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ABSTRACT

In this study, the petrophysical parameters such as density, sonic, neutron, and porosity were investigated and presented
in the 3D models. The 3D models were built using geostatistical method that is used to estimate studied parameters in
the entire reservoir. For this purpose, the variogram of each parameter was determined to specify spatial correlation of
data. Resulted variograms were non-monotonic. That shows anisotropy of structure. The lithology and porosity pa-
rameters are the main causes of this anisotropy. The 3D models also show that petrophysical data has higher variation in
north part of reservoir than south part. In addition to, the west limb of reservoir shows higher porosity than east limb.
The variation of sonic and neutron data are similar whereas the density data has opposed variation.
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1. Introduction

During drilling, preparing cores from formations around
well are time-consuming and expensive. Cutting rocks
are not reliable to interpret because they were mainly
small, mixed, and flushed by drilling fluid. Petrophysical
logs that are based on measurements of physical proper-
ties of rock are an appropriate tool to obtain more infor-
mation about nature of oil and gas reservoirs. These logs
always represent continuous illustration of reservoir rock
properties. Lithology, porosity, permeability, net pay thick-
ness, and percentage of water and oil saturation are most
important parameters for reservoir studies that can be
easily calculated using the petrophysical data [1].

Porosity and lithology have a significant influence on
the behavior of hydrocarbon reservoirs. There are two
types of porosity that include total porosity and effective
porosity. Total porosity is proportion of total empty
space to total volume mass regardless of internal relation
of pores. Effective porosity is ratio of related pores to
total volume mass. Total porosity of rock mass may be
significant while effective porosity is low. In this case,
permeability will be low. Because effective porosity has
a significant efficacy on oil production, it is applied for
all engineering calculations of reservoir studies. There-
fore, estimation of porosity distribution is an appropriate
tool for investigation of porosity variation and its effect
on other parameters.

The Bangestan calcareous reservoir in studied oil field
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that was composed of llam and Sarvak Formations was
located in a flat plain, without any surface outcrop. A
trend of this field is similar to the Zagros fold-trust belt
trend, namely the NW-SE trend. It has been demon-
strated that no any type of fault has been detected in this
field.

The purpose of this study is modeling of the Ilam
Formation. The lithology of studied reservoir layer was
mainly composed of calcareous rocks with some inter-
vals of thin inter layers of shale (Figure 1). Based on the
alternation of permeable and impermeable layers, the the
Ilam Formation is divided into three zones. This forma-
tion had no primary porosity and secondary porosity was
mainly from cracks, fracture and cavities.

2. Porosity Logs

Sonic, density, and neutron logs are frequently referred
to as porosity logs. In each log, an emitted signal inter-
acts as it passes through the formation, and is detected
either up or down hole of the source, as follows:

* Sonic Log: Source is sonic waves. The formation re-
fracts the waves and the receiver detects transmitted
acoustic waves and identifies travel time.

* Density Log: Source emits gamma rays, which are
considered energy photons, interacting with electrons
causing loss of energy. From the loss of energy, the
density of the formation can be obtained.

* Neutron Log: A reaction between radioactive ele-
ments emits fast neutrons, which collide with the nuclei
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Figure 1. Lithology and porosity logs.

of other atoms, most importantly hydrogen nuclei. De-

tectors count the slowed neutrons deflected back to the

tool. Apparent neutron porosity can be obtained based
on the hydrogen index.

Neutron log is important log for determining porosity.
Neutron and density log data show total porosity while
sonic log shows primary porosity. Porosity can be calcu-
lated using one porosity log or combination of two or
three porosity logs. Figure 1 shows the sonic, density,
neutron, and total porosity logs. In this study, the total
porosity was calculated using three porosity logs. This
reservoir has no primary porosity and secondary porosity
is mainly from cracks, fracture and cavities.

3. Geostatistical Estimation and 3D
Modeling

Geostatistical estimation of rock’s petrophysical proper-
ties consists of two steps: a) variogram analysis and b)
estimation [2]. The first step is identification and model-

Copyright © 2013 SciRes.

ing of spatial structure of petrophysical data by using
variogram. The second step is estimation of petrophysi-
cal properties by using interpolation methods such as
kriging. This step is dependent on the characteristics of
selected variogram in the first step [3]. Incorrect selec-
tion of variogram model will be affected next steps.

3.1. Best Variogram Model

The variogram is applied to represent the spatial varia-
tion. In other words, the variogram describes geological
continuity of variables within relatively homogeneous
layers [2]. The experimental variogram is defined as:

)
(xi ~Xivn )2

2N (1)

N(h

2y (h)=- @

where 2y (h): variogram, x; ., x;: variables x at location i
and i + &, h: lag vector, N (4): number of pairs.
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The variogram starts from zero at the origin # = 0 and
reaches to a constant value (sill: C) at certain distance
that is termed range or correlation length (a) [2]. The
range indicates the correlation of data along various di-
rections. Outside the range, the data are independent of
each other and have no spatial structure [4].

Theoretically, the variogram should be reduced to the
minimum value namely zero at # = 0. However, experi-
mental variogram do not have these conditions. The
variogram value at 4 = 0 is termed nugget effect (CO) [2].
Therefore the experimental variogram is not sufficient
for variogram analysis and appropriate theoretical mod-
els should be fitted on it. There are several theoretical
models to fit on the experimental variogram that most
common of them include: exponential, gaussian and
spherical [3].

y(h)=C(1-e"") @

y@)zC@é—OS@éJ h<a @
y(h)=C h>a

7(h)=c1-e""") )

Isotropic variogram has the same range and sill in all
directions and shows the homogeneity of studied variable
in the entire reservoir. However, anisotropic variogram
shows different spatial continuities in the various direc-
tions. The most common types of anisotropy are geomet-
ric and zonal anisotropies. The geometric anisotropy
shows the similar sill and the different range in the direc-
tions of maximum (X) and minimum continuity (Y).
However, the zonal anisotropy is observed where the
variogram has the different sill in the directions of maxi-
mum and minimum continuity. In the 2D space, toler-
ance angle (#) should be defined between the vector h
and maximum direction of continuity [4].

The experimental variogram not only is a profitable
tool for identification of spatial structure and indication
of variations of studied variable but also has an effective
role in data purification. Two important criteria that show
consistency of spatial structure are the range and the
relative nugget effect (nugget effect/sill: C0/C). There-
fore, the variogram is more appropriate that has greater
range and smaller nugget effect. It is achieved by a cor-
rect selection of the lag numbers [5]. It is noteworthy that
all parameters must be considered for selecting an appro-
priate model.

The experimental variograms often continuously in-
crease with lag distance; however, the variogram is not
restricted to such monotonic form and decreasing seg-
ments or cyclicity can be observed. Non-monotonic va-
riogram structures or cyclic variograms are identified as

Copyright © 2013 SciRes.

hole effect structures (Figure 2) [6].

Geological features such as lithology, sedimentary en-
vironments, and tectonic structures mainly cause this
effect. Multiple structures of some variables such as po-
rosity is another important factor that can cause the hole
effect. Origin of porosity that may be primary or second-
dary can cause multiple structures. Consequently, the re-
sulted variogram will be the cyclic variogram. The most
important tectonic structures that cause disorganization
and non-uniformity of rock mass include folds, faults,
fractures, and joints.

Because increasing radius search can increase the
range of variogram, in non-uniform structure, the experi-
mental variogram becomes cyclic with the increasing of
search radius. It is noteworthy that increasing number of
lags can also increase the hole effect [6].

3.2. Estimating Using Kriging Method

Kriging is a geostatistical estimation method that can be
considered as the best-unbiased estimator. This estimator
not only has least estimation variance but also ensures
unbiasedness of estimations. The kriging is a geostatisti-
cal estimator that is based on the weighted moving aver-

age [2].
7 =31z, 5)
i=1

where Z': grade estimation, 4;: weight or importance of
the value Z;,: the grade of ith sample.

Equation (5) shows a linear kriging. To apply this es-
timator, a distribution of variable (petrophysical data)
should be normally. Otherwise, non-linear kriging should
be applied, or first a transformation should be found that
transforms the distribution of variable to normal, and
then the linear kriging be applied on transformed data
[7].

The parameters of estimation should be determined
according to data distribution, spatial structure, and esti-
mation strategy. Increasing distance among points (data)
makes weaker spatial structure. The points that their dis-
tances are greater than range have practically no effect on
estimation [5]. In this case, removing these points from
estimates would be better. Number of involved points is
a criterion to confirm about validity of the estimate.

4. Methodology

For 3D modeling of static parameters of oil and gas res-
ervoirs, one model must firstly be built from the posi-
tions of faults and horizons. This model termed a struc-
tural and reservoir framework is usually made based on
seismic data and well markers. The second step is build-
ing a 3D grid from the previous structural framework
with an appropriate scale [2]. It does not appear that the
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Figure 2. Types of hole effect [6].

faults have played a significant role in the development
of the studied field; only the 3D model of the Ilam and
Sarvak Formation tops was prepared using seismic data.

In this study, for built the 3D model, position and tra-
jectory of 41 wells were applied to building the structural
models. Then the variogram of each parameter was de-
termined. The best variogram of all parameters is expo-
nential (Figures 3, 4). The linear kriging method was used
to estimate the 3D distribution of petrophysical parameters.
As previously mentioned, to use this method, data distri-
bution should be normal. Therefore normal scores method
was applied to normalize the data (Figure 5).

(6)

where x: a raw score to be standardized, u: mean, o:
standard deviation.

Z=x-pulo

5. Discussion and Result
The purpose of this study is to modelg the petrophysical

Copyright © 2013 SciRes.

parameters in the Ilam reservoir layer. According to re-
sulted variogram, the spatial distributions of petrophysi-
cal parameters are anisotropic (longitudinal, lateral and
in depth). This anisotropy can be caused by effect of tec-
tonic zones and or sedimentation environments.

The hole effect is visible in all variograms (Figures 3,
4). In depth, zoning of formations that are based on the
alternation of dense and porous layers is the main factor
to cause this effect. The non-uniform distribution of frac-
tures is another factor to cause the variation of porosity
in the entire studied reservoir.

Laterally, structural boundaries of anticline can be
identified based on its crest and limbs. These boundaries
separate the low porosity zones (limbs) from high poros-
ity zone (crest). Resulted boundaries are an important
factor to cause the hole effect. Because the distribution of
fractures is not constant in the entire reservoir, porosity
varies in depth and lateral direction.

Lithology has clearly variations in longitudinal direction.
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Figure 3. The variogram of sonic and density data.
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Figure 4. The variogram of neutron and porosity data.
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Figure 5. The normalized data.

This factor can causes the hole effect, in this direction.
Because, Ilam Formation only is composed of limestone
and shale, the gamma data were used to identify distribu-
tion of lithology. These data is one of the key indicators
for lithology recognition, especially in sequences con-
taining clay. In general, increasing the value of gamma
ray (GR > 20 API) shows an increasing the clay content.
Gamma ray more than 70 represents 100 percent clay
content. Clay content in the south of reservoir is over the
north parts (Figure 6).

The 3D petrophysical models clearly show the varia-
tion of petrophysical parameters and consequently the
porosity variation (Figure 7). Because the inter layers of
shale are existed at the beginning of the llam Formation
(Zone 1), the petrophysical parameters in this depth is
clearly different from the other depths. In this zone, the
porosity is higher than the other zones (Figures 1, 8).
Considering that the effective porosity of shale layer is
low, this zone can not act as reservoir. Based on the po-
rosity percentage, Zone 2 is in the second order. This
zone is known as reservoir zone. In this reservoir, Zone 3
has minimum porosity (Figure 1).

In depth, more variation is observed at the north part
of reservoir (Figure 7). Longitudinally, the results of
model show that sonic and neutron models increase to
the north part of reservoir. However, density model
shows opposite condition (Figures 9, 10). Laterally, the
porosity of west limb is higher than east limb, as pre-
sented in Figure 11.

Copyright © 2013 SciRes.

To confirm the validity, the data of one well was re-
moved from the model. Then, the results of estimation
were compared with the actual data. This comparison
showed that the estimated results have a relatively ac-
ceptable accord with the real data (Figure 12). The errors
seen in some depths are mainly due to two factors that
are: a) low number and unsuitable distribution of wells to
build the model and b) unsuitable networking of struc-
tural framework. An unbiased data and abnormal distri-
bution of data are other important factors that can cause
the error. However, in studied reservoir, the first factor
does not exist and second factor was refined using the
normalized data.

6. Conclusions

In this study, the petrophysical data were applied to pre-
pare the 3D model for the Bangestan oil reservoir in
southwest of Iran. The variogram of each parameter was
determined to specify the spatial correlation of geome-
chanical parameters. The range of resulted variogram in
various directions is not similar for all parameters. This
difference represents the anisotropy of studied reservoir.
All resulted variogram show hole effect. The porosity
and lithology variations are main causes for this effect.
The 3D models that based on kriging method clearly
show the variation of petrophysical data in all studied
reservoir. Laterally, the north part of reservoir shows
higher variation than south part. The sonic and neutron
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Figure 9. The longitudinal variation of petrophysical data in axis of structure.
data increase toward north part whereas the density data To verify the results, the real data of one well was
decrease. The west limbs of reservoir shows higher po- compared with estimated data using the model. This
rosity than east limb. In depth, zonel and then zone 2 comparison showed that the real and estimated data are
showed higher porosity than zone 3. very similar. This similarity of data confirms that
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Figure 10. The comparison longitudinal of sonic and porosity data in different zones.
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Figure 11. The lateral variation of petrophysical data.
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Figure 12. (a) Correlation between real and estimated data of some wells. The data of wells A, B, and C are used to build the
3D model; and the well D shows comparing the real data with the estimated data. (b) The histogram of real and estimated
data.
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geostatistical methods are appropriate tools for 3D mod-
eling of petrophysical parameters in oil and gas reser-
VOirs.
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