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a b s t r a c t

For planar piecewise affine systems, this paper proposes sufficient stability conditions
based on discontinuous Lyapunov functions. Themonotonicity condition for discontinuous
functions at switching instants is presented based on the behavior of state trajectories
on the switching surfaces. First, the stability conditions are derived for a typical multiple
Lyapunov function and then these conditions are formulated as a set of linear matrix
inequalities for piecewise quadratic Lyapunov functions. The implementation of the
proposed method is illustrated by an example.
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1. Introduction

Hybrid systems characterize classes of dynamical systemswhich consist of both continuous and discrete dynamics. Since
hybrid models can adequately describe the behavior of many physical systems, there is a great interest in studying hybrid
systems. The class of piecewise affine (PWA) systems is a general and well-studied class of hybrid systems. It consists of a
set of affine subsystems and a switching law that selects the active subsystem based on the sub-region that the states of the
system belong to. A large class of nonlinear systems in engineering applications can be approximated by PWA systems [1].
Also, PWA systems are equivalent to several classes of hybrid systems [2,3], whereas PWA systems allow using tractable
mathematical tools for analysis and synthesis. Thus, piecewise affine systems provide a powerful means for analysis and
synthesis of many nonlinear systems. A wide range of PWA systems is continuous. To name a few, the approximated PWA
systems obtained frommodeling a nonlinear system are continuous [4–6]. Also some PWA systemswhich describe physical
nonlinearities like dead-zone, saturation and hysteresis are continuous. In the recent decade, the stability issues of PWA
systems have drawn a lot of attention [7–10]. Due to hybrid behavior of PWA systems, the analysis of even simple PWA
systems can lead to an NP hard problem [11]. The existence of a single quadratic Lyapunov function for all subsystems of
PWA system can ensure the quadratic stability of the switched system. In order to find less conservative stability conditions
for hybrid systems, the theorem of multiple Lyapunov functions is presented in [12]. As the behavior of the system at
switching instantsmust be knownpriori, the application of this theorem is difficult. However, for PWA systems, this theorem
is relaxed by posing the continuity condition of the Lyapunov function on the boundaries of sub-regions. In the last decades,
several multiple Lyapunov functions have been proposed based on the mentioned relaxation method. To name a few,
in [13], piecewise quadratic (PWQ) Lyapunov functions are introduced for continuous-time PWA systems. [14–16] present
piecewise affine Lyapunov functions and in [17], sufficient conditions for the stability of piecewise linear (PWL) systems are
proposedusing homogeneous polynomial Lyapunov functions. Also an extension for discontinuous PWQLyapunov functions
is presented in [18], however it is only for PWA systems in which the switching surfaces are traversed by trajectories of the
system in the known directions.
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This paper presents stability conditions based on discontinuousmultiple Lyapunov functions, for planar continuous PWA
systems. As the set of continuous functions is the subset of the set of discontinuous functions, it is clear that by relaxing
the continuity of Lyapunov functions on switching surfaces, the search for Lyapunov functions is done in a bigger set of
functions and so the conservativeness in stability analysis decreases considerably. In the proposedmethod, formonotonicity
of the Lyapunov function at switching instants, one does not need to have any information on the trajectories of the
system at switching surfaces and the monotonicity condition is only presented based on the vector field of the system.
For discontinuous PWQ Lyapunov functions, the sufficient conditions for the stability of PWA systems are formulated as
linear matrix inequalities (LMIs) which can be solved using a standard LMI solver.

The remainder of this paper is organized as follows. The notation used throughout the text and some preliminary results
are presented in Section 2. Section 3 dealswith the discontinuous functions andmonotonicity of these functions at switching
surfaces. The conditions for the stability of hybrid systems via discontinuous Lyapunov functions are given in Section 4. These
conditions are formulated for discontinuous PWQ Lyapunov functions in Section 5. Section 6 is dedicated to Simulation
results and finally, some concluding remarks are drawn in Section 7.

2. Notation and preliminaries

Definition 1 (Polyhedron). A convex set X in the d-dimensional space which defined as X =

x ∈ Rd

|aT x ≥ b

is called a

polyhedron with a ∈ Rd×n and b ∈ Rn. The mentioned inequality means the element-wise inequality.

Definition 2 (Polyhedral Partition). A collection of polyhedron Xi ⊆ X, i ∈ I ⊂ N , is the polyhedral partition of the
polyhedron X , if and only if


i∈I X̄i = X and Xi


Xj = φ, ∀i, j ∈ I, i ≠ j.

The state space equations describing a planar PWA system in X ⊂ R2 are

ẋ(t) = Aix(t) + ai x ∈ X̄i, i ∈ I (1)
where x(t) ∈ X is the state vector and Ai and ai are constant matrix/vector of suitable dimensions. Let I be the set of mode
indices and {Xi}i∈I be a polyhedral partition of X into a number of cells with


i∈I X̄i = X and Xi


Xj = φ, ∀i, j ∈ I, i ≠ j

where X̄i denotes the closure of Xi. Suppose the countable set I, card {I} denotes the cardinality of I . It is assumed that for
i ∈ I0, I0 =


i ∈ I : 0 ∈ X̄i


, the origin is the only equilibrium point for the corresponding subsystem and for i ∉ I0, the

corresponding subsystem has not any equilibrium point in Xi.
Since the cells are polyhedron, we have,

X̄i =

x ∈ R2

: Eix ≥ ei

, i ∈ I (2)

where Ei and ei are constant matrix/vector. A parametric description of the boundary between two regions Xi and Xj where
X̄i


X̄j ≠ φ, can be described as

X̄i


X̄j ⊆


x| x = Fijs + fij, s ∈ R


. (3)

By setting x̄ =

xT 1

T , (1)–(3) can be written in the more compact form

˙̄x = Āix̄ x ∈ X̄i (4)

X̄i =

x ∈ R2

: Ēix̄ ≥ 0


(5)

X̄i


X̄j ⊆


x| x̄ = F̄ijs̄, s̄ = [sT 1]T , s ∈ R


(6)

where

Āi =


Ai ai
0 0


, Ēi =


Ei −ei


F̄ij =


Fij fij
0 1


.

For boundaries defined in (3), if Fij ≠ 0, then the boundary is a part of a line and if Fij = 0, then the boundary is a point. For
X̄i


X̄j ≠ φ with Fij ≠ 0 (linear boundary), we can define C̄ij =


Cij cij


and Sij =


x| C̄ijx̄ = 0


in which Cij is the normal

vector of Sij (a vector perpendicular to Sij) with the direction from Xi to Xj such that X̄i


X̄j ⊆ Sij.
Consider the hybrid system:

ẋ(t) = fi(x) x ∈ X̄i, i ∈ I (7)
where fi is a continuous function and Xi is a polyhedral region which belongs to R2. In the following, at first, discontinuous
Lyapunov functions and the monotonicity condition of discontinuous functions on boundaries are discussed for system (7)
and then these results are regenerated for PWA system (4). Note that the hybrid system (7) is assumed to be continuous, so
based on the continuity of the system, the vector fields of the neighbor subsystems on the common boundary are the same
or fi(x) = fj(x) for x ∈ X̄i


X̄j.
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Xj

Cij fi (x) = fj(x)

Xi

Fig. 1. The behavior of state trajectory on linear boundary.

3. Discontinuous functions

In this paperwe introduce a special class of discontinuous functions and in the rest of the paperwe refer to these functions
as the candidate Lyapunov functions. Then, by using the behavior of the vector field (7) on the boundaries of the sub-regions,
the monotonicity condition of this class of functions at switching instants is presented.

Consider continuous function Vi(x) : X̄i → R, i ∈ I . A discontinuous function V (x) is defined as

V (x) =

Vi(x) x ∈ Xi

min {Vi(x)}i∈Ix x ∈


i∈Ix

X̄i (8)

where Ix =

i| x ∈ X̄i


.

Suppose for x ∈ X̄i


X̄j ⊆ Sij, ∀i, j ∈ Ix where Fij ≠ 0,

Vi(x) − Vj(x) = ω1
ijCijfi(x) + ω2

ijCijfj(x) (9)

where ω1
ij, ω2

ij, i, j ∈ Ix are nonnegative scalars. The properties that (9) dedicates to V (x) will be described in Lemmas 1–4.

Lemma 1. Suppose at t = t0, the state trajectory of system (7) crosses the boundary at x(t0) ∈


i∈Ix X̄i and goes to Xj. If
card


Ix(t0)


= 2 and (9) holds, then

lim
t→t+0

V (x(t)) ≤ lim
t→t−0

V (x(t)). (10)

Proof. If x ∈


i∈Ix X̄i and card {Ix} = 2, it means that the boundary is a part of a line. This situation is drawn in Fig. 1.
Assume that the trajectory goes from Xi to Xj, i, j ∈ Ix and i ≠ j, so we have

lim
t→t−0

V (x(t)) = Vi(x(t0))

lim
t→t+0

V (x(t)) = Vj(x(t0)).

From Fig. 1, it is concluded that

Cijfi(x(t0)) = Cijfj(x(t0)) > 0.

By (9),

Vi(x(t0)) ≥ Vj(x(t0)).

So (10) is verified. �

This lemma implies that V (x) decreases at linear boundary along state trajectory.

Lemma 2. Suppose at t = t0, the state trajectory of system (7) is tangent to the boundary at x(t0) ∈


i∈Ix X̄i which card

Ix(t0)


= 2. If (9) holds, then

Vi(x(t0)) = Vj(x(t0)), i, j ∈ Ix, i ≠ j. (11)
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Xb2

Xb1

Xb

-f x(t0)

f

Xbh-1

X j = XbhCbh-1bh

0

Cb0 b1

Cb1b2

Fig. 2. The behavior of state trajectory on boundary point.

f

Fig. 3. The angle between vector field and normal vectors of boundaries.

Proof. Since the trajectory is tangent to the boundary at x(t0), so the vector field coincides the boundary at x(t0) and we
have

Cijfi(x(t0)) = Cijfj(x(t0)) = 0.

Using (9), (11) is verified. �

This lemma implies that V (x) is continuous where the state trajectory coincides to the boundary.

Lemma 3. Suppose at t = t0, the state trajectory of system (7) crosses the boundary at x(t0) ∈


i∈Ix X̄i and goes to Xj. If
card


Ix(t0)


≻ 2 and (9) holds, then

lim
t→t+0

V (x(t)) ≤ lim
t→t−0

V (x(t)). (12)

Proof. If x ∈


i∈Ix X̄i and card {Ix} ≻ 2, it means that the boundary is a point (boundary point). This situation is drawn
in Fig. 2.

Assume that the trajectory goes from Xk to Xj, k, j ∈ Ix and k ≠ j, so we have

lim
t→t−0

V (x(t)) = Vk(x(t0))

lim
t→t+0

V (x(t)) = Vj(x(t0)).

As shown in Fig. 2, if the trajectory enters Xj from x(t0), then the vector field at x(t0) or f = fi(x(t0)), ∀i ∈ Ix, lies in the
regionXj. The vector−f which starts at x(t0) is drawn in Fig. 2. This newvector lies in a region thatwename itXb0 . An auxiliary
circle is also drawnwith center x(t0) and radius ε (ε must be small enough such that there is no boundary point in the circle
except x(t0)). By moving along the perimeter of the circle from Xb0 to Xj in the clockwise or the counter-clockwise direction,
a sequence of regions is observed. The names of these regions are put in an ordered set Xb =


Xb0 , Xb1 , . . . , Xbh−1 , Xbh


from

Xb0 to Xbh respectively such that Xbh = Xj.
For X̄bi


X̄bi+1

i=1,...,h
which surrounded with the auxiliary circle, consider the normal vectors Cbibi+1 . As shown in Fig. 3, since

for each X̄bi


X̄bi+1 , we have 0 ≤ α ≤ 180, so the absolute value of the angle between Cbibi+1 and f does not exceed 90°.
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This results in Cbibi+1 f ≥ 0. By (9) we have,

Vbi+1(x(t0)) ≤ Vbi(x(t0)), i = 0, . . . , h − 1.

So,

Vbh(x(t0)) ≤ Vbi(x(t0)), i = 0, . . . , h − 1 (13)

(13) is independent of the direction of moving on the auxiliary circle. So

Vj(x(t0)) ≤ Vi(x(t0)), ∀i ∈ Ix, i ≠ j.

This completes the proof. �

Lemma 4. If the state trajectory crosses the boundary at x(t0) ∈


i∈Ix X̄i, where card

Ix(t0)


≻ 2, and lies on the boundary

X̄j


X̄j′ , where j, j′ ∈ Ix(t0) and Fjj′ ≠ 0, then the inequality (12) holds.

Proof. Consider Xj or Xj′ as Xbh . The proof is similar to the proof of Lemma 3. �

4. Stability analysis via discontinuous Lyapunov functions

Stability analysis based on multiple Lyapunov functions represents a Lyapunov function Vi, i ∈ I for each vector field
fi, i ∈ I . Positive definiteness and monotonicity conditions of these Lyapunov functions are necessary but they cannot
guarantee the stability of switched systems and it is needed to impose some restrictions on switching conditions. As
mentioned in [12,18], if the value of the Lyapunov function is decreasing at the switching instants, the switched system
is asymptotically stable.

For system (7), when a state trajectory passes a boundary, switching occurs and (3) defines the switching surfaces for the
system. Theorem 1 represents the sufficient conditions for the stability of continuous hybrid system (7) via discontinuous
Lyapunov functions.

Theorem 1. Consider continuous system (7) defined on polyhedral partitions. It has local asymptotic stability if a selection of
functions Vi(x) : X̄i → R, i ∈ I and nonnegative scalars, ω1

ij, ω2
ij, i, j ∈ I , exists which satisfies (14)–(17).

Vi(0) = 0, i ∈ I0 (14)

Vi(x) ≻ 0, x ∈ X̄i, x ≠ 0, i ∈ I (15)

V̇i(x) < 0, x ∈ X̄i, x ≠ 0, i ∈ I (16)

Vi(x) − Vj(x) = ω1
ijCijfi(x) + ω2

ijCijfj(x), x ∈ X̄i


X̄j, ∀i ∈ I, j ∈ Ni, where Fij ≠ 0 (17)

where Ni =

k ∈ I, k ≠ i : X̄i


X̄k ≠ φ


.

Proof. Consider V (x) defined in (8) as a candidate Lyapunov function. (14) and (15) imply that V (x) is positive definite.
For asymptotic stability, it is sufficient to show that V (x) is decreasing along all trajectories of system (7). For this purpose,
consider a generic trajectory x(t) of the system. At every time t, x(t) can belong to a cell or the boundaries between cells.
If x(t) ∈ X̄i and card {Ix} = 1, then V (x) = Vi(x) and (16) implies that V (x) is decreasing [13]. If x ∈


i∈Ix X̄i, there are two

different situations: card {Ix} = 2 and card {Ix} ≻ 2. If x ∈


i∈Ix X̄i and card {Ix} = 2, the boundary is a part of a line. In this
case, the state trajectory can have two different behaviors: it can go to one of boundary regions or remain on the boundary.
In the first case, Lemma 1 shows that when the trajectory enters one boundary region, V (x) decreases across the boundary.
If the trajectory remains on the boundary, based on Lemma 2, V (x) is continuous on the boundary. Therefore one only needs
to verify the monotonicity condition for one i ∈ Ix as (16) implies it. If x ∈


i∈Ix X̄i and card {Ix} ≻ 2, the boundary is a point.

In this case, the state trajectory can have two different behaviors: it can go to one of boundary regions or lie on the boundary
between two regions. Lemmas 3 and 4 show that the monotonicity condition holds for these two cases, respectively. So, for
system (7), by satisfying the monotonicity condition, all trajectories in X asymptotically converge to the origin. �

5. Discontinuous PWQ Lyapunov functions

In this section we analyze the stability of PWA system (4) using a discontinuous PWQ Lyapunov function. Let

Vi(x) = x̄T P̄ix̄ ∀x ∈ X̄i (18)

where P̄i = P̄T
i ∈ R3×3 and

P̄i =


Pi qi
qTi ri





Author's personal copy

N. Eghbal et al. / J. Math. Anal. Appl. 399 (2013) 586–593 591

where Pi ∈ R2×2, qi ∈ R2 and ri ∈ R. By (18), discontinuous function V (x) defined in (8), forms a discontinuous PWQ
function. Conditions for the existence of a discontinuous PWQ Lyapunov function for the PWA system (4) are formulated in
the next theorem.

Theorem 2. Let Ūi and W̄i, i ∈ I , be unknown matrices with nonnegative entries, ω̄k
ij, k = 1, 2 and i, j ∈ I , be unknown vectors

with suitable dimensions that have nonnegative entries and P̄i ∈ R3×3, i ∈ I , be symmetric matrices. Define

H̄ij = ĒT
i ω̄1

ijC̄ijĀi + ĒT
j ω̄2

ijC̄ijĀj

L̄i = ĒT
i ŪiĒi

M̄i = ĒT
i W̄iĒi

(19)

If a selection of matrices P̄i, Ūi, W̄i, i ∈ I , and vectors ω̄k
ij, k = 1, 2 for i, j ∈ I exists, which satisfies the constraints (20)–(25),

then for system (4), all trajectories started in X asymptotically converge to the origin.

P̄i =


Pi 0
0 0


∀i ∈ I0 (20)

P̄i − L̄i ≻ 0 ∀i ∈ I, i ∉ I0 (21)
In 0

 
P̄i − L̄i

 
In
0


≻ 0 ∀i ∈ I0 (22)

ĀT
i P̄i + P̄iĀi + M̄i ≺ 0 ∀i ∈ I, i ∉ I0 (23)
In 0

 
ĀT
i P̄i + P̄iĀi + M̄i

 
In
0


≺ 0 ∀i ∈ I0 (24)

F̄ T
ij


P̄i − P̄j


F̄ij = F̄ T

ij


H̄ij + H̄T

ij


F̄ij ∀i ∈ I, j ∈ Ni, where Fij ≠ 0 (25)

where Ni =

k ∈ I, k ≠ i, X̄i


X̄k ≠ φ


.

Proof. Consider the candidate discontinuous Lyapunov function defined by (8) and (18). (20) is equivalent to (14). Since
x̄T L̄ix̄ ≻ 0, ∀x ∈ X̄i, i ∈ I , (21) and (22) result in (15) [19]. In the same way, x̄T M̄ix̄ ≻ 0, ∀x ∈ X̄i, i ∈ I and by (23) and (24)
we have (16). Eq. (25) implies that

s̄T F̄ T
ij


P̄i − P̄j


F̄ijs̄ = s̄T F̄ T

ij


H̄ij + H̄T

ij


F̄ijs̄ ∀i ∈ I, j ∈ Ni, where Fij ≠ 0.

So ∀x ∈ X̄i


X̄j

x̄T

P̄i − P̄j


x̄ = x̄T


H̄ij + H̄T

ij


x̄

or

Vi(x) − Vj(x) = x̄T ĒT
i ω̄1

ijC̄ijĀix̄ + x̄T ĒT
j ω̄2

ijC̄ijĀjx̄ + x̄T ĀT
i C̄

T
ij (ω̄

1
ij)

T Ēix̄ + x̄T ĀT
j C̄

T
ij (ω̄

2
ij)

T Ējx̄. (26)

For x ∈ X̄i


X̄j we have Ēix̄ ≥ 0 and Ējx̄ ≥ 0, so (ω̄1
ij)

T Ēix̄ and (ω̄2
ij)

T Ējx̄ are nonnegative scalars. On the other hand,

C̄ijĀix̄ =

Cij cij

 
Ai ai
0 0

 
x
1


= Cij (Aix + ai) .

Since Aix + ai is the vector field in the region i, it is resulted that (26) is equivalent to (17). According to Theorem 1, system
(4) is locally asymptotically stable. �

Remark 1. For Theorem 2, if ω̄k
ij = 0, k = 1, 2, then wewill get the corresponding stability conditions based on continuous

PWQ Lyapunov function.

6. Examples

Example 1. Consider the following saturated system with the unit saturation:
ẋ1 = −2x1 + x2
ẋ2 = −3x1 + x2 − sat(x1 + x2)

(27)

where the function sat(x) is defined as

sat(x) =

 1 x ≥ 1
x −1 < x < 1

−1 x ≤ −1.
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Fig. 4. Polyhedral partition of the state space.
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Fig. 5. Phase portraits and level curves of the Lyapunov function associated to system (27).

As specified in Fig. 4, the function domain is partitioned to three sub-domains. The stability of the system is verified by
discontinuous PWQ Lyapunov functions. A feasible solution was calculated using CVX, a package for specifying and solving
convex programs [20]. Level curves of V (x) and phase portraits of the system are depicted in Fig. 5. The Color-bar, on the
right side of Fig. 5, specifies the value of V (x) on the level curves. Discontinuity of level curves on boundaries of sub-regions
verifies that the Lyapunov function is discontinuous on boundaries. Due to asymptotic stability, each state trajectory of the
system converges to the origin. By tracking each state trajectory converging to the origin, the monotonicity of the Lyapunov
function can be observed via level curves. Interestingly, the boundaries are not traversed by trajectories in one direction and
on a part of the boundary X̄i


X̄j, the direction of the vector field is from Xi to Xj and on the other part, the direction of the

vector field is from Xj to Xi. It is resulted that the functions Vk(x), k = 1, 2, 3 are obtained automatically such that on a part
of the boundary Vi ≻ Vj and on the other part Vj ≻ Vi.

Example 2. Consider the saturated system (28) with unit saturation
ẋ1 = ax1 + bx2
ẋ2 = cx1 + dx2 + e sat(x1 + x2).

(28)

We generated 1000 PWA systems randomly like the mentioned system such that for each system the following subsystem
(the subsystem which includes the origin) is stable

ẋ =


a b

c + e d + e


x, −1 ≤ x1 + x2 ≤ 1.

It is clear that there is not any guarantee for the stability of these PWA systems, but each analysis method that could detect
more stable systems ismore flexible and less conservative. Table 1 shows the results for continuous and discontinuous PWQ
Lyapunov functions. This example verifies the less conservativeness of discontinuous Lyapunov functions, well.
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Table 1
Stable systems identified by different approaches.

Type of Lyapunov function The number of identified stable systems

Continuous PWQ 521
Discontinuous PWQ 788

7. Conclusions

In this paper, the problem of stability analysis for continuous PWA systems via discontinuous Lyapunov functions has
been studied. New stability conditions are derived via linear matrix inequalities. Since the continuous PWQ Lyapunov
function is a special case of discontinuous PWQ Lyapunov functions, it is clear that the proposed analysis method in this
paper is more powerful and less conservative than the analysis method based on continuous PWQ Lyapunov functions; this
fact was verified through an example. The proposed procedure can be applied to all planar continuous PWA systems. It is
also applicable to the systems in which the switching surfaces traversed by the trajectories in more than one direction.
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