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We examine the sigma model Riemann curvature corrections to the supergravity action under T-duality
transformations. Using the compatibility of the effective action with on-shell linear T-duality and with
the S-matrix calculations as guiding principles, we have incorporated in this action the couplings of four
B-field strengths and the couplings of two Riemann curvatures and two B-field strengths at order α′ 3.
Using the S-matrix calculations we have also found new dilaton couplings in the string frame at this
order.
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1. Introduction and results

A standard method in string theory for finding the higher
derivative corrections to the supergravity action [1,2] is the scat-
tering amplitude calculation [3,4]. The α′ 3 corrections to the
Einstein–Hilbert action have been found in [5] by analyzing the
sphere-level four-graviton scattering amplitude in type II super-
string theory. The result in the eight-dimensional transverse space
of the light-cone formalism, is a polynomial in the Riemann curva-
ture tensors

Y ∼ ti1···i8t j1··· j8Ri1i2
j1 j2 · · ·Ri7i8

j7 j8 (1)

where ti1···i8 is a tensor in eight dimensions which includes the
eight-dimensional Levi-Civita tensor [5]. This S O (8) invariant La-
grangian has been extended to Lorentz invariant form in [6,7]

L= γ e−2φ0

κ2

[
RhmnkRp

mn
qRhrspRq

rs
k

+ 1

2
RhkmnRpq

mnRhrspRq
rs

k + · · ·
]

(2)

where γ = 1
8 α′ 3ζ(3), e−2φ0 is the dilaton background correspond-

ing to the sphere-level scattering amplitude, and dots represent
terms containing the Ricci and scalar curvature tensors. These
terms cannot be captured by the four-graviton scattering amplitude
as they are zero on-shell. They can be absorbed by the Einstein–
Hilbert action in field redefinition of the metric G → G + δG which
does not alter the scattering calculation [5]. The above R4 cou-
plings reproduce the sigma-model beta function [6,7].

E-mail address: garousi@ferdowsi.um.ac.ir.

Unlike the Einstein–Hilbert Lagrangian, there are different
Lorentz invariant expressions for the Riemann curvature couplings
at order α′ 3 [8,9]. They are related to (2) via some identities
involving the Riemann curvature tensors and some couplings in-
volving the Ricci and scalar curvature tensors [8]. The Ricci and
scalar curvature couplings can be eliminated by field redefinitions,
however, the identities involving the Riemann curvature tensors
hold only at four graviton levels [8]. As a result, there may be
some other four Riemann curvature couplings in (2) which can be
found by studying five-graviton scattering amplitude in which we
are not interested in this Letter.

For the Lagrangian presented in [8,9], a proposal has been given
in [9] for including the B-field and the dilaton into the action
which is a prescription for generalizing the Riemann curvature ten-
sor to include the first derivative of the B-field strength and the
second derivative of the dilaton. While this prescription gives the
correct B-field couplings for the Lagrangian given in [8,9], we will
show that it does not work for the Lagrangian (2). In this Letter
we would like to extend this Lagrangian to include the B-field and
dilaton by using the compatibility of the couplings (2) with the T-
duality [10–13] and by using the scattering amplitude calculations
[14,5]. Similar calculations have been done in [16–25] to extend
the curvature couplings on the world volume of D-brane to all
other massless fields.

The outline of the Letter is as follows: We begin in Section 2 by
reviewing the T-duality transformations and finding the transfor-
mation of the linearized curvature tensors under linear T-duality.
In Section 3, we review the sphere-level scattering amplitude of
four massless NS–NS states in type II superstring theory and recon-
firm that this amplitude at order α′ 3 produces the couplings (2). In
Section 4, we reduce the 10-dimensional couplings (2) to 9 dimen-
sions to find the RyRyRyRy couplings where Ry is the Riemann
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tensor with one Killing index. The consistency of these couplings
with the linear T-duality is used to find the following couplings:

L⊃ γ e−2φ0

16κ2

[−Hhpr;kHn
pr ;qHkms;qHm

n
s
;h

−Hhmn;kHhnp;qHk
ps;rHm

q
s;r

+Hkmn;hHhpq;nHk
ps;rHm

q
s;r] (3)

where H is the B-field strength, Habc = Bab,c + Bca,b + Bbc,a . As
usual, the commas and the semicolons represent partial and co-
variant derivatives, respectively. We have also explicitly confirmed
the above couplings with the S-matrix element of four B-fields in
type II superstring theory. In Section 5, we consider the consis-
tency of the couplings RRRyRy and HHHyHy with the linear
T-duality to find RRHH couplings. The couplings HHRyRy and
RRHyHy must be the T-duality transformations of HHHyHy

and RRRyRy , respectively. Moreover, the couplings HyHyRyRy

and HHyRRy each must be invariant under the T-duality trans-
formations. Imposing these conditions and using on-shell relations,
we have found the following couplings:

L⊃ γ e−2φ0

2κ2

[RhmknRmpnqHkrs;qHprs
;h

− 2RhrpsRqrksHh
kn;mHnp

q
;m

+ 2RmpnqRqrksHh
k

n;mHh
p

s;r +RmnpqRqrksHhmn;kHh
p

s;r
+ 2RmpnqRqrksHk

mn;hHp
rs;h +RhmknRmpnqHh

ps;rHk
q

s;r

− 2RmpnqRqrksHk
mn;hHh

p
s;r + 2RhmknRmpnqHk

qs;rHp
rs;h

− 6RhrpsRqrksHh
kn;mHmn

q
;p]

(4)

In Section 6, we discuss the dilaton couplings. We argue that many
terms of the dilaton amplitudes are reproduced by transforming
the string frame couplings (2) and (4) to the Einstein frame. How-
ever, there are some terms in the scattering amplitudes that cannot
be reproduced in this way. The scattering amplitude of two dila-
tons and two gravitons produces the following couplings as well as
the couplings in (2):

L⊃ −γ e−2φ0

16κ2

[Rhk
mnRmnpqΦ;hpΦ;kq

+ 2Rh
m

k
nRmpnqΦ;hpΦ;kq + 2Rh

m
k

nRqmpnΦ;hpΦ;kq
]

(5)

The scattering amplitude of four dilatons produces the following
couplings:

L⊃ −γ e−2φ0

64κ2

[
Φ;hnΦ

;hsΦ;nqΦ;qs − Φ;mnΦ
;mnΦ;rsΦ

;rs] (6)

And the scattering amplitude of two dilatons and two B-fields pro-
duces the couplings:

L⊃ γ e−2φ0

16κ2

[
6Φ;hpΦ;kqHhkn;mHmn

q;p

+ 2Φ;hpΦ;kqHhkn;mHn
pq;m − Φ;hkΦ;pqHhpn;mHkq

n;m
− 2Φ;hkΦ;pqHkqn;mHp

mn
;h − Φ;hkΦ;pqHkmn;qHp

mn
;h]

In Section 7, we briefly discuss our results.

2. T-duality

The full set of nonlinear T-duality transformations have been
found in [11]. When the T-duality transformation acts along the
Killing coordinate y, the massless NS–NS fields transform as:

e2Φ̃ = e2Φ

G yy
; G̃ yy = 1

G yy

G̃μy = Bμy

G yy
; G̃μν = Gμν − Gμy Gν y − Bμy Bν y

G yy

B̃μy = Gμy

G yy
; B̃μν = Bμν − Bμy Gν y − Gμy Bν y

G yy
(7)

where μ,ν denote any coordinate directions other than y. In
above transformation the metric is given in the string frame. If y
is identified on a circle of radius ρ , i.e., y ∼ y + 2πρ , then after T-
duality the radius becomes ρ̃ = α′/ρ . The string coupling g = eφ0

is also shifted as g̃ = g
√

α′/ρ .
We would like to study the T-dual Ward identity [27,24] of the

scattering amplitude of four gravitons, so we need the above trans-
formations at the linear order. Assuming that the NS–NS fields are
small perturbations around the background, i.e.,

Gμν = ημν + 2κhμν; G yy = ρ2

α′ (1 + 2κhyy)

Gμy = 2κhμy

Bμν = 2κbμν; Bμy = 2κbμy

Φ = φ0 + √
2κφ (8)

the transformations (7) take the following linear form for the per-
turbations:
√

2φ̃ = √
2φ − hyy; h̃ yy = −hyy; h̃μy = bμy

b̃μy = hμy; h̃μν = hμν; b̃μν = bμν (9)

To study the linear T-duality of the couplings (2), it is conve-
nient to find the T-duality transformation of the linearized curva-
ture tensors. The Riemann tensor at the linear order in graviton is
given by

Rabcd = κ(had,bc + hbc,ad − hac,bd − hbd,ac) (10)

In the case that one of its indices is the y-index, i.e., Rabcy where
y is the Killing direction along which the T-duality is to be per-
formed, it becomes

Rabcy = κ(hay,bc + hbc,ay − hac,by − hby,ac) = κ(hay,bc − hby,ac)

(11)

where the second equality assumes that all fields are independent
of the T-dual coordinate y. This becomes after T-duality,

κ(bay,bc − bby,ac) (12)

to which one may trivially add κbba,yc since the fields are as-
sumed independent of y, and hence complete the exterior deriva-
tive. Therefore, the linearized transformation of the Riemann ten-
sor with one y-index is

Rabcy ↔ −κ Haby,c (13)

where Hμνρ = bμν,ρ + bρμ,ν + bνρ,μ . Here the arrow goes in both
directions since the derivation can clearly be run in reverse and
hence these two expressions are exchanged under T-duality.

In the case that two indices of the Riemann tensor are the y
indices, i.e., Rayby , it becomes

Rayby = −κρ2

α′ hyy,ab ↔ κρ2

α′ hyy,ab = −Rayby (14)

where again derivatives of h with respect to y have been dropped
and added in order to complete the curvatures. Note that due to
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the complete antisymmetric of the B-field strength no analogous
terms with a double y index will be relevant. That is Hayy = 0 by
the antisymmetry of the indices. Similarly, Rabyy = 0 by antisym-
metry.

The transformation of the Ricci curvature tensor involves the
dilaton as well as the B-field strength. To see this consider the case
that none of the indices of the Ricci tensor carries the y index. It
transforms as

Rab = ηcd Rcadb + α′

ρ2
R yayb

= ηcd Rcadb − κhyy,ab → ηcd Rcadb + κhyy,ab

= Rab + 2κhyy,ab (15)

where in the first identity we have separated the contracted in-
dices along and orthogonal to y. The last term is not tensor, so
there must be another term whose T-duality cancels that term.
Using the linear transformation of the dilaton (9), one finds the
following combination is invariant:

Rab + 2
√

2κφ,ab ↔ Rab + 2
√

2κφ,ab (16)

Similarly the transformation of the Ricci curvature when it carries
one or two y indices, and the transformation of the scalar curva-
ture are

Ray ↔ κ Haby
,b

R yy ↔ −R yy

R + 4
√

2κφ,a
a ↔ R + 4

√
2κφ,a

a (17)

The last transformation in particular indicates that the supergravity
Lagrangian must include a Laplacian of the dilaton to be invariant
under the T-duality (see Eq. (1.10) in [28] for the presence of such
term in the T-dual Lagrangian at leading order of α′).

To extend a coupling to a set of couplings which are invariant
under linear T-duality, we first use the dimensional reduction to
reduce the 10-dimensional couplings to 9-dimensional couplings,
i.e., separate the indices along and orthogonal to y, and then apply
the above T-duality transformations. If the original coupling is not
invariant under the T-duality, one must add new terms to make
them invariant.

3. Four-point amplitude

The scattering amplitude of four massless NS–NS states with
polarization tensors εab in covariant formalism is given by [14]

A= −α′3κ2e−2φ0

16

�(−s/8)�(−t/8)�(−u/8)

�(1 + s/8)�(1 + t/8)�(1 + u/8)

× ε
a1b1
1 ε

a2b2
2 ε

a3b3
3 ε

a4b4
4 Ka1a2a3a4 Kb1b2b3b4 (18)

There is also a factor of delta function δ10(k1 + k2 + k3 + k4)

imposing conservation of momentum. The Mandelstam variables
s = −4α′k1 ·k2, t = −4α′k1 ·k3, u = −4α′k2 ·k3 satisfy s + t +u = 0,
and

Ka1a2a3a4 = 4
[−k2.k1k3.k1ηa1a4ηa2a3 − k2.k1k2.k3ηa1a3ηa2a4

− k2.k3k3.k1ηa1a2ηa3a4 + k2.k1ηa1a4(k1)a2(k1)a3

+ k3.k1ηa1a4(k1)a2(k1)a3 − k2.k1ηa2a4(k1)a3(k2)a1

− k3.k1ηa2a4(k1)a3(k2)a1 + k3.k1ηa1a4(k1)a2(k2)a3

− k3.k1ηa2a4(k2)a1(k2)a3 + k2.k1ηa1a2(k1)a3(k2)a4

+ k3.k1ηa1a2(k1)a3(k2)a4 + k3.k1ηa1a2(k2)a3(k2)a4

− k2.k1ηa3a4(k1)a2(k3)a1 − k3.k1ηa3a4(k1)a2(k3)a1

+ k2.k1ηa2a4(k2)a3(k3)a1 − k2.k1ηa2a3(k2)a4(k3)a1

+ k2.k1ηa1a4(k1)a3(k3)a2 + k3.k1ηa3a4(k2)a1(k3)a2

+ k2.k1ηa1a3(k2)a4(k3)a2 − k2.k1ηa3a4(k3)a1(k3)a2

+ k2.k1ηa1a3(k1)a2(k3)a4 + k3.k1ηa1a3(k1)a2(k3)a4

− k3.k1ηa2a3(k2)a1(k3)a4 + k3.k1ηa1a2(k2)a3(k3)a4

+ k2.k1ηa1a3(k3)a2(k3)a4
]

(19)

The on-shell conditions are k2
i = ki ·εi = εi ·ki = 0. The polarization

tensor is symmetric and traceless for graviton, antisymmetric for
B-field and for dilaton it is

εab = φ√
8

(
ηab − ka�b − kb�a) (20)

where �a is an auxiliary vector which satisfies k ·� = 1 and φ is the
dilaton polarization which is one. In equation (19) we have used
the conservation of momentum to write the amplitude in terms of
momentum k1,k2,k3. We have also used the on-shell conditions
to rewrite k1 · ε4 = −k2 · ε4 − k3 · ε4, similarly for ε4 · k1. We have
normalized the amplitude (18) to be consistent with the normal-
ization factor in the couplings (2).

The coupling (1) has been found in [5] from the amplitude (18)
by expanding the gamma functions at low energy

�(−s/8)�(−t/8)�(−u/8)

�(1 + s/8)�(1 + t/8)�(1 + u/8)
= − 29

stu
− 2ζ(3) + · · · (21)

The first term corresponds to the massless poles in the four-point
function which are reproduced by the Einstein–Hilbert action [15],
and the second term,

�A= γ κ2e−2φ0ε
a1b1
1 ε

a2b2
2 ε

a3b3
3 ε

a4b4
4 Ka1a2a3a4 Kb1b2b3b4δ

10

× (k1 + k2 + k3 + k4) (22)

corresponds to the coupling (1) [5]. The explicit form of the above
amplitude has too many terms to write them all. It has almost all
structures of the contractions of the four polarization tensors and
the eight momenta. Let us mention which structures the amplitude
(22) does not have. The structure of (19) dictates that �A does not
have (k · ε · k)4, k · k(k · ε · k)2k · ε · ε · k and (k · k)3 k · ε · k Tr[ε · ε · ε]
structures. Obviously, it does not have structures which contain
Tr[ε] either.

The couplings (2) have been found in [6,7] by writing the eight-
dimensional tensor ti1···i8t j1··· j8 in terms of 10-dimensional tensors.
These couplings can also be verified by explicit comparison with
the amplitude (22). To this end, one has to calculate the four-
graviton amplitude from (2) which is

A(1,2,3,4) = γ κ2e−2φ0

[
(R1)hmnk(R2)p

mn
q(R3)

hrsp(R4)
q

rs
k

+ 1

2
(R1)hkmn(R2)pq

mn(R3)
hrsp(R4)

q
rs

k + · · ·
]

(23)

where dots represent the 23 other permutation terms. In above
amplitude the subscripts 1,2,3,4 are the particle labels, and

(R1)
hmnk = −(

εhk
1 km

1 kn
1 + εmn

1 kh
1kk

1 − εhn
1 km

1 kk
1 − εmk

1 kh
1kn

1

)
(24)

Using the on-shell conditions to write the field theory amplitude
in terms of k1,k2,k3 and write k1 ·ε4 in terms of k2 ·ε4 and k3 ·ε4,
as in string theory amplitude (18), we have found exact agreement
with the string theory amplitude when the polarization tensors are
symmetric.
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4. (∂ H)4 couplings

The scattering amplitude of four B-fields can be read from
(18) by using antisymmetric polarizations εab . A proposal for the
B-field couplings in field theory is given in [9] which is the re-
placement Rabcd → Rabcd + κe−φ0/2 Hab[c,d] . This proposal gives the
(∂ H)4 couplings at order α′ 3 by using the following replacement
for the Riemann curvature:

Rabcd → κe−φ0/2 Hab[c,d]
= κe−φ0/2(bad,bc + bbc,ad − bac,bd − bbd,ac) (25)

We have explicitly check that while the above replacement in
the Lagrangian given in [9] produces correctly the string ampli-
tude (22), this replacement in the Lagrangian (2) does not pro-
duce correctly the B-field couplings. In particular, the above re-
placement in the Lagrangian (2) produces terms with structure
k · k(k · ε · k)2k · ε · ε · k whereas the string theory amplitude (22)
does not produce such structure. The reason for this apparently in-
consistency is that the identity that relates the Lagrangian given
in [9] to (2) is not an identity any more when one uses the above
replacement for the Riemann curvatures in that identity. For exam-
ple, the Bianchi identity for the curvature is not an identity when
one uses the replacement (25). In this Letter, we would like to find
the B-field couplings corresponding to the couplings (2) by using
the compatibility of this Lagrangian with the linear T-duality trans-
formations.

The S-matrix elements in string theory must satisfy the Ward
identity corresponding to the T-duality [27,24]. This means the
scattering amplitude (18) must be invariant under linear T-duality
transformations (9) on the quantum fluctuations and must be in-
variant under nonlinear T-duality transformation (7) on the back-
ground fields. One can easily verify that the background factor
e−2φ0δ10(k1 +k2 +k3 +k4) = (2πρ)e−2φ0δ9(k1 +k2 +k3 +k4) where
ρ is the radius of the circle along which the T-duality is imple-
mented, is invariant under the T-duality. The amplitude (22) which
is the string amplitude at order α′ 3, has no massless pole so the
T-dual Ward identity dictates that couplings in the spacetime must
be invariant under the linear T-duality. In spacetime, the invari-
ance of the background under the nonlinear T-duality appears as
the invariant of the factor e−2φ0

√−G in the action.
Now let us apply the linear T-duality on the quantum fluctu-

ations in (2) to find the couplings of four B-fields. We first use
the dimensional reduction to reduce the action to 9 dimensions,
and then apply the T-duality transformations on them. The terms
in which the Riemann tensors carry one Killing index y are the
following1:

γ e−2φ0

2κ2
[−8Rknhy Rnqpy Rksqy R pshy + 4Rhkny R pqny Rksqy R pshy

− 2Rmnky Rmnpy Rksry R psry − 4Rknmy Rmpny Rksry R psry] (26)

We have to find new couplings of four H such that their dimen-
sional reduction transform to the above couplings under the linear
T-duality (13). Consider the following couplings:

γ κ2e−2φ0

2
[−2Hhpr,k Hnpr,q Hkms,q Hmns,h

− 2Hhmn,k Hhnp,q Hkps,r Hmqs,r + 2Hkmn,h Hhpq,n Hkps,r Hmqs,r]
(27)

1 From now on we use only subscripts indices and the repeated indices are con-
tracted with the flat metric.

The dimensional reduction of these couplings produces the follow-
ing terms:

γ κ2e−2φ0

2
[−8Hkmy,q Hmny,h Hhpy,k Hnpy,q

+ 4Hhmy,k Hhpy,q Hkpy,r Hmqy,r − 4Hmny,h Hhpy,n Hmsy,r H psy,r

− 2Hhny,k Hhny,q Hksy,r Hqsy,r] (28)

which are the transformation of (26) under the T-duality trans-
formation (13). Therefore, the couplings (27) are the prediction of
T-duality for the couplings of four ∂ H at order α′ 3. We have also
calculated its scattering amplitude and find exact agreement with
the string theory amplitude (22) when the polarization tensors are
antisymmetric. Since both the above couplings and the (∂ H)4 cou-
plings in [9] are reproduced by the string theory amplitude (22),
they must be identical up to some identities. Extending the lin-
earized couplings (27) to nonlinear, one finds the couplings in (3).

5. R2(∂ H)2 couplings

There has been one consistency condition for the couplings (27),
i.e., under the dimensional reduction its H y H y H y H y terms must
be transformed to (26) under T-duality (13). So it was relatively
easy to find these terms. The dimensional reduction of the cou-
plings R R H H however must satisfy four consistency conditions:
1-Their R R H y H y terms must transform under T-duality (13) to the
R R R y R y terms of the couplings (2). 2-Their H H R y R y terms must
transform under T-duality (13) to the H H H y H y terms of the cou-
plings (27). 3-Their H H y R R y terms must be invariant under (13).
4-Their H y H y R y R y terms must be invariant. So it is nontrivial to
find such couplings.

Let us consider the R R R y R y terms of the dimensional reduc-
tion of the couplings (2) which are given by

γ e−2φ0

2κ2
[−4Rknhy Rnqpy Rhrps Rqrks + 2Rhkny R pqny Rhrps Rqrks

+ 2Rhkmn Rmnpq Rksqy R pshy + 4Rhmkn Rmpnq Rksqy R pshy

+ 4Rmnpq Rmnky Rqrks R psry + 8Rknmy Rmpnq Rqrks R psry] (29)

One may use the T-duality transformation (13) to find R R H y H y

terms and then extend the y-index in them to a complete in-
dex. In this way one can find the R R H H couplings which are
consistent with the above couplings. However, it turns out that
their H H y R R y terms would not be invariant under T-duality. They
would not be consistent with the S-matrix element (22) either.
That means there must be some other terms as well as those found
by using the transformation (13).

The only possibility for extending the transformation (13) is to
add the trivial term Habc,y , i.e.,

Rabcy → −κ Haby,c + αHabc,y (30)

where the coefficient α is an arbitrary constant. The above extra
term in the transformation of the Riemann tensor is zero because
of the implicit assumption in the T-duality transformations that
fields are independent of the Killing coordinate. However, in ex-
tending the y-index to a complete index that term makes non-
trivial contribution. So we use the above transformation for the
Riemann tensor in the couplings (29) and then extend the y-index
to a complete index. In doing this one has to use different con-
stants for the coefficients α’s in each replacement because a priori
we do not know which replacement has such extra term.2 We have

2 The replacement (25) corresponds to α = 1. However, as we mentioned in the
previous section such replacement in the Lagrangian (2) does not produce correctly
the B-field couplings.
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tried to find such coefficients by imposing T-duality transforma-
tions. We could not find a consistent set of coefficients in this way
unless we use the on-shell relations. Alternatively, one may find
these constants by comparing the result with the on-shell S-matrix
element (22). We find the following result:

γ e−2φ0

2
[4Rhmkn Rmpnq Hkrs,q H prs,h − 8Rhrps Rqrks Hhkn,m Hnpq,m

+ 8Rmpnq Rqrks Hhkn,m Hhps,r + 4Rmnpq Rqrks Hhmn,k Hhps,r

+ 8Rmpnq Rqrks Hkmn,h H prs,h + 4Rhmkn Rmpnq Hhps,r Hkqs,r

− 8Rmpnq Rqrks Hkmn,h Hhps,r + 8Rhmkn Rmpnq Hkqs,r H prs,h

− 24Rhrps Rqrks Hhkn,m Hmnq,p] (31)

Plus some other terms that their coefficients cannot be fixed by
the four-point function calculations. They, however, cancels each
other when we write them in terms of h and b instead of their
field strengths. That means there are identities at four NS–NS level
that cancel the terms that are not fixed by the S-matrix calcula-
tions. Those identities may not hold at five NS–NS level. As a result,
there may be some other couplings that their coefficients can be
fixed by analyzing the five-point functions. We have checked that
the couplings (31) satisfy the above four T-duality constraints. In
checking these constraints, one has to use the on-shell conditions.
Since both the above couplings and the R2(∂ H)2 couplings in [9]
are produced by the string theory amplitude (22), they must be
identical up to some identities. The nonlinear extension of the cou-
plings (31) appears in (4).

6. Dilaton couplings

The string frame couplings (2) and (4) can produce various dila-
ton couplings when transforming them to the Einstein frame. One
may then expect that the dilaton S-matrix elements at order α′ 3

are reproduced by these couplings in the Einstein frame. In this
section we are going to show that the dilaton couplings in the
Einstein frame do not fully reproduce the string theory amplitudes.
Hence, the string frame field theory should contain some new dila-
ton couplings.

The S-matrix element of one dilaton and three gravitons in
string theory side is given by (22) in which one of the polariza-
tions is (20) and the other three are symmetric and traceless. On
the other hand, the scattering amplitude of four symmetric po-
larization tensors must satisfy the Ward identity, that is, if one
replaces each polarization tensor by εab → kaζ b +kbζ a where ζ a is
an arbitrary vector, the amplitude must be zero. This indicates that
the term −ka�b − kb�a in the dilaton polarization (20) must dis-
appear in the string amplitude of one dilaton and three symmet-
ric polarization tensors, i.e., the dilaton polarization is effectively
εab

1 = φ1η
ab/

√
8. This replacement cancels many terms in (22). The

surviving terms are the following:

�A= γ κ2e−2φ0

2
√

8
[16(k2.k3)

2(k3.k1)
2 Tr[ε2]Tr[ε3.ε4]

+ 16(k2.k1)
2k1.ε3.k1k2.ε4.k2 Tr[ε2]

+ 32k2.k1k3.k1k1.ε3.k1k2.ε4.k2 Tr[ε2]
+ 16(k3.k1)

2k1.ε3.k1k2.ε4.k2 Tr[ε2]
+ 32k2.k1k3.k1k1.ε3.k2k2.ε4.k2 Tr[ε2]
+ 32(k3.k1)

2k1.ε3.k2k2.ε4.k2 Tr[ε2]
+ 16(k3.k1)

2k2.ε3.k2k2.ε4.k2 Tr[ε2]
+ 32k2.k1k3.k1k1.ε3.k2k2.ε4.k3 Tr[ε2]

+ 32(k3.k1)
2k1.ε3.k2k2.ε4.k3 Tr[ε2]

+ 32(k3.k1)
2k2.ε3.k2k2.ε4.k3 Tr[ε2]

+ 16(k3.k1)
2k2.ε3.k2k3.ε4.k3 Tr[ε2]

+ 32(k2.k1)
2k3.k1k1.ε3.ε4.k2 Tr[ε2]

+ 64k2.k1(k3.k1)
2k1.ε3.ε4.k2 Tr[ε2]

+ 32(k3.k1)
3k1.ε3.ε4.k2 Tr[ε2]

+ 32k2.k1(k3.k1)
2k2.ε3.ε4.k2 Tr[ε2]

+ 32(k3.k1)
3k2.ε3.ε4.k2 Tr[ε2]

+ 32k2.k1(k3.k1)
2k2.ε3.ε4.k3 Tr[ε2]

+ 32(k3.k1)
3k2.ε3.ε4.k3 Tr[ε2]]φ1

+ (2 ↔ 3) + (2 ↔ 4) (32)

which are zero when the polarizations are traceless. Note that the
terms in (22) which contain the trace of four polarization tensors,
e.g., Tr[ε1 · ε2 · ε3 · ε4], are canceled when one of the polarization is
replace by φηab/

√
8.

The string scattering amplitude produces couplings in the Ein-
stein frame, so in the field theory side we consider the trans-
formation of the string couplings (2) to the Einstein frame, i.e.,
Gab = eΦ/2G E

ab . At the linear order it gives hab = hE
ab + φηab

√
8,

and in terms of the linearized Riemann curvature it becomes
Rab

cd = R E
ab

cd − κη[c
a φ,b]d]/

√
8. In the field theory couplings (2),

one must then replace one of the polarizations by φηab/
√

8, hence,
one again finds zero result for the scattering amplitude of one dila-
ton and three gravitons. So it confirms that there is no coupling of
one dilaton and three gravitons in the string frame [26,8] or in the
Einstein frame. This is not the case, however, for the couplings of
two dilatons and two gravitons as we shall see below.

The scattering amplitude of two dilatons and two symmetric
tensors in string theory side can be read from the amplitude (32)
by replacing the polarization ε2 with (20). Apart from the terms
containing the trace of ε2 which is Tr[ε2] = φ2

√
8, the auxiliary

term −ka
2�

b
2 − kb

2�
a
2 in the dilaton polarization (20) cancels in the

terms in the last line of (32), hence, effectively for these terms the
dilaton polarization is φ2ηab/

√
8. The amplitude becomes

�A= γ κ2e−2φ0

2

[
16(k2.k3)

2(k3.k1)
2 Tr[ε3.ε4]

+ 16(k2.k1)
2k1.ε3.k1k2.ε4.k2

+ 32k2.k1k3.k1k1.ε3.k1k2.ε4.k2

+ 16(k3.k1)
2k1.ε3.k1k2.ε4.k2

+ 32k2.k1k3.k1k1.ε3.k2k2.ε4.k2

+ 32(k3.k1)
2k1.ε3.k2k2.ε4.k2

+ 16(k3.k1)
2k2.ε3.k2k2.ε4.k2

+ 32k2.k1k3.k1k1.ε3.k2k2.ε4.k3

+ 32(k3.k1)
2k1.ε3.k2k2.ε4.k3

+ 32(k3.k1)
2k2.ε3.k2k2.ε4.k3

+ 16(k3.k1)
2k2.ε3.k2k3.ε4.k3

+ 32(k2.k1)
2k3.k1k1.ε3.ε4.k2

+ 64k2.k1(k3.k1)
2k1.ε3.ε4.k2 + 32(k3.k1)

3k1.ε3.ε4.k2

+ 32k2.k1(k3.k1)
2k2.ε3.ε4.k2 + 32(k3.k1)

3k2.ε3.ε4.k2

+ 32k2.k1(k3.k1)
2k2.ε3.ε4.k3 + 32(k3.k1)

3k2.ε3.ε4.k3
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+ 2(k2.k1)
2((k2.k1)

2 + 2k2.k1k3.k1

+ 2(k3.k1)
2)Tr[ε3]Tr[ε4]

]
φ1φ2 (33)

where the terms in the last line of (32) appear in the last line
of the above amplitude. Apart from these terms which are zero
for graviton, all other terms are in fact the terms of the scattering
amplitude (22) which include3 Tr[ε1 · ε2] = φ1φ2.

In transforming the couplings (2) to the Einstein frame, one
transforms habhba = hE

ab(h
E )ba + 10

8 φ2, or in terms of polarization it

becomes Tr[ε1 · ε2] = Tr[εE
1 · εE

2 ] + 10
8 φ1φ2. So the above amplitude

is not fully reproduced by transforming the string frame couplings
(2) to the Einstein frame, i.e., 5/4 of the above amplitude is repro-
duced by (2) and −1/4 of it is a new dilaton coupling in the string
frame.

To find the field theory couplings corresponding to the above
amplitude, we have to find the couplings in (2) which have habhba

and use the replacement habhba → φ2 in them. On the other hand,
in the dimensional reduction the term hyyhyy is a component
of habhba . Hence, to find the couplings corresponding to the above
amplitude, we have to find the hyyhyy-terms in the dimensional
reduction of (2) and use the replacement hyyhyy → φ2 in them.
The dimensional reduction produces the following terms:

γ e−2φ0

2κ2
[Rhkmn Rmnpq Rhypy Rkyqy + 2Rhmkn Rmpnq Rhypy Rkyqy

+ 2Rhrps Rqrks Rhyky R pyqy] (34)

Using the fact that Rhypy = −ρ2κ
α′ hyy,hp , one finds the couplings

corresponding to the amplitude (33) to be

γ e−2φ0

2
[Rhkmn Rmnpqφ,hpφ,kq + 2Rhmkn Rmpnqφ,hpφ,kq

+ 2Rhrps Rqrksφ,hkφ,pq] (35)

We have also checked it explicitly that the above couplings pro-
duce the amplitude (33). These couplings are also invariant under
linear T-duality because the T-dual extension of the second deriva-
tive of the dilaton (16) contains the Ricci tensor which is zero
on-shell. The nonlinear extension of the above couplings with the
factor of −1/4 appears in (5).

The scattering amplitude of three dilatons and one symmetric
tensor is given by the scattering amplitude of two dilatons and
two symmetric tensors (33) in which one of the symmetric tensor
is (20). For the term in the last line one must replace Tr[ε3] =
φ3

√
8 and for all other terms one must replace (ε3)ab = φ3ηab/

√
8.

The result is

�A= 2
√

2γ κ2e−2φ0
[(

(k2.k1)
2

+ k2.k1k3.k1 + (k3.k1)
2)2

Tr[ε4]
]
φ1φ2φ3 (36)

which is zero when the polarization tensor is traceless. Hence,
there is no coupling of three dilatons and one graviton.

The scattering amplitude of four dilatons is given by the above
amplitude in which the trace of ε4 is replace by Tr[ε4] = φ4

√
8,

i.e.,

�A= 8γ κ2e−2φ0
[(

(k2.k1)
2 + k2.k1k3.k1 + (k3.k1)

2)2]
φ1φ2φ3φ4

(37)

3 Note that the proposal given in [9] that extends the Riemann curvature to in-

clude the dilaton, i.e., Rab
cd → Rab

cd − κη[c
a φ,b]d]/

√
8, is equivalent to extension

hab → hab + φηab/
√

8. This gives Tr[ε1 · ε2] → Tr[ε1 · ε2] + φ1φ2 in the eight-
dimensional transverse space of the light-cone formalism.

The above terms are in fact the terms of the scattering ampli-
tude of four symmetric tensors (22) which include the trace of
two polarization tensors, e.g., Tr[ε1 · ε2]Tr[ε3 · ε4] = φ1φ2φ3φ4. On
the other hand, the R yy R yy R yy R yy terms of the dimensional re-
duction of (2) produce the trace of two polarization tensors. In
fact the traces of four polarization tensors e.g., Tr[ε1 · ε2 · ε3 · ε4] in
the amplitude (22) are canceled when the polarizations commute
inside the trace which is the case for the component εyy which
appears in the couplings R yy R yy R yy R yy . So the couplings corre-
sponding to the above amplitude can be read from R yy R yy R yy R yy

which are

γ e−2φ0

2κ2
[−2Rhyny Rhysy Rnyqy Rqysy + 2Rmyny Rmyny Rrysy Rrysy]

(38)

Inspired by these couplings, one finds the couplings corresponding
to (37) to be

γ κ2e−2φ0

2
[−2φ,hnφ,hsφ,nqφ,qs + 2φ,mnφ,mnφ,rsφ,rs] (39)

We have also checked the above couplings by direct comparison
with the amplitude (37). In transforming the couplings (2) and (5)
to the Einstein frame one transforms Tr[εi · ε j]Tr[εk · εl] in (2) to
( 10

8 )2φiφ jφkφl , and − 1
4 φ1φ2 Tr[ε3 · ε4] in (5) to − 5

8 φ1φ2φ3φ4. So
25/16−10/16 of the above amplitude is reproduced by transform-
ing the couplings (2) and (5) to the Einstein frame and 1/16 of it
is a new dilaton coupling in the string frame. The nonlinear exten-
sion of (39) with the factor of 1/16 appears in (6).

We finally consider the couplings involving the dilaton and the
B-field. The scattering amplitude of two symmetric tensors and
two B-fields has no trace of one symmetric tensor, consequently,
the scattering amplitude of one dilaton, one symmetric tensor and
two B-fields is given by the former amplitude in which one of the
symmetric tensor is replaced by φηab/

√
8. The result is

�A= γ κ2e−2φ0

2
√

8

[
32k2.k1k3.k1k1.ε3.k2k2.ε4.k3

+ 32(k3.k1)
2k1.ε3.k2k2.ε4.k3

− 32(k2.k1)
2k3.k1k1.ε3.ε4.k2

− 64k2.k1(k3.k1)
2k1.ε3.ε4.k2

− 32(k3.k1)
3k1.ε3.ε4.k2 − 32k2.k1(k3.k1)

2k2.ε3.ε4.k2

− 32(k3.k1)
3k2.ε3.ε4.k2 − 32k2.k1(k3.k1)

2k2.ε3.ε4.k3

− 32(k3.k1)
3k2.ε3.ε4.k3 − 16(k2.k1)

2(k3.k1)
2 Tr[ε3.ε4]

− 32k2.k1(k3.k1)
3 Tr[ε3.ε4]

− 16(k3.k1)
4 Tr[ε3.ε4]

]
Tr[ε2]φ1 + · · · (40)

where dots refer to the terms which are not proportional to Tr[ε2].
They are reproduced by transforming the couplings (31) to the Ein-
stein frame. So there is no coupling of one dilaton, one graviton
and two B-fields in the string frame.

The scattering amplitude of two dilatons and two B-fields is
given by the amplitude (40) in which the symmetric polarization
is (20). The terms in which the polarization appears as Tr[ε2], are
invariant under the Ward identity associated with the symmetric
tensor. For these terms one should replace Tr[ε2] = φ2

√
8. The re-

sult is the following:

�A1 = γ κ2e−2φ0

2

[
16k3.k1k3.k2

(−2k1.ε3.k2k2.ε4.k3

+ k2.k1
(
2k1.ε3.ε4.k2 + k3.k1Tr[ε3.ε4]

)
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+ k3.k1
(
2(k1.ε3.ε4.k2 + k2.ε3.ε4.k2 + k2.ε3.ε4.k3)

+ k3.k1Tr[ε3.ε4]
))]

φ1φ2 (41)

The other terms separately satisfy the Ward identity associated
with the symmetric tensor. So −ka

2�
b
2 − kb

2�
a
2 in the dilaton polar-

ization (20) cancels in these terms, hence, effectively the dilaton
polarization is φ2ηab/

√
8. The result in this case is

�A2 = γ κ2e−2φ0

2

[−8(k2.k1)
2(−2k1.ε3.k2k2.ε4.k3

+ k2.k1
(
2k1.ε3.ε4.k2 + k3.k1Tr[ε3.ε4]

)
+ k3.k1

(
2(k1.ε3.ε4.k2 + k2.ε3.ε4.k2 + k2.ε3.ε4.k3)

+ k3.k1Tr[ε3.ε4]
))]

φ1φ2 (42)

The above amplitude is reproduced by transforming the couplings
(31) to the Einstein frame.

To find the couplings corresponding to the amplitude (41), we
note that these terms are the terms of the scattering amplitude of
two symmetric tensors and two B-fields which are proportional to
Tr[ε1 · ε2] = φ1φ2. So the couplings corresponding to (41) may be
read from the H H R yy R yy terms of the dimensional reduction of
the couplings (31) which are

γ e−2φ0

2
[−24Rh ypy Rkyqy Hhkn,m Hmnq,p

− 8Rh ypy Rkyqy Hhkn,m Hnpq,m + 4Rh yky R pyqy Hhps,r Hkqs,r

+ 8Rh yky R pyqy Hkqs,r H prs,h + 4Rh yky R pyqy Hkrs,q H prs,h]
Inspired by this, one finds the following couplings of two dilatons
and two B-fields:

γ κ2e−2φ0

2
[−24φ,hpφ,kq Hhkn,m Hmnq,p − 8φ,hpφ,kq Hhkn,m Hnpq,m

+ 4φ,hkφ,pq Hhps,r Hkqs,r + 8φ,hkφ,pq Hkqs,r H prs,h

+ 4φ,hkφ,pq Hkrs,q H prs,h]
We have checked explicitly that the above couplings produce the
amplitude (40). Here again 5/4 of the above couplings are repro-
duced by transforming the couplings (31) to the Einstein frame,
and −1/4 of them are new couplings. The nonlinear extension of
these couplings appear in (7).

7. Discussion

In this Letter we have extended the sigma model Riemann cur-
vature couplings (2) to include the B-field and the dilaton cou-
plings. We have found these new couplings by imposing the con-
sistency of the couplings (2) with the linear T-duality and by the
S-matrix calculations. The T-duality in these couplings is satisfied
on-shell. Even in the absence of the B-field, the couplings (2) sat-
isfy the standard T-duality only on-shell. The reason is that the
dimensional reduction of the couplings (2) contains the following
term:

Rkyny Rn
yqy Rrysy Rqrksηyyηyyηyy (43)

which is not invariant under the T-duality (14). However, using the
same calculation as we have done in (23) one finds the on-shell
amplitude corresponding to this coupling is zero. This may be the
reason that the R R H H couplings (31) are also invariant under on-
shell T-duality.

In general one expects the effective actions to be invariant un-
der off-shell T-duality. So the effective action which includes the
supergravity at order α′ 0 and the Riemann curvature corrections
(2) at order α′ 3 should be invariant under an off-shell T-duality

which receives quantum corrections. In fact there are different sets
of Riemann curvature corrections which are related to each others
via some couplings involving the Ricci and scalar curvatures [8].
These terms can be eliminated by field redefinitions involving
higher derivative terms. The field redefinitions at the same time
changes the standard form of the T-duality (7) to a non-standard
form which receives the higher derivative corrections. So one ex-
pects one set of Riemann curvature corrections to be invariant
under the standard T-duality transformations, and all other sets to
be invariant under the non-standard T-duality transformations.

We have found four NS–NS couplings which are related to the
four-graviton couplings (2) by on-shell linear T-duality transforma-
tions. However, there are ambiguities in the couplings (2) which
can be fixed by studying the five-graviton amplitudes. For exam-
ple, the four Riemann curvature couplings ε10 · ε10 R R R R can be
added to (2) because this term has its first non-zero contribution
at five gravitons [29]. The sigma-model approach implies that this
term appears in the effective action [30]. It would be interesting to
find the couplings which are related to the couplings ε10 ·ε10 R R R R
under T-dual Ward identity.

We have found the couplings (3) and (4) by using the fact that
the S-matrix elements should satisfy the T-dual Ward identity [27,
24]. On the other hand the S-matrix elements should satisfy the
S-dual Ward identity [27,31–33]. Using this identity, one may ex-
tend the couplings we have found in this Letter to include the R–R
couplings as well. The couplings involving the R–R two-form can
easily be included in (3) and (4) by replacing e−φ0 Habc Hdef with
the following S-duality invariant expression:

e−φ0 Habc,d Hef g,h → e−φ0 Habc,d Hef g,h + eφ0 Fabc,d Fef g,h

where F is the field strength of the R–R two-form. Similar exten-
sion for the D-brane couplings at order α′ 2 has been verified by
explicit calculations in [34]. A representation for the R2(∂ F )2 cou-
plings have been found in [35]. It has been shown in [35] that
this representation is the same as the R2(∂ F )2 couplings that one
finds by using the above extension in the R2(∂ H)2 couplings in
[9]. The R2(∂ F )2 terms that we have found are then the same as
the couplings found in [35] up to some identities. One may use
the consistency of the above R–R two-form couplings with the lin-
ear T-duality to find all other R–R couplings at order α′ 3. One may
also extend the four-point couplings at order α′ 3 to arbitrary order
of α′ using the prescription given in [36].
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