that act on 3D asymmetric structures
on a submerged permeable breakwater. A modification of this
method was introduced by Hafsia et al. (2009) whose work resulted
in the reduction of the source domain to a one-dimensional region.

Although the two above mentioned categories are capable of
producing a desired free surface profile artificially, they are
different from the real physical wave generation phenomenon.
In the first category, the velocity components at the inflow
boundary are set according to an analytical solution of the desired
wave. Therefore, the velocity profile at this boundary is a function
of vertical direction, while for example a piston-type wavemaker
moves horizontally with a velocity that has no vertical variation.
Similarly in the internal wave generation method, the added mass
source term is computed according to a prescribed free surface
profile. Clearly the flow pattern close to the source region is
different from the flow pattern around a real physical wave
generator paddle.

On the other hand, in a real wave generation mechanism, the
resultant wave length is a function of the wavemaker period,
stroke and the still water depth. Predicting the wavelength is
performed using wavemaker theories. The linear wavemaker
theory as completely presented by Dean and Dalrymple (1984)
and the second order wavemaker theory as presented by Madsen
(1971) are widely used for this purpose. However, in the wave-
maker theories higher than the first order, if the wavelength is not
known, either the wave speed or the mean velocity at a point in
the fluid or the mass flux induced by the waves must be known,
so that the wavelength can be obtained. If none of these are
known, then application of the theory is irrational and likely to be
in error at first order as stated by Fenton (1985). This is why for
the steeper waves, the discrepancy between the experimental
results and those of the wavemaker theory becomes more
pronounced (Ursell et al., 1960).

Therefore, developing a numerical viscous wave tank which
simulates the real physical process of wave generation is of great
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interest. This goal can be accomplished by modeling the pre-
scribed motion of the wave paddle inside the fluid. In this case,
one only needs to specify the period and stroke of the wave-
maker’s motion in a water of specific depth; the wave length and
wave height will be calculated through the complete solution of
the Navier–Stokes equations. Wood et al. (2003) used the Fluent
software for the piston-type wavemaker, and Finnegan and
Goggins (2012) used the Ansys CFX commercial software for the
flap-type wavemaker. In their Navier–Stokes solvers, the fluid–
solid interaction is based on unstructured grids where solid zones
are not considered in the computational domain and the object
surfaces are treated as boundary conditions. As the solid body
moves inside the fluid, the geometry of the fluid computational
domain changes. Therefore, a re-meshing is inevitable in each
time step or after a large distortion of the generated grid. The re-
meshing is seen by most researchers as a process that should be
avoided. As a result, this method has been rarely employed for
wave generation as reviewed above. Furthermore, as Finnegan
and Goggins (2012) pointed out, the wave generation in Ansys
CFX using a flap-type wavemaker is restricted to a low normal-
ized wavenumber.

In this study, a numerical method is presented which simu-
lates the real physics of wave generation phenomenon. The
numerical model employed for this purpose is the one developed
by Mirzaii and Passandideh-Fard (2012) for modeling fluid flows
containing a free surface in presence of an arbitrary moving
object. The method is implemented in a VOF-based numerical
program to accurately model the wave generation performed by
piston and flap-type wavemakers. The presented model is capable
of producing linear to strongly nonlinear waves in both the
intermediate and deep water cases. The accuracy of the presented
numerical model is verified by comparing the results of simula-
tions with the analytical and experimental data. In the case of
piston-type wavemaker, the experimental results of Ursell et al.
(1960) are used, while in the case of flap-type wavemaker, the
results of the experiments performed in this study are employed.
2. Governing equations and boundary conditions

The schematic of the wavemaker mechanisms considered in this
study is given in Fig. 1 where both the piston and flap types are
illustrated. The domain of the computation is a rectangle (Lc�Hc)
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Fig. 1. Computational domain and boundary conditions for: (
with two damping zones at both ends as shown in the figure. A
solid object representing the wavemaker (piston or flap) is posi-
tioned at x¼Xp from the left and forced to move according to a
prescribed harmonic motion. Both the linear motion of the piston-
type wavemaker and the rotational motion of the flap-type wave-
maker are simulated. What follows is a brief description of the
model used for simulating the fluid flow and the solid object.

2.1. Fluid flow governing equations

The governing equations for fluid flow are the Navier–Stokes
equations in 2D, Newtonian, incompressible and laminar flow:
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!
¼ 0 ð1Þ

@V

@t
þ V
!
�rV
!
¼�

1

r
rpþ

1

r
r � t!þ g

!
þ

1

r
F
!

b ð2Þ

t!¼ m½ rV
!� �
þ rV

!� �T

� ð3Þ

where V
!

is the velocity vector, r the density, m the dynamic
viscosity, p the pressure, t! the stress tensor and F

!
b represents

body forces acting on the fluid. The interface is advected using the
VOF method by means of a scalar field (f), the so-called liquid
volume fraction, defined as:

f ¼

0 in the gas phase

0o , o1 in the liquid-gas interface

1 in the liquid phase

8><
>: ð4Þ

The discontinuity in f is a Lagrangian invariant, propagating
according to:

df

dt
¼
@f

@t
þ V
!
�rf ¼ 0 ð5Þ

2.2. Solid object treatment

In this study, the wavemaker’s paddle (piston-type or flap-
type) is modeled as a solid object using the fast-fictitious-domain
method (Sharma and Patankar, 2005) in which the solid is
considered as a fluid with a high viscosity with a prescribed
motion. In the first stage of a computation in each time step, the
governing equations of fluid motion are solved everywhere in the
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computational domain including the paddle (solid zone) without
any additional equation. Next, the paddle velocity is calculated
(based on the pre-determined motion) and is imposed only within
the solid zone; the change; however, is not projected into the fluid
domain. Attributing an average velocity to the solid, leads to an
unrealistic slip condition in the solid–liquid interface as stated by
Sharma and Patankar (2005). In this study, therefore, we propose
to correct the above drawback by attributing a high viscosity to the
solid zone. A summary of the computational procedure followed in
each time step of simulation is given below:
(1)
 The solid object in the computational domain is identified
using a scalar parameter js defined as:

js ¼

0 Out of the solid

0o , o1 Solid boundary

1 Within the solid

8><
>: ð6Þ
(2)
 The fluid flow equations are solved everywhere in the
computational domain including the solid zone as discussed

above to obtain V
!nþ1

. In this step, the density and viscosity in
each cell is defined as

r¼ frlþ 1�f�js

� �
rgþjsrs ð7Þ

m¼ fmlþ 1�f�js

� �
mgþjsms ð8Þ

where subscripts l, g and s refer to liquid, gas and solid,
respectively. The viscosity of the solid is set by a large
magnitude in comparison with that of the liquid. This large
magnitude of viscosity implicitly imposes the no-slip condition
on the solid–liquid interface. It has been shown by Mirzaii and
Passandideh-Fard (2012) that using a viscosity two orders of
magnitude larger than that of the fluid is large enough to have
an accurate solid body movement. It should be noted that
within the solid zone, the value of f is set to zero.
(3)
 The position and orientation of the solid object (piston or flap)
are next calculated based on its prescribed motion and the
corresponding velocity distribution inside the solid zone is
updated accordingly. When the velocity in the computational
domain is updated, the interface is advected using Eq. (5).
2.3. Initial and boundary conditions

The initial condition considered in this study is a still water with
zero velocity and no surface waves. At the left, right and bottom
boundaries of the computational domain as displayed in Fig. 1, the
no slip condition for the velocity components is imposed. At the top
of the domain, the outlet boundary with atmospheric pressure is
used. For modeling the damping zone, wave absorption boundary
conditions must be applied. The conditions set for this zone must be
such that to allow running simulations for a long period of time,
avoiding most of the effects of reflected waves. Lin and Liu (2004)
introduced a friction source term in the momentum equation with
an exponential damping law. Hafsia et al. (2009) employed the same
concept but with a linear damping law used only in the vertical
direction. In the present study, two passive absorption zones (see
Fig. 1) are modeled in the simulations, one just behind the wave-
maker and the other at the end of the computational domain. The
method used for treating these regions is increased viscosity to a
level high enough to effectively damp the energy of incident waves.

2.4. Numerical method

For the discretization of the governing equations, a three-step
projection method is used in which the continuity and momentum
equations are solved in three fractional steps (Mirzaii and
Passandideh-Fard, 2012). In the first step, the convective and body
force terms in the momentum equations are discretized using an
explicit scheme. The viscosity and pressure terms in this step are
not considered. An intermediate velocity field, V nþ1/3; is then
obtained as:

V
!nþ1=3�V

!n

dt
¼ �V

!
r � V
!� �n

þ
1

rn
F
!n

b ð9Þ

In this study, the no-slip condition on the solid–liquid interface is
imposed by attributing a high viscosity to the solid region. As a
result, the allowable time step for numerical simulation will
decrease dramatically if the viscous term discretization is per-
formed using an explicit scheme. This fact is due to a linear
stability time step constraint for an explicit scheme (Harlow and
Amsden, 1971). Therefore, in the second step, an implicit discre-
tization scheme is used to model the viscous term of the momen-
tum equation to obtain the intermediate velocity from this step,
V nþ2/3 as:

V
!nþ2=3

�V
!nþ1=3

dt
¼

1

rn
r � m rV

!nþ2=3
� �

þ rV
!nþ2=3

� �T
" #

ð10Þ

In this equation, the viscous term is discretized in the fractional
time step t nþ2/3. This leads to an implicit treatment of the viscous
term which, in turn, allows using a large time step for simulation of
fluids with high viscosities. Eq. (10) is solved using a TDMA (Tri-
Diagonal Matrix Algorithm) method to obtain V nþ2/3.

In the final step, the second intermediate velocity is projected
to a divergence free velocity field as:

V
!nþ1

�V
!nþ2=3

dt
¼�

1

rn
� rpnþ1 ð11Þ

The continuity equation is also satisfied for the velocity field at
the new time step:

r � V
!nþ1

¼ 0 ð12Þ

Taking the divergence of Eq. (11) and substituting from Eq. (12)
results in a pressure Poisson equation as:

r �
1

rn
rpnþ1

� 	
¼
r � V
!nþ2=3

dt
ð13Þ

The obtained pressure field can then be used to find the final
velocity field by applying Eq. (11). The resulting set of equations is
symmetric and positive definite; a solution is obtained in each
time step using an Incomplete Cholesky–Conjugate Gradient
(LDLT) solver (Kershaw, 1978).

Eq. (5) is used to track the location of the interface and is
solved according to the Youngs PLIC algorithm (Youngs, 1984).
More details regarding the model and the free surface treatment
are given elsewhere (Mirzaii and Passandideh-Fard, 2012).
3. Experimental setup

Various types of wavemakers have been reported in the
literature to perform experiments in laboratories including pis-
ton, flap and plunger-type wavemakers. One of the most remark-
able experiments ever reported in the literature is the one
performed by Ursell et al. (1960) for small and large wave
steepness using piston-type wavemaker, the results of which
are used in this paper to validate the results of the numerical
model. However, for the experimental setup in this study, a flap-
type wavemaker is considered. The laboratory experiments were



Fig. 2. A photograph (a) and a schematic (b) of the experimental setup. The drawing is not to scale.

Fig. 3. Driving mechanism of the flap-type wavemaker.
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conducted in a wave flume with a rectangular cross section at the
Ferdowsi University of Mashhad. The flume is 10.0 m long, 0.5 m
wide and 0.6 m high with two passive wave absorption zones at
both ends. In order to investigate the effectiveness of the absorp-
tion zones, for all the experiments performed in this study, the
reflection coefficient is determined. The incident wave is partially
reflected from the absorption zone; the interference of the
reflected wave and the incident wave results in a partial standing
wave within the channel. Therefore, the resultant wave height is
not the same at different locations along the channel; it rather
oscillates about a mean value. The reflection coefficient er of the
absorption zone is defined as the ratio of the reflected wave
height to the incident wave height. Ursell et al. (1960) recom-
mended the following relation for er:

er ¼
Hr

Hi
¼

Hmax�Hmin

HmaxþHmin
ð14Þ

where Hmax and Hmin are the maximum and minimum values
of the measured wave height along the channel. The reflection
coefficient for all the experiments performed in this study was
less than 10%. Since the wave heights are measured along nearly
4 meters of the channel, the wave attenuation is neglected.

A schematic of the experimental setup is shown in Fig. 2. The
positions of the four capacitance wave probes are shown in this
figure. Waves are generated by a flap-type wavemaker located at
one side of the flume which is hinged at the bottom of the channel.
Rubber seals are used to minimize the water leakage from the
small clearance between the edges of the wavemaker plate and the
side walls of the channel. The flap motion is generated using a four
link mechanism with a controllable arm length coupled to an
electric motor as shown in Fig. 3. By varying the arm length and the
rotational speed of the electric motor, various flapper motion
periods (0.8–3 s) and strokes can be produced.
4. Results and discussions

The ability of the proposed model to simulate various non-
linear wave generation phenomena is shown by generating a
solitary wave using a piston-type wavemaker and 2nd order
Stokes’ progressive waves by piston and flap-type wavemakers.
4.1. Piston-type wavemaker – solitary wave

To validate the proposed generation method for nonlinear
waves, the propagation of a solitary wave in a constant water
depth of d¼0.30 m is simulated first. The desired solitary wave
height is H¼0.09 m (the wave height to water depth ratio is
H/d¼0.3). The domains of computations based on Fig. 1 are:
Lc¼12 m, Hc¼0.5 m, Xp (initial piston position)¼0.5 m,
Ld1¼0.25 m and Ld2¼2.0 m. In order to obtain the velocity of
the solid object (piston in this case) corresponding to the solitary
wave height of H, the Boussinesq solitary wave profile in dimen-
sional quantities was used by Boussinesq (1872):

Z x,tð Þ ¼H sech2k x�ctð Þ ð15Þ

where H is the solitary wave height; sech( ) is the hyperbolic
secant. The wave celerity c and the wave number k are calculated
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as:

c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Hþdð Þ

p
ð16Þ

k¼

ffiffiffiffiffiffiffiffi
3H

4d3

s
ð17Þ

Referring to the solitary wave generation theory developed by
Goring (1979), the piston trajectory for generating the solitary
waves of all heights is:

xðtÞ
S
¼ tanh7:6

t

t�
1

2

� �
ð18Þ

where S is the piston stroke and t is the duration of motion
calculated as:

S¼
2H

kd
¼

ffiffiffiffiffiffiffiffiffiffi
16H

3d

r
d ð19Þ

and

t¼ 2

kc
3:80þ

H

d

� �
ð20Þ

In the developed model in this study as described above, the
velocity of the solid object is set during the computations in each
time step. Therefore, the velocity of the piston is calculated by
taking derivative of Eq. (18) with respect to time leading to:

VðtÞ

S
¼

7:6

t
sech27:6

t

t
�

1

2

� �
ð21Þ

When generating a solitary wave using a piston-type wavemaker,
an oscillatory tail is always formed behind the wave. Goring
(1979) reported the height of the oscillatory wave to be around
25% of the main wave when using a linear trajectory for the piston
movement. The height of the oscillatory wave, however, was
reduced to 10%
of the main wave when the trajectory of the piston was set based
on Eq. (18).

The water free surface profile as the piston moves inside the
fluid based on Eq. (18) is depicted in Fig. 4. The time duration and
stroke of the piston motion are 3.35 s and 0.379 m, respectively.
The generation of the solitary wave is completed in this time after
Fig. 4. Evolution of the numerical free surface profile for the solitary wave

(H/d¼0.3).
which the shape of the wave remains nearly unchanged. The
computational grid size was set based on a mesh refinement
study in which the mesh size was progressively increased until no
signification changes were observed in the results. For the entire
cases in this study, a uniform mesh was used; therefore, the mesh
size was characterized by the number of grids used for a length
scale considered to be the initial water depth in this case. Three
different mesh sizes corresponding to 24, 36 and 48 cells per
depth (CPD) in the still water were considered. The solitary wave
profiles generated using the three mesh sizes are compared with
that of the analytical solution in Fig. 5. A good agreement can be
seen between the results of simulations and analytics. The figure
also illustrates that the results are independent of the mesh size;
as a result, for most simulations in this study, a mesh size of
CPD¼24 was selected. The discrepancy observed between simu-
lations and analytics at the tail of the solitary wave is due to the
existence of the oscillatory wave as described above. The height of
this oscillatory wave is about 10% of that of the solitary wave. It
should be mentioned that the same procedure taken to obtain the
optimum mesh size was also followed for the computational time
x/d

Fig. 5. Free surface profile compared to analytical results for various mesh sizes

characterized by CPD (cell-per-depth).
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Fig. 8. The solitary wave profile (H/d¼0.3) and the velocity field at t¼4.0 s.
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step after which a time step of 0.001 s was found to be the
optimum value.

The calculated shape of the solitary wave at progressive times
is plotted in Fig. 6. The oscillatory tail behind the wave can be
well observed in the figure. The wave propagates with a constant
velocity and a stable shape towards the end of the computational
domain. This is seen in the figure by the equal distances traveled
by the wave in the same time intervals.

The accuracy of the numerical results are also validated by
comparing the generated velocity field due to wave motion with
the analytical results of inviscid fluid (Dean and Dalrymple, 1984).
The horizontal and vertical velocity components are plotted in
comparison with those of the analytical in Fig. 7 at t¼4 s elapsed
after the start of the piston motion for the solitary wave of
H/d¼0.3. The vertical variation of the velocity components are
shown at two positions; just under the wave crest (x/L¼0.0) and
at 0.2L after the crest (x/L¼0.2) (the two positions are also
displayed in Fig. 8). A good agreement is seen between the two
results; the small discrepancy that exists in the horizontal
velocity under the crest may be due to the error in the analytics.
The order of accuracy of the analytical solution is O((H/d)2,
(H/d)(d/L)2) as presented in Dean and Dalrymple (1984). For the
solitary wave studied in this paper, H/d¼0.3 and d/L¼0.0756,
therefore, the accuracy of the analytical solution is in the order of
0.09. Thus, the discrepancy observed between the numerical
results and the analytical solution in Fig. 7 may be due to the
error in the analytics.

A better representation of the solitary wave profile and the
corresponding velocity field at t¼4 sec are shown in Fig. 8. It is
observed that the velocity before the wave crest is downward
while after the crest the fluid attains an upward velocity. How-
ever, right under the crest the fluid has no vertical velocity.
4.2. Piston type wavemaker – progressive waves

To verify the accuracy of the numerical results in the case of a
piston-type wavemaker, the results are compared with reported
experiments, analytics and other numerical results. For this
purpose, the experimental measurements of Ursell et al. (1960),
the second order wavemaker theory of Madsen (1971), and the
numerical results of Huang et al. (1998) are considered.
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Ursell et al. (1960) performed experiments in a 100-ft-long
channel that had an inclined plate with a slope of 1:15 at the far
end to absorb the wave energy. The effect of the wave reflection
was also taken into account. They divided their experiments into
two categories, namely, small wave steepness (0.002rH/Lr0.03)
and large wave steepness (0.045rH/Lr0.048). Most of the
experiments (20 cases) were classified as small wave steepness;
while the cases with large wave steepness were limited to four
cases. Huang et al. (1998) recalculated seven of the 24 experi-
mental cases of Ursell et al. (1960) using their numerical model.
In this paper, nine cases including all the four cases of Ursell et al.
(1960) with large wave steepness are simulated. A typical case
with a higher wave steepness (H/L¼0.06) is also studied. The
experimental conditions corresponding to these cases are shown
in Table 1.

In all the numerical simulations, the piston is initially located
at Xp¼0.5 m (Fig. 1a). The piston is placed inside the fluid domain
to better visualize the capability of the model to capture the free
surface variation as the solid body movies inside the fluid. The
domains of computations based on

Fig. 1 are considered as: Lc48L, Hc41.5d, Ld1¼0.25 m and
Ld242L. The mesh size considered in this case had 36 cells in the
water depth (i.e. CPD¼36). Also a time step of T/100 (where T is
the wave period) is found to be sufficiently small such that the
results are independent of time step.
Table 1
Piston type wavemaker conditions; nMeasured values from Ursell et al. (1960).

Case number Period (s) Stroke (cm) Still water

depth (m)

(H/S)theor (H/S)measn

High wave steepness
1 0.79 2.54 0.6096 1.99 1.88

2 0.85 3.15 0.4572 1.85 1.67

3 0.95 4.50 0.3048 1.39 1.22

4 0.96 5.73 0.2012 1.05 0.90

5 1.00 6.40 0.3000 1.30 –

Small wave steepness
6 0.92 1.51 0.7315 1.97 1.90

7 1.11 1.56 0.7315 1.82 1.77

8 1.27 1.88 0.5090 1.32 1.20

9 2.09 2.06 0.4785 0.70 0.68
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Fig. 9. Comparison between the solution of the wavemaker theory, experiments of Urs

of the present study.
The numerical results for the aforementioned experimental
conditions are shown in Fig. 9 in comparison with the experi-
mental and analytical results. To obtain the values of the wave
profile from numerical calculations, a section close to the middle
of the channel away from the piston and the damping zone at the
end of the channel is considered. This section was selected
between two positions distanced 5d and 25d away from the
piston location. Specifically, the numerical wave height is calcu-
lated by averaging the wave heights from the free surface time
history at a fixed position with a distance equal to 15d away from
the wavemaker initial position. However, the wavelength is
calculated by averaging the wave lengths taken from the free
surface space distribution inside the selected section.

The numerical results from the present study for both small
and large wave steepness are compared with those of the Ursell
et al. (1960) experiments and Huang et al. (1998) numerical
calculations in Fig. 9. The results from the wavemaker theory are
also displayed in the figure. As observed in the figure, the
numerical results from the present model agree well with those
of the experiments for both small and large wave steepness.
Compared to the analytical results, however, it is seen that both
numerical simulations and experiments indicate a better agree-
ment in small wave steepness. The time evolution of the numer-
ical free surface profile as the piston starts its motion inside the
water for a case with maximum wave steepness (the Case #5 of
(H/S)num (2pd/L)theor (2pd/L)num (H/L)theory Experiment number in

Ursell et al. (1960)

1.86 3.98 3.85 0.0488 21

1.65 2.55 2.43 0.0485 22

1.24 1.51 1.45 0.0439 23

0.92 1.09 1.04 0.0409 24

1.10 1.37 1.30 0.0602 –

1.98 3.52 3.28 0.0230 9

1.70 2.44 2.36 0.0153 13

1.28 1.42 1.39 0.0094 17

0.73 0.72 0.70 0.0096 15

2πd/L
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ell et al. (1960), numerical results of Huang et al. (1998) and the numerical results



Fig. 10. Evolution of the numerical free surface profile for the piston type wavemaker.
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Table 1) is shown in Fig. 10. It is seen that after nearly 10T the
wave profile reaches a steady state shape. It should be mentioned
that the piston stroke for this case is 6.4 cm (see Table 1) which is
too small compared to the channel length (12 m); as a result, the
piston displacement cannot be recognized in the figure. Fig. 11
shows time evolution of the numerical water free surface eleva-
tion (measured from the still water height) at 15 water depths
away from the wavemaker in comparison with the analytical
results. After nearly four periods, the wave approaches its steady
profile. The numerical and analytical results are also compared
with each other at the dimensionless time of t/T¼10.0 in Fig. 12.
The wave profiles from the two results almost coincide in phase
but the analytical wave heights are slightly larger than those of
the simulations.

4.3. Flap type wavemaker – progressive waves

In the case of flap type wavemaker, the numerical results are
compared with the measurements performed in this study as
described in Section 3, analytical results as presented in Dean and



Table 2
Flap type wavemaker conditions. nMeasured values from the current study.

Case number Period (sec) Stroke (cm) Still water depth (m) (H/S)theor (H/S)num (H/S)measn (2pd/L)theor (2pd/L)num (H/L)theor

Small wave steepness

1 2.1 8.45 0.30 0.28 0.27 0.32 0.548 0.531 0.0069

2 1.40 8.45 0.30 0.46 0.47 0.47 0.875 0.877 0.0180

3 1.05 3.15 0.45 0.93 0.92 — 1.747 1.756 0.0181

4 1.05 2.40 0.8 1.34 1.25 — 2.941 2.717 0.0188

5 1.00 3.00 1.0 1.51 1.40 — 4.030 4.189 0.0291

6 1.40 8.57 0.50 0.65 0.62 0.63 1.222 1.208 0.0217

High wave steepness
7 0.84 8.47 0.40 1.17 0.96 0.99 2.330 2.244 0.0919

8 1.05 8.45 0.30 0.68 0.65 0.63 1.279 1.160 0.0389

9 0.84 8.45 0.30 0.96 0.76 0.80 1.808 1.804 0.0778

10 1.05 6.30 0.90 1.41 1.25 — 3.299 3.250 0.0518

11 1.05 8.40 1.20 1.55 1.31 — 4.384 4.076 0.0757

12 1.05 4.69 0.67 1.22 1.09 — 2.485 2.392 0.0337

Fig. 13. Evolution of the numerical free surface profile for the flap type wavemaker.
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Dalrymple (1984) and the numerical results of the Finnegan and
Goggins (2012). Twelve cases are studied in this section, which
are again classified as small and large wave steepness including
intermediate and deep water, as tabulated in Table 2. However,
the experimental results of the present study are limited to
intermediate water depths (p/10rkdrp). As a result, for the
deep water cases, the numerical results are only compared with
the analytical results of the wavemaker theory (Dean and
Dalrymple, 1984).

In the numerical simulations, the solid body representing the
flapper is initially located at Xp¼0.5 m (Fig. 1b). The solid body
has no translational velocity, but a simple harmonic angular
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velocity as:

y tð Þ ¼
Dy
2

cos
2p
T

t

� �
ð22Þ

where Dy is the angular span of the flapper motion. The stroke of
the flapper depends on both the angular span and the still water
depth as:

S¼ 2d� tan
Dy
2

� �
ð23Þ

For the cases with a high wave steepness and for the deep water
cases, the motion of the flapper is initiated using a linear time
ramp according to Zhao et al. (2010b). A duration of 2T for the
time ramp was enough to eliminate the initial instabilities.

The time evolution of the numerical free surface profile as the
flap starts its motion inside the water for a typical case with
relatively large wave steepness (the Case #9 of Table 2) is shown
in Fig. 13. The duration of the time ramp used in this case was 2T.
The rotation of the flap and the consequent formation of the
progressive waves can be well observed in this figure. The
numerical wave heights for all the cases listed in Table 2 are
calculated as described for the piston wavemaker, in Section 4.2.
The comparison between the numerical results, the wavemaker
theory and the experimental data is presented in Fig. 14. In the
figure, the ranges of shallow, intermediate and deep water are
specified based on the classifications presented by Dean and
Dalrymple (1984). For the waves with a small steepness, a good
agreement between the numerical and experimental results can
be observed especially at intermediate water depths (see
Fig. 14a). As observed in the figure, the numerical model of
2πd/L
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Table 3
Inputs required for the two mavemakers, generating a wave with c

Desired wave characterestics

Height (cm) Normalized wave number

2.84 2.44

Input required for piston-type wavemaker motion

Stroke (cm) Period (s)

1.56 1.11
Finnegan and Goggins (2012) fails at deep water waves for a
flap-type wavemaker hinged at the bottom of the flume. They
found that wave generation in the ANSYS CFX using a flap-type
wavemaker is restricted to a low normalized wave number, kd. In
order to increase this restriction, the hinge of the wavemaker was
raised and, with this alteration, it was possible to generate deep
water linear waves. This is while the results of the present model
do not reveal such a limitation. As seen in Fig. 14a, the model
presented in this paper can predict deep water waves with an
acceptable accuracy (less than 5%). However, for the cases with a
large wave steepness (Fig. 14b) both the numerical and experi-
mental results are about 10% below those of the wavemaker
theory; this finding is the same as was observed for the piston
type wavemaker (Section 4.2).

The discrepancy between the experiments and the wavemaker
theory for the cases with large wave steepness may be attributed to
the error in calculating the wave length in the theory. In the
wavemaker theory, the wavelength is calculated using the well-
known dispersion relation, s2

¼gk tanh kdþO(ka)2 (Whitham,
1974). This relation shows that as the wave steepness (ka/p)
increases, the error in calculating the wave length increases.
However, using the proposed method in this paper, one only needs
to specify the period and stroke of the wavemaker’s trajectory in a
water of specific depth. The wave length and the wave height will
be calculated through the complete solution of the Navier-Stokes
equations. Therefore, the results of the proposed numerical method
show a better agreement with the experimental data especially for
the waves with high wave steepness.

In order to generate a desired wave, one may use either a piston-
type or a flap-type wavemaker by appropriately adjusting the
2πd/L
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lts of Finnegan and Goggins (2012) and the numerical and experimental results

haracteristics of Case #7 of Table 1.

Water depth (m) Period (s)

0.7315 1.11

Input required for flap-type wavemaker motion

Stroke (cm) Period (s)

1.20 1.11
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trajectory of the paddle. In shallow water, it is easier to generate the
waves with a piston wavemaker motion, as the piston motion more
closely resembles the water particle trajectories under the waves,
while in deeper water, the flap generator is more efficient (Dean
and Dalrymple, 1984). However, far enough from the paddle, no
differences are observed between the velocity profiles beneath the
waves generated by either of the two wavemakers. The velocity
profile beneath a wave far from the wavemaker depends on the
wave height, wave period, wave length, and water depth, but not
the way the wave has been generated. To examine this fact in this
paper, a typical wave with the same characteristics as of Case #7 of
Table 1 is considered. The wave is generated by using both the
piston-type and the flap-type wavemakers and the results for the
velocity under the wave crest are compared. Table 3 provides the
wave characteristics and the corresponding required input for each
wavemaker. The horizontal velocity profiles under the wave crest at
a distance of two wave lengths away from the wavemaker are
compared in Fig. 15. The results of the analytical model are also
displayed in the figure. The close agreement between the results
demonstrates the fact that the velocity profile beneath a wave far
from the generating zone does not depend on the generating
mechanism.
5. Conclusions

A numerical method is presented in this paper that can simulate
the complete physics of the fully nonlinear viscous wave generation
phenomenon in both piston and flap-type wavemakers. The pre-
scribed motion of a solid body representing the wave generating
mechanism is modeled using the fast fictitious domain method. A
variety of linear and nonlinear waves generated by piston and flap-
type wavemakers in intermediate and deep waters are simulated
using the presented model and the accuracy of the results are
verified by a comparison with the results of the wavemaker theory,
the available experimental data in the literature, and the experi-
ments preformed in this study. For both the piston and flap-type
wavemakers, the numerical results corresponding to the waves
with small steepness agree well with the theoretical and experi-
mental results. However, for the cases with large wave steepness,
the numerical and experimental wave heights are about 10% lower
than those of the analytics. The method presented in this paper can
be incorporated in the VOF-type numerical programs for generating
fully nonlinear viscous waves used in studying various coastal
phenomena in numerical wave tanks.
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