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In this article, we consider the entropy estimator introduced by Alizadeh Noughabi
and Arghami (2010) and derive the nonparametric distribution function corresponding
to our estimator as a piece-wise uniform distribution. We use the results to introduce
goodness-of-fit tests for the normal and the exponential distributions. The critical values
and powers for some alternatives are obtained by simulation. The powers of the proposed
tests under various alternatives are compared with the competitors.
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1. Introduction

Suppose that a random variable X has a distribution function F (x) with a continuous density
function f (x). The entropy H (f ) of the random variable was defined by Shannon (1948)
to be

H (f ) = −
∫ ∞

−∞
f (x) log f (x) dx.

The problem of estimation of H (f ) has been considered by many authors, includ-
ing Vasicek (1976), Joe (1989), Hall and Morton (1993), van Es (1992), Correa (1995),
Wieczorkowski-Grzegorewski (1999), and Alizadeh Noughabi (2010).

Among these various entropy estimators, Vasicek’s sample entropy has been most
widely used in developing entropy-based statistical procedures (Dudewicz and van der
Meulen, 1981; Gokhale, 1983; Arizona and Ohta, 1989; Ebrahimi et al., 1992, etc.).

Vasicek (1976) proposed an estimator of entropy for one dimensional distributions.
Assuming that X1, . . . , Xn is the sample, the estimator is given by

HVmn = 1

n

n∑
i=1

log
{ n

2m
(X(i+m) − X(i−m))

}
,

where the window size m is a positive integer smaller than n/2, X(i) = X(1) if i < 1,
X(i) = X(n) if i > n and X(1) ≤ X(2) ≤ · · · ≤ X(n) are order statistics based on a random
sample of size n. Vasicek (1976) established the consistency of HVmn for the population
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500 Alizadeh Noughabi and Arghami

entropy H (f ). Song (2000) obtained the asymptotic distribution of Vasicek’s entropy
estimator.

Ebrahimi et al. (1994) proposed a modified sample entropy as

HEmn = 1

n

n∑
i=1

log

{
n

cim
(X(i+m) − X(i−m))

}
,

where

ci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + i − 1

m
, 1 ≤ i ≤ m,

2, m + 1 ≤ i ≤ n − m,

1 + n − i

m
, n − m + 1 ≤ i ≤ n.

They proved that HEmn
Pr−→ H (f ) as n → ∞ , m → ∞,m

n
→ 0.

Alizadeh Noughabi and Arghami (2010) proposed to estimate the entropy H (f ) of an
unknown continuous probability density function f by

HAmn = 1

n

n∑
i=1

log

{
n

aim
(X(i+m) − X(i−m))

}
,

where

ai =

⎧⎪⎪⎨
⎪⎪⎩

1, 1 ≤ i ≤ m,

2, m + 1 ≤ i ≤ n − m,

1, n − m + 1 ≤ i ≤ n,

and X(i−m) = X(1) for i ≤ m and X(i+m) = X(n) for i ≥ n − m. They established the con-
sistency of HAmn for the population entropy H (f ). They showed that their estimator has
smaller mean squared error than above estimators.

The Kullback-Leibler divergence has been widely studied in statistical literature as a
central index measuring quantitative similarity between two probability distributions. For
given two probability distributions with density functions f and g, the KL divergence of f

from g is defined (Kullback and Leibler 1951) by

D(f, g) =
∫

f (x) log
f (x)

g(x)
dx.

Let f denote the true density function and G = {g(., θ ) : θ ∈ �} be a selected statis-
tical model for the data distribution f , where � is a subset of R

p. When f actually belongs
to G, the minimal value, minθ∈� D(f, g(., θ )), of the KL divergence is zero. On the other
hand, when f does not belong to G the minimal KL divergence is strictly positive.

In reliability studies and engineering, it is very important to test whether the underlying
distribution has a particular form. Most statistical methods assume an underlying distribu-
tion in the derivation of their results. Therefore, we must check the distribution assumptions
carefully.

The goodness-of-fit tests have been discussed by many authors including D’Agostino
and Stephens (1986), Ascher (1990), Ahmad and Alwasel (1999), Huber-Carol et al. (2002),
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Goodness of Fit Tests 501

Li and Papadopoulos (2002), Thode (2002), Henze and Meintanis (2002a, 2002b), Henze
et al. (2003), Jammalamadaka et al. (2003, 2006), Zhang and Cheng (2003), Meintanis
(2004), Steele and Chaseling (2006), Meintanis (2007), Jager and Wellner (2007), Meintanis
(2008), Van Rensburg and Swanepoel (2008), Raschke (2009), Meintanis (2009), Zhao et al.
(2009), Grané and Fortiana (2009), Alizadeh Noughabi and Arghami (2011, 2011a, 2011b,
2011c, 2011d), and Zamanzade and Arghami (2011).

Vasicek (1976), Dudewicz and Van der Meulen (1981), Gokhale (1983), and Mack
(1988) developed tests of distributional hypotheses based on the discrepancy between the
sample entropy HVmn and parametric entropy estimates of various distributions. Arizono
and Ohta (1989) and Ebrahimi et al. (1992) proposed tests of normality and exponen-
tiality respectively, based on an estimate of the Kullback-Liebler information which uses
HVmn. Next, Taufer (2002) discussed transformations to uniformity in the entropy test for
exponentiality in order to increase power.

Park and Park (2003) derived the following nonparametric distribution function of
Vasicek (1976)’s and Ebrahimi et al. (1994)’s estimators as:

gv(x) =

⎧⎪⎨
⎪⎩

0 x < ξ1 or x > ξn+1

1

n

2m

x(i+m) − x(i−m)
ξi < x ≤ ξi+1 i = 1, . . . , n,

where ξi = (x(i−m) + · · · + x(i+m−1))/2m, and x(i) = x(1) if i < 1, x(i) = x(n) if i > n, and

ge(x) =
⎧⎨
⎩

0 x < η1 or x > ηn+1
1

n

1

ηi+1 − ηi

ηi < x ≤ ηi+1 i = 1, . . . , n,

where

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξm+1 −
m∑

k=i

1

m + k − 1
(x(m+k) − x(1)) if 1 ≤ i ≤ m,

(
x(i−m) + · · · + x(i+m−1)

)
2m

if m + 1 ≤ i ≤ n − m + 1,

ξn−m+1 +
i∑

k=n−m+2

1

n + m − k + 1
(x(n) − x(k−m−1)) if n − m + 2 ≤ i ≤ n + 1,

respectively.
They introduced goodness-of-fit tests for testing normality and exponentiality based

on the moments of theses nonparametric distribution functions. They also showed that the
power of the test statistic based on correcting moments of Vasicek estimator is greater than
the power of the test statistic based on correcting moments of Ebrahimi et al. estimator for
exponentiality test, and the reverse holds for testing normality.

In Sec. 2, we derive the nonparametric distribution of Alizadeh Noughabi and Arghami
estimator and then we introduce tests for normality and exponentiality based on this esti-
mator and the nonparametric distribution corresponding to the estimator.

In Sec. 3, critical values are obtained and the powers of the proposed tests are compared
with the power of the competitor tests. All simulations were carried out by using R 2.12.0
and with 10,000 replications.
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502 Alizadeh Noughabi and Arghami

2. Test Statistics Based on Correcting Moments of Alizadeh Noughabi and
Arghami Entropy Estimator

In this section, we introduce goodness-of-fit test for normality and exponentiality by using
the moments of the distribution corresponding to entropy estimator proposed by Alizadeh
Noughabi and Arghami (2010).

The underlying nonparametric distribution function of the sample entropy has not been
known yet, but we can derive the nonparametric distribution function of our estimator in
the lights of Park and Park (2003) as:

ga(x) =

⎧⎪⎨
⎪⎩

0 x < η1 or x > ηn+1

1

n

1

ηi+1 − ηi

ηi < x ≤ ηi+1 i = 1, . . . , n,
(1)

where

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξm+1 − 1

m

m∑
k=i

(x(m+k) − x(1)) if 1 ≤ i ≤ m,

(x(i−m) + · · · + x(i+m−1))

2m
if m + 1 ≤ i ≤ n − m + 1,

ξn−m+1 + 1

m

i∑
k=n−m+2

(x(n) − x(k−m−1)) if n − m + 2 ≤ i ≤ n + 1,

and ξi = (x(i−m) + · · · + x(i+m−1))/2m, x(i) = x(1) if i < 1, and x(i) = x(n) if i > n.
Derivation of ga is quite intuitive, but it can be shown, directly from the definition

of entropy, that Alizadeh Noughabi and Arghami estimator is in fact the entropy of a
continuous distribution with probability density function (pdf) ga(x).

Remark 2.1 The first two moments of the above distribution can be derived to be

(
1

n

)(
η1

2
+

n∑
i=2

ηi + ηn+1

2

)
and

(
1

3n

) n∑
i=1

(
η2

i+1 + η2
i + ηiηi+1

)
, respectively.

2.1. Testing Normality

Given a random sample X1, . . . , Xn from a continuous probability distribution F with a
density f (x), over the real line and with mean μ and variance σ 2 < ∞, the hypothesis of
interest is

H0 : f (x)=f0(x; μ, σ )= 1√
2πσ

exp

{
−1

2

(
x−μ

σ

)2
}

, for some (μ, σ ) ∈ �, x ∈ R,

where μ and σ are unspecified and � = R × R
+. The alternative to H0 is

H1 : The data do not come from a normal distribution.
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Goodness of Fit Tests 503

The asymmetric Kullback-Leibler distance of f from f0 is:

D(f, f0) =
∫

f (x; μ, σ ) log
f (x; μ, σ )

f0(x; μ, σ )
dx

= −H (f ) + log
√

2πσ 2 + 1

2σ 2
Ef (X − μ)2 ,

D(f, f0) is minimum (zero) if and only if f = f0, where

D(f, f0) = log
√

2πEf (X − μ)2 + 0.5 − H (f ),

which can be estimated by

TAmn = log
√

2πσ̂ 2
a + 0.5 − HAmn,

where σ̂ 2
a = Varga

(X). We reject H0 for large values of TAmn.
The test statistic is invariant with respect to location and scale transformations. To see

this, note that if xi’s are multiplied by a constant c > 0 and are added by a constant d then
ηi’s in Eq. (1) are multiplied by c and are added by d and thus σ̂a is multiplied by c. On the
other hand, it is obvious that if the observations are multiplied by c > 0 and are added by
a constant d, HAmn is increased by ln c. Thus, TAmn remains invariant.

2.2. Testing Exponentiality

Given a random sample X1, . . . , Xn from a continuous probability distribution F with a
density f (x) over a non negative support and with mean θ < ∞, the hypothesis of interest
is

H0 : f (x) = f0(x; θ ) = 1

θ
exp

(
− x

θ

)
, for some θ ∈ �, x ≥ 0,

where θ is unspecified and � = R
+. The alternative to H0 is

H1 : The data do not come from an exponential distribution.

The asymmetric Kullback-Leibler distance of f from f0 is:

D(f, f0) =
∫

f (x; θ ) log
f (x; θ )

f0(x; θ )
dx

= −H (f ) + log θ + 1

θ
Ef (X) ,

D(f, f0) is minimum (zero) if and only if H0 holds, where

D(f, f0) = log Ef (X) + 1 − H (f ),

which can be estimated by

TAmn = log θ̂a + 1 − HAmn,

where θ̂a = Ega
(X). We reject H0 for large values of TAmn.
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504 Alizadeh Noughabi and Arghami

Similar to the argument of Sec. 2.1, we can see the test statistic is invariant with respect
to scale transformations.

3. Simulation Study

3.1. Critical Values

In order to compute the proposed test statistic for a given data set, one needs to specify the
order of spacings m. Since n is known, it is obvious that m may be taken as a function of n.

In practice, a general guide for the choice of m for a fixed n would be valuable
to the users. However, simulations show that the optimal m(in terms of power) also de-
pends on the alternative that one may have in mind and the optimal m‘s for different
alternatives is different. We observe that there is no m that is optimal for all alterna-
tives. Therefore if one wants to guard against all alternatives a compromise should be
made.

Based on the simulations presented in this article, we propose the following heuristic
formula for choosing m, subject to n:

m = [√
n − 1

]
,

where [x] means the integer part of x. The tests attain good (not best) powers for all
alternative distributions for these values of m.

We observe that with increasing n, an optimal choice of m also increases, while the
ratio m/n tends to zero.

We reject H0 at the significance level α if TAmn ≥ C(α), where the critical point C(α) is
determined by the α−quantile of the distribution of the TAmn statistic under the hypothesis
H0.

For the proposed values of m, we used Monte Carlo methods with 10,000 replicates
from standard normal (exponential) distribution to obtain the critical values of the proposed
procedure for α equal to 0.01, 0.05, and 0.10. Table 1 gives the critical values C(α) for
various sample sizes and for testing normality and exponentiality. Note that the critical

Table 1
Critical values of the TAmn statistic for testing normality and exponentiality (for

optimal m)

For testing normality For testing exponentiality

n C(0.01) C(0.05) C(0.10) C(0.01) C(0.05) C(0.10)

5 1.3717 0.9404 0.7624 1.6621 1.2008 0.9749
10 0.5943 0.4422 0.3722 0.6663 0.4785 0.3899
15 0.4937 0.3738 0.3185 0.5137 0.3844 0.3229
20 0.3643 0.2805 0.2475 0.3628 0.2636 0.2143
25 0.3130 0.2434 0.2147 0.2881 0.2020 0.1656
30 0.2817 0.2255 0.1988 0.2553 0.1886 0.1563
40 0.2403 0.1943 0.1743 0.2116 0.1526 0.1282
50 0.2196 0.1805 0.1615 0.1855 0.1303 0.1079
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Goodness of Fit Tests 505

values do not depend on the unknown parameters, because we show that TAmn is invariant
under location-scale (scale) transformation of the observations.

For sample sizes 4 ≤ n ≤ 100, the approximate critical values of normality test may
be computed by

C(α) ≈ a(α) + b(α) exp(1/n) ,

where

a(0.01) = −5.2743 a(0.05) = −3.60359 a(0.10) = −2.86228

b(0.01) = 5.3853 b(0.05) = 3.70662 b(0.10) = 2.96175.

The above formula is based on regression of C(α) on n for n = 4, 5, . . . , 100. (R2 ≈ 0.96).
Similarly, the approximate critical values of exponentiality test may be computed by

C(α) ≈ a(α) + b(α) exp(1/n) ,

where R2 ≈ 0.97 and

a(0.01) = −6.9789 a(0.05) = −5.00396 a(0.10) = −4.12279

b(0.01) = 7.0236 b(0.05) = 5.03629 b(0.10) = 4.14987.

For large n, C(α) ≈ 0. Thus, unless the data perfectly fit the normal (exponential) curve
and TAmn = 0 , the null hypothesis will be rejected.

Figures 1 and 2 show the critical values of TAmn-statistic for various sample sizes
and at the significance levels α = 0.01, 0.05 and 0.10, for normality and exponentiality,
respectively. Those are useful for when n is not tabulated.

Figure 1. Critical values of TAmn-statistic against sample size and at the significance levels α =
0.01, 0.05, and 0.10, for normality test.
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506 Alizadeh Noughabi and Arghami

Figure 2. Critical values of TAmn-statistic against sample size and at the significance levels α =
0.01, 0.05, and 0.10, for exponentiality test.

3.2. Competitor Tests

We chose the competitor tests from the tests of normality and exponentiality introduced in
Park and Park (2003). The test statistics of competitor tests are as follows.

1. For testing normality:

TVmn = log
√

2πσ̂ 2
v + 0.5 − HVmn,

TEmn = log
√

2πσ̂ 2
e + 0.5 − HEmn,

where σ̂ 2
v = Vargv

(X) and σ̂ 2
e = V arge

(X).
2. For testing exponentiality:

TVmn = log θ̂v + 1 − HVmnθ

TEmn = log θ̂e + 1 − HEmn,

where θ̂v = Egv
(X) and θ̂e = Ege

(X).
Since the tests based on the empirical distribution function for normality are important

tests which are commonly used in practice, we also compare the power of the entropy-
based tests of normality with the said tests. These tests are Cram-er von Mises (CH),
Kolmogorov-Smirnov (D), Anderson-Darling (A2), and Kuiper (V ).

Moreover, we consider the famous Shapiro-Wilk (W ) which is a regression test. The
W test is somewhat complicated and there are coefficients to be determined for calculating
W . The coefficients are constants tabulated in Shapiro and Wilk (1965) for n up to 50. For
n > 50, the values of coefficients are approximated by the methods given in Shapiro and
Wilk (1965) and Royston (1982). For further study about this test see Shapiro and Wilk
(1965, 1968).
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Goodness of Fit Tests 507

Note that entropy tests and Shapiro-Wilk test are exact, but the other four tests are
approximate in the sense that the actual size of the test is only approximately equal to the
nominal size.

Also, for testing exponentiality we chose some competitor tests from the class of tests
of exponentiality discussed in Henze and Meintanis (2005). These tests are Kolmogorov:
Smirnov (D), Cramer–von Mises (CH), test statistic proposed by D’Agostino and Stephens,
(S) (1986), Cox and Oakes (CO) (1984), Epps and Pulley (EP) (1986), Henze (HE) (1993),
test statistic (T (1)

n,a) proposed by Henze and Meintanis (2005).

3.3. Power Comparison

3.3.1. Testing Normality. We compute the powers of the tests based on TVmn, TEmn,
and TAmn statistics by means of Monte Carlo simulations under 20 alternatives. These
alternatives were used by Esteban et al. (2001) in their study of power comparisons of
several tests for normality. The alternatives can be divided into four groups, depending on
the support and shape of their densities. From the point of view of applied statistics, natural
alternatives to normal distribution are in groups I and II. For the sake of completeness,
we also consider groups III and IV. This fact gives additional insight to understand the
behaviour of the new test statistic TAmn.

Group I. Support (−∞,∞), symmetric.

• Student t with 1 degree of freedom (i.e., the standard Cauchy);
• Student t with 3 degrees of freedom;
• Standard logistic;
• Standard double exponential.

Group II. Support (−∞,∞), asymmetric.

• Gumbel with parameters α = 0(location) and β = 1 (scale);
• Gumbel with parameters α = 0 (location) and β = 2 (scale);
• Gumbel with parameters α = 0 (location) and β = 1/2 (scale).

Group III. Support (0,∞).

• Exponential with mean 1;
• Gamma with parameters β = 1 (scale) and α = 2 (shape);
• Gamma with parameters β = 1 (scale) and α = 1/2 (shape);
• Lognormal with parameters μ = 0 (scale) and σ = 1 (shape);
• Lognormal with parameters μ = 0 (scale) and σ = 2 (shape);
• Lognormal with parameters μ = 0 (scale) and σ = 1/2 (shape);
• Weibull with parameters β = 1 (scale) and α = 1/2 (shape);
• Weibull with parameters β = 1 (scale) and α = 2 (shape).

Group IV. Support (0,1).

• Uniform;
• Beta (2,2);
• Beta (0.5,0.5);
• Beta (3,1.5);
• Beta (2,1).
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508 Alizadeh Noughabi and Arghami

Table 2
Powers of the tests of size 0.05 for sample sizes n = 10 and n = 20 under alternatives from

Group I

n Alternatives TVmn T Emn TAmn CH D V W A2

10 t(1) 0.375 0.460 0.507 0.618 0.580 0.589 0.594 0.618
20 t(1) 0.684 0.786 0.858 0.880 0.847 0.865 0.869 0.882
10 t(3) 0.082 0.112 0.134 0.182 0.164 0.163 0.187 0.190
20 t(3) 0.121 0.205 0.301 0.309 0.260 0.277 0.340 0.327
10 Logistic 0.048 0.058 0.065 0.080 0.073 0.071 0.082 0.083
20 Logistic 0.046 0.064 0.095 0.106 0.087 0.090 0.123 0.113
10 Double exponential 0.053 0.077 0.094 0.158 0.142 0.142 0.150 0.159
20 Double exponential 0.062 0.129 0.229 0.270 0.224 0.242 0.264 0.274

Under each alternative we generated 10,000 samples of size 10 and 20. We evaluated
for each sample and for several values of the parameter m the statistics (TVmn, TEmn, and
TAmn) and the power of the corresponding test was estimated by the frequency of the event
the statistic is in the critical region”. The power estimates are given in Tables 2–5.

For each sample size and alternative, the bold type in these tables indicates the maximal
power.

Tables 2, 3, and 4 indicate a clear and uniform superiority of our procedure to Vasicek’s
(1976) and Ebrahimi et al.’s (1994). In Groups I, II, and III it is seen that the proposed test
TAmn has the most power among the entropy-based tests. In Group IV the test TVmn has the
most power.

Among all tests, we can see the tests A2, W , TAmn, and TVmn have the most power in
groups I, II, III, and IV, respectively.

3.3.2. Testing Exponentiality. To facilitate the comparisons of the powers of the present
tests with those of the existing tests, we selected the same alternatives listed in Henze and
Meintanis (2005) and their choices of parameters:

• the Weibull distribution with density θxθ−1 exp(−xθ ), denoted by Weibull(θ );
• the gamma distribution with density �(θ )−1xθ−1 exp(−x), denoted by Gamma(θ );

Table 3
Powers of the tests of size 0.05 for sample sizes n = 10 and n = 20 under alternatives from

Group II

n Alternatives TVmn TEmn TAmn CH D V W A2

10 Gumbel (0,1) 0.092 0.111 0.124 0.137 0.121 0.117 0.153 0.147
20 Gumbel (0,1) 0.176 0.237 0.279 0.249 0.203 0.194 0.313 0.273
10 Gumbel (0,2) 0.095 0.109 0.121 0.136 0.121 0.117 0.150 0.144
20 Gumbel (0,2) 0.178 0.240 0.280 0.252 0.203 0.195 0.315 0.276
10 Gumbel (0,1/2) 0.091 0.110 0.123 0.139 0.118 0.117 0.154 0.147
20 Gumbel (0,1/2) 0.177 0.236 0.277 0.249 0.203 0.194 0.314 0.275
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Table 4
Powers of the tests of size 0.05 for sample sizes n = 10 and n = 20 under alternatives from

Group III

n Alternatives TVmn T Emn TAmn CH D V W A2

10 Exponential 0.397 0.454 0.477 0.390 0.301 0.360 0.442 0.416
20 Exponential 0.830 0.865 0.870 0.724 0.586 0.696 0.836 0.773
10 Gamma (2) 0.151 0.185 0.213 0.210 0.175 0.180 0.239 0.225
20 Gamma (2) 0.429 0.508 0.533 0.425 0.326 0.353 0.532 0.467
10 Gamma (1/2) 0.762 0.794 0.810 0.672 0.540 0.662 0.735 0.703
20 Gamma (1/2) 0.992 0.993 0.993 0.952 0.879 0.957 0.984 0.970
10 Lognormal (0,1) 0.519 0.581 0.616 0.554 0.463 0.524 0.603 0.578
20 Lognormal (0,1) 0.910 0.934 0.937 0.881 0.778 0.857 0.932 0.904
10 Lognormal (0,2) 0.933 0.945 0.951 0.896 0.826 0.892 0.920 0.909
20 Lognormal (0,2) 1.000 1.000 1.000 0.9978 0.991 0.9976 0.9996 0.9987
10 Lognormal (0,1/2) 0.144 0.181 0.208 0.220 0.182 0.187 0.245 0.233
20 Lognormal (0,1/2) 0.364 0.445 0.485 0.427 0.337 0.346 0.517 0.463
10 Weibull (1/2) 0.923 0.935 0.940 0.855 0.758 0.854 0.894 0.875
20 Weibull (1/2) 1.000 1.000 1.000 0.9957 0.9818 0.9962 0.9992 0.9979
10 Weibull (2) 0.073 0.074 0.080 0.079 0.074 0.068 0.084 0.083
20 Weibull (2) 0.126 0.143 0.145 0.120 0.103 0.095 0.156 0.132

• the lognormal low Lognormal(0, θ ) with density (θx)−1(2π )−1/2

exp(−(log x)2/(2θ2));
• the half-normal HN distribution with density �(2/π )1/2 exp(−x2/2);
• the uniform distribution with density 1, 0 ≤ x ≤ 1;
• the modified extreme value EV (θ ), with distribution function 1− exp(θ−1(1 − ex));
• the linear increasing failure rate law LF (θ ) with density (1+ θx) exp(−x − θx2/2);
• Dhillon’s (1981) law DL(θ ) with distribution function 1 − exp(−(log(x + 1))θ+1);
• Chen’s (2000) distribution CH (θ ), with distribution function 1 − exp(2(1 − exθ

)).

Table 5
Powers of the tests of size 0.05 for sample sizes n = 10 and n = 20 under alternatives from

Group IV

n Alternatives TVmn TEmn TAmn CH D V W A2

10 Uniform 0.181 0.158 0.129 0.074 0.066 0.081 0.082 0.080
20 Uniform 0.443 0.391 0.258 0.144 0.100 0.150 0.200 0.171
10 Beta(2,2) 0.084 0.071 0.064 0.044 0.046 0.048 0.042 0.046
20 Beta(2,2) 0.136 0.112 0.064 0.058 0.053 0.064 0.053 0.058
10 Beta(1/2,1/2) 0.514 0.481 0.451 0.229 0.162 0.237 0.299 0.268
20 Beta(1/2,1/2) 0.910 0.891 0.824 0.509 0.318 0.490 0.727 0.618
10 Beta(3,1/2) 0.656 0.686 0.704 0.542 0.418 0.530 0.609 0.576
20 Beta(3,1/2) 0.980 0.984 0.983 0.875 0.746 0.879 0.948 0.913
10 Beta(2,1) 0.170 0.164 0.162 0.115 0.100 0.109 0.130 0.126
20 Beta(2,1) 0.428 0.423 0.358 0.232 0.174 0.202 0.306 0.261
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Table 6
Powers of the tests of size 0.05 for sample size n = 20

Alternatives TVmn TEmn TAmn D CH S CO EP T (1)
n,a

Weibull(0.8) 0.061 0.086 0.132 0.17 0.20 0.24 0.28 0.24 0.04
Weibull(1.4) 0.312 0.287 0.236 0.28 0.34 0.35 0.37 0.36 0.45
Gamma(0.4) 0.506 0.563 0.630 0.71 0.76 0.76 0.91 0.76 0.33
Gamma(1.0) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Gamma(2.0) 0.463 0.439 0.383 0.40 0.47 0.46 0.54 0.48 0.55
Lognormal(0, 0.8) 0.429 0.446 0.453 0.30 0.33 0.24 0.33 0.25 0.27
Lognormal(0, 1.5) 0.415 0.497 0.587 0.58 0.62 0.67 0.60 0.67 0.18
HN 0.192 0.171 0.126 0.18 0.21 0.21 0.19 0.21 0.33
Unif orm 0.827 0.785 0.687 0.52 0.66 0.70 0.50 0.66 0.86
CH (0.5) 0.329 0.389 0.464 0.56 0.61 0.63 0.80 0.63 0.23
CH (1.0) 0.150 0.128 0.090 0.13 0.14 0.15 0.13 0.15 0.25
CH (1.5) 0.762 0.725 0.635 0.67 0.79 0.84 0.81 0.84 0.91
LF (2.0) 0.247 0.222 0.168 0.24 0.28 0.29 0.25 0.28 0.42
LF (4.0) 0.347 0.314 0.245 0.34 0.41 0.42 0.37 0.42 0.56
EV (0.5) 0.147 0.128 0.095 0.13 0.14 0.15 0.13 0.15 0.25
EV (1.5) 0.396 0.354 0.279 0.35 0.43 0.46 0.37 0.45 0.63
DL(1.0) 0.252 0.252 0.240 0.20 0.23 0.19 0.25 0.20 0.25
DL(1.5) 0.618 0.601 0.550 0.56 0.65 0.62 0.72 0.64 0.67

These alternatives were used by Henze and Meintanis (2005) and Grané and Fortiana
(2010) in their study of power comparisons of several tests for exponentiality. According to
Henze and Meintanis, these distributions comprise of widely used alternatives to the expo-
nential model and include densities f with decreasing hazard rates (DHR) f (x)/[1 − F (x)],
increasing hazard rates (IHR) as well as models with non-monotone hazard functions.

We estimated the powers of the tests based on 10,000 samples of size n equal to 10
and 20. Table 6 shows the estimated powers at significance level α = 0.05.

For each alternative, the bold type in Table 6 indicates the statistic achieving the
maximal power.

We observe that the proposed test based on Alizadeh Noughabi and Arghami entropy
estimator, TAmn, perform very well compared with the other entropy tests for Weibull (0.8),
Gamma (0.4), lognormal, and CH(0.5), alternatives. However, for almost all other alterna-
tives the test proposed by Park and Park (2003) based on Vasicek’s entropy estimator, TVmn,
has the greatest power. No single test can be said to perform best for testing exponentiality
against all alternatives. In general, among all tests the test statistic T (1)

n,a proposed by Henze
and Meintanis (2005) has the most power.

4. Conclusions

In this article, we first derived the nonparametric distribution corresponding to our entropy
estimator. We next used this nonparametric distribution to obtain the test statistics for
normality and exponentiality. We introduced a new test for normality and compared the
power of the proposed test with competitor tests, using Monte Carlo computations for
sample sizes n = 10 and n = 20. We observed that each of the tests TVmn, A2, W , and
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TAmn can be most powerful, depending on the type of the alternative. The test TVmn is
most powerful against alternatives with the support (0, 1)(Group IV). The test A2 is most
powerful against symmetric alternatives with the support (−∞,∞) (Group I). The test
TAmn (the proposed test) is most powerful against alternatives in Group III with the support
(0,∞). The test W is most powerful against asymmetric alternatives in Group II with the
support (−∞,∞).

Based on these observations, we can formulate the following recommendations for the
application of the studied tests in practice.

1. Use the statistic TVmn, based on Vasicek entropy estimator, if the presumed alter-
natives are supported by the bounded interval (0, 1).

2. Use the statistic TAmn, based on Alizadeh Noughabi and Arghami entropy estimator,
if the presumed alternatives are supported by (0,∞).

3. Use the statistic A2, if the presumed alternatives are symmetric and supported by
(−∞,∞).

4. Use the statistic W , if the presumed alternatives are asymmetric and supported by
(−∞,∞).

We also introduced a goodness-of-fit test for exponentiality based on the nonpara-
metric distribution corresponding to Alizadeh Noughabi and Arghami (2010) estimator.
We compared the power of the proposed test with the competitor tests using Monte Carlo
computations. We observed that the test based on the test statistic T (1)

n,a proposed by Henze
and Meintanis (2005) is, in general, the most powerful.
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