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Abstract This paper investigates the dynamical be-
havior of two oscillators with nonlinearity terms,
which are coupled with finite delay parameters. Each
oscillator is a general class of second-order nonlinear
delay-differential equations. The system of delay dif-
ferential equations is analyzed by reducing the delay
equations to a system of ordinary differential equa-
tions on a finite-dimensional center manifold, the cor-
responding to an infinite-dimensional phase space. In
addition, the characteristic equation for the linear sta-
bility of the trivial equilibrium is completely analyzed
and the stability region is illustrated in the parame-
ters space. Our analysis reveals necessary coefficients
of the reduced vector field on the center manifold
for studying the bifurcations of the trivial equilibrium
such as transcritical, pitchfork, and Hopf bifurcation.
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1 Introduction

Nonlinear time-delay differential equations (DDEs)
have been used as mathematical models for phenom-
ena in physiology [3, 9], population dynamics [16],
physics [17], climate modeling [24], and engineer-
ing [23], among others. Indeed, time delays have been
introduced in order to have the output of the models
more closely reflect the measured performance [7, 13,
16, 19, 21].

DDEs behave like ordinary differential equations
(ODEs) on an infinite-dimensional (Banach) phase
space and many results which are known for ODEs on
finite-dimensional spaces have analogues in the con-
text of DDEs. The bifurcation analysis of DDEs and
ODEs are the same, although the technical details dif-
fer. Consider the neighborhood of the equilibrium so-
lution of the nonlinear DDE; then the analysis of the
linearization at the equilibrium point leads to stable,
unstable and center invariant subspaces where only the
stable subspace is infinite-dimensional. They are tan-
gent to local invariant manifolds (stable, unstable, and
center manifolds) and the flow near the equilibrium
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is exponentially attracting (stable manifold), exponen-
tially repelling (unstable manifold), or nonhyperbolic
(center manifold). Now bifurcations near equilibria are
determined by the flow on the center manifold and the
dimension of this manifold is determined by the num-
ber of eigenvalues of the linearization on the imagi-
nary axis [2, 11, 12]. We focus on coupled nonlinear
oscillators because they have been an interesting sub-
ject in different research fields such as physics, engi-
neering, biology and so on [4–6, 8, 13, 15, 16, 22, 25,
28, 30, 31]. Furthermore, there have been great inter-
ests in dynamical characteristic especially the bifurca-
tions of these oscillators with delay. For example, au-
thors in [2, 10, 14, 18, 22, 26–29, 31] studied effect of
time-delay in some coupled oscillators from the view-
point of bifurcation.

One of the most important oscillators is van der Pol.
The van der Pol equation was introduced in the 1920s
as a model to describe the oscillations in the vacuum
tube triode circuit, which is governed by the following
second-order nonlinear oscillatory system:

ẍ + ε
(
x2 − 1

)
ẋ + x = f (x).

The dynamics of coupled van der Pol oscillators has
been of interest, for example, the author in [25] used
three van der Pol oscillators which are coupled to each
other to model the beating of the heart, Moore-Ede
[20] studied sleep dynamics by a directly coupled van
der Pol oscillators and authors in [1, 14, 18, 22, 26–28]
focused on the effect of time delay on the nonlinear
dynamics of the system by the method of averaging
together with truncation of Taylor expansions.

Wirkus [27] concerned on the following equation:
{

ẍ + ε(x2 − 1)ẋ + x = εαẏ(t − τ),

ÿ + ε(y2 − 1)ẏ + y = εαẋ(t − τ)
(1.1)

and he in his thesis [28] suggested the following sys-
tem for investigation:

{
ẍ + ε(x2 − 1)ẋ + x = εαẏ(t − τ) + εβy(t − τ),

ÿ + ε(y2 − 1)ẏ + y = εαẋ(t − τ) + εβx(t − τ)

(1.2)

which has application to laser dynamics, and more
generally, to the coupling of microwave oscillators.

Gholizade-Narm [8] studied the coupled van der
Pol oscillators with different parameters—as a model

of SA-AV nodes in heart
{

ẍ + ε1(x
2 − 1)ẋ + ω2

1x = α1(y(t) − x(t)),

ÿ + ε2(y
2 − 1)ẏ + ω2

2y = α2(x(t) − y(t))
(1.3)

and

{
ẍ + ε1(x

2 − 1)ẋ + ω2
1x = α1(y(t − τ1) − x(t)),

ÿ + ε2(y
2 − 1)ẏ + ω2

2y = α2(x(t − τ2) − y(t)).

(1.4)

In [8], synchronization regions for the system (1.3)
and the system (1.4), where τ1 = τ2, are obtained by
using the describing function method. Furthermore,
stability regions and bifurcation curves are only stud-
ied for the system (1.3) by using the perturbation
method. But he did not investigate the bifurcation(s)
for the system (1.4) because of complicated computa-
tions. Moreover, Zhang and Gu [29] investigated dy-
namics of the system (1.4) with the following condi-
tions:

ω1 = ω2 = 1, α1 = α2 = α, ε1 = ε2 = ε.

They only considered Hopf bifurcation by using of the
center manifold theory.

In this paper, we extend the works of Zhang [29],
Wirkus ([27, 28], the case α = 0), and Gholizade-
Narm [8] to a general form, i.e.,
{

ẍ + x = f (x, ẋ) + α1y(t − τ),

ÿ + y = f1(y, ẏ) + α2x(t − δ)
(1.5)

where the functions f (x, ẋ) and f1(y, ẏ) are smooth.
In fact, we study the effect of time-delay parameters
on the nonlinear system (1.5) by the center manifold
theory which reveals necessary nonlinearity terms for
determining its stability regions and bifurcations (tran-
scritical, pitchfork, Hopf).

This paper is organized as follows. Section 2 is de-
voted to explain center manifold theory and some in-
formation about the stability of the characteristic equa-
tion in DDEs. Section 3 concentrates on the Taylor ex-
pansion of f and f1 in the system (1.5) and the linear
stability of the trivial solution by the use of Sect. 2.2.
Section 4 discusses on the bifurcations for the sys-
tem (1.5) under some generic conditions on the Taylor
coefficients of the functions f and f1. We apply our
results on the delay-coupled van der Pol equations.
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2 Preliminary

2.1 Center manifold for DDES

In this section, we briefly state the center manifold the-
ory for DDEs with parameters. For more details, one
can refer to [2, 11, 12]. Consider the general delay-
differential equation

Ẏ (t) = g
(
X(t),X(t − τ),X(t − δ),μ

)
(2.1)

where Y = (X,μ), μ ∈ R, X ∈ R4, and τ, δ > 0. We
shall assume that g is Cr , for r large enough, and
the equation admits zero as the equilibrium. Note that
Eq. (2.1) should be viewed as the suspended system
where the parameter μ is included as trivial dynamic
(μ̇ = 0). We separate the system (2.1) to the linear and
nonlinear terms
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋ(t) = A0(μ)X(t) + A1(μ)X(t − τ)

+ A2(μ)X(t − δ)

+ G(X(t),X(t − τ),X(t − δ),μ),

μ̇ = 0

(2.2)

where

Dj+1g(0,0,0,μ0) = [(Dj+1g)ik
]

5×5

and

Aj(μ0) = [(Dj+1g)ik
]

4×4

where j = 0,1,2 and i, k = 1, . . . ,5. Here, Djg

means the Jacobian of g with respect to its j th com-
ponent and Aj(μ0)’s are the submatrix of the matrix
Dj+1g(0,0,0,μ0).

Let C = C([−Tm,0],R4+1) be the Banach space
of all continuous mappings from [−Tm,0] into R4+1

which is equipped with the supremum norm ‖φ‖Tm =
supθ∈[−Tm,0] |φ(θ)| for φ ∈ C where Tm = max{τ, δ}.

We write the system (2.2) in the following DDE
form

d

dt
U(t) = LμUt + F(Ut ) (2.3)

where Ut(θ) = [u(t + θ),μ(t + θ)]T ∈ C for θ ∈
[−Tm,0]. L : C → R4+1 is the linear mapping and
F ∈ Cr(C,R4+1), r ≥ 1 is the nonlinear mapping.

Let u(t) = X(t) and ut (θ) = u(t + θ), then the sys-
tem (2.2) is
{

d
dt

u(t) = Lμut + G(ut ,μ),

d
dt

μ = 0.
(2.4)

Therefore, for every ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) and φ =
(ϕ,ϕ5)

T ∈ C, we have

A0(μ)ϕ(0) + A1(μ)ϕ(−τ) + A2(μ)ϕ(−δ) = Lμϕ,

(Lμϕ,0)T = Lμφ

and

F(φ,μ) = (G(ϕ,μ),0
)T

.

The stability of the trivial solution of the Eq. (2.1) can
be studied by the DDE of the following form:
⎧
⎪⎨

⎪⎩

Ẋ(t) = A0(μ)X(t) + A1(μ)X(t − τ)

+ A2(μ)X(t − δ),

μ̇ = 0.

(2.5)

Substituting Y(t) = Ceλt in the system (2.5), gives the
following characteristic equation:

λ · det
(
λI4 − A0(μ) − e−λτA1(μ) − e−λδA2(μ)

)= 0.

(2.6)

Obviously, Eq. (2.6) always has one eigenvalue on
the imaginary axis. We assume that this characteristic
equation has m+1 eigenvalues (counting multiplicity)
on the imaginary axis and all other eigenvalues have
negative real parts. Therefore, the space C can be split
as C = P ⊕ Q where Q ⊂ C is infinite-dimensional
stable subspace and P ⊂ C is an (m + 1)-dimensional
center subspace tangent to the center manifold. We
will denote a basis for P by the 5 × (m + 1) matrix
Φ; the columns of Φ are the basis vectors. Also, we
will consider the transpose of Eq. (2.5) with (m + 1)-
dimensional center subspace P ′. We will denote a ba-
sis for P ′ by the (m + 1) × 5 matrix Ψ ′. Also, we
define a new basis Ψ by Ψ = 〈Ψ ′,Φ〉−1Ψ ′ which im-
plies 〈Ψ,Φ〉 = I . This bilinear form is defined

〈ψi,φj 〉 = ψi(0)φj (0) +
∫ 0

−Tm

ψi(ξ + τ)A1φj (ξ) dξ

+
∫ 0

−Tm

ψi(ξ + δ)A2φj (ξ) dξ
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where

Φ = (φ1, φ2, . . . , φm+1),

Ψ = (ψ1,ψ2, . . . ,ψm+1)
T ,

〈Ψ,Φ〉 = [〈ψi,φj 〉
]
(m+1)×(m+1)

and Tm = max{τ, δ}. This kind of basis Ψ can help us
to decompose the space C and also reduce Eq. (2.3) on
the local center manifold Wc

loc which is defined by

Wc
loc = {φ ∈ C : φ = Φz + h(z,F ),

z is in a neighborhood of zero in Rm+1}

where h(z,F ) ∈ Q for each z and is a Cr−1 function
with respect to z. Moreover, z satisfies the following
ordinary differential equation:

d

dt
z = Bz + Ψ (0)F

(
Φz + h(z,F )

)
(2.7)

where the (m+1)×(m+1) matrix B satisfies the rela-
tion d

dθ
Φ = ΦB , [2, 11, 12]. This framework is useful

to consider the transcritical and pitchfork bifurcations
of the trivial solution of Eq. (1.5).

Furthermore, for analyzing the Hopf bifurcation for
Eq. (2.1), we only consider the first equation of the
system (2.4)

d

dt
u(t) = Lμut + G(ut ,μ). (2.8)

Next, we define

(
A(μ)ϕ

)
(θ) =

{
dϕ
dθ

, θ ∈ [−Tm,0),

Lμϕ, θ = 0

and

(Rμϕ)(θ) =
{

0, θ ∈ [−Tm,0),

G(ϕ,μ), θ = 0

where ϕ ∈ C1([−Tm,0],R4). Since dut

dθ
= dut

dt
, we

have

u̇t = A(μ)ut + Rμut . (2.9)

It is necessary to compute eigenvectors q, q∗ associ-
ated with simple purely imaginary eigenvalues, ±iβ ,
of the first equation of the system (2.5) and its trans-
pose. We then normalize q and q∗ so that 〈q∗, q〉 = 1.

Let ut be the solution of Eq. (2.9) at the critical
value μ = μ0. Define

{
z(t) = 〈q∗, ut 〉,
W(t, θ) = ut (θ) − 2 Re{z(t)q(θ)}.

This definition can help us to reduced Eq. (2.8) on the
center manifold which is

ż(t) = iβz(t) + q̄∗(0)G(ut ,μ0) (2.10)

and determines properties of the bifurcating periodic
orbits in the center manifold at the critical value μ =
μ0; see [2, 11].

2.2 Stability of characteristic equation

Studying the system (1.5) at the trivial solution needs
to investigate the following general transcendental
polynomial equation:

λ2 + pλ + r + q e−λT = 0, q �= 0. (2.11)

Therefore, in this subsection we concentrate on this
equation. We substitute λ = iw in Eq. (2.11) in order
to find the roots of Eq. (2.11) with zero real parts. No-
tice that

• if w = 0, then r + q = 0,
• if w �= 0, then

⎧
⎨

⎩

cos(wT ) = w2−r
q

,

sin(wT ) = pw
q

.

Thus, wT = arcsin{pw
q

} and

(i) if w2−r
q

≥ 0 and wTj := wT + 2jπ , then

sin(wTj ) = sin(wT ) ⇒ wTj = arcsin{pw
q

} +
2jπ ,

(ii) if w2−r
q

< 0 and wTj := −wT + (2j + 1)π ,
then sin(wTj ) = sin(wT ) ⇒ wTj =
− arcsin{pw

q
} + (2j + 1)π .

Therefore, one can write

w± =
√

2

2

{(
2r − p2)± [(2r − p2)2

− 4
(
r2 − q2)] 1

2
} 1

2 ,
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T ±
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
w±
{
arcsin

{p
q
w±
}+ 2jπ

}; w2±−r

q
≥ 0,

1
w±
{− arcsin

{p
q
w±
}+ (2j + 1)π

};
w2±−r

q
< 0

with j ∈ {0,1,2, . . .} such that T ±
j > 0.

Notice that w± can be finite for each given r , p, q .
Therefore, they are fixed. But T ±

j ’s depend on the sign

of
w2±−r

q
and the values of r , p, q , and j .

If T = 0, then Eq. (2.11) becomes the second-order
polynomial equation

λ2 + pλ + r + q = 0 (2.12)

that it is easy to find its roots. From the relation be-
tween roots of Eqs. (2.11) and (2.12), we have the fol-
lowing lemma.

Lemma 1 (i) If either (r2 − q2) > 0 and (2r − p2) <

0, or (2r −p2)2 −4(r2 −q2) < 0 holds, then the num-
ber of roots of Eq. (2.11) with positive real parts is the
same as that of Eq. (2.12) for all T ≥ 0.

(ii) If either r2 − q2 < 0, or 2r − p2 > 0 and (2r −
p2)2 − 4(r2 − q2) = 0 holds, then the number of roots
of Eq. (2.11) with positive real parts is the same as
that of Eq. (2.12) for T ∈ [0, T̃ +

0 ). Also, t Eq. (2.11)
has a pair of simple purely imaginary roots ±iw+ at
T = T̃ +

j .

(iii) If r2 −q2 > 0, (2r −p2) > 0 and (2r −p2)2 −
4(r2 − q2) > 0 hold, then the number of roots of t
Eq. (2.11) with positive real parts is the same as that
of Eq. (2.12) for T ∈ [0, T̃0) and Eq. (2.11) has a pair
of simple purely imaginary roots ±iw+ (±iw−) at
T = T̃ +

0 (T = T̃ −
0 ), where T0 = min{T̃ +

0 , T̃ −
0 }.

Proof See [26]. �

Moreover, Baptisini and T’aboas stated a necessary
and sufficient stability condition for the equation
(
λ2 + pλ + r

)
eT λ + q = 0, T > 0 (2.13)

such that all the roots of the equation have negative
real parts.

Theorem 2 Consider the vector ν(b) = (pb, r −
b2), b ≥ 0. A necessary and sufficient condition for
Eq. (2.13) to be stable for any T > 0 is that |ν(b)| >

q , for any b > 0, if q > 0 or |ν(b)| > −q , for any
b ≥ 0, if q < 0.

Proof See [3]. �

3 Linear stability of system (1.5)

Let us consider the following DDE:
{

ẍ + x = f (x, ẋ) + α1y(t − τ),

ÿ + y = f1(y, ẏ) + α2x(t − δ)
(3.1)

where τ, δ > 0 are the delay parameters and f,f1 are
arbitrary smooth functions have origin as the equilib-
rium solution. It is convenient to write (3.1) as the
four-dimensional first-order system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2(t),

ẋ2 = −x1(t) + α1y1(t − τ) + f (x1, x2),

ẏ1 = y2(t),

ẏ2 = −y1(t) + α2x1(t − δ) + f1(y1, y2).

(3.2)

Let

f (x1, x2) = γ1x1 + γ2x2 + γ3x
2
1 + γ4x1x2 + γ5x

2
2

+ γ6x
3
1 + γ7x

2
1x2 + γ8x1x

2
2 + γ9x

3
2

+ O(4),

f1(y1, y2) = η1y1 + η2y2 + η3y
2
1 + η4y1y2 + η5y

2
2

+ η6y
3
1 + η7y

2
1y2 + η8y1y

2
2 + η9y

3
2

+ O(4)

and γi , ηi ’s are the Taylor coefficients of functions
f,f1, respectively. For simplifying the computations,
we assume that the Taylor coefficients Dif (0,0) and
Dif1(0,0), i = 1,2 are equal. Then the characteris-
tic equation of the linearization of system (3.2) at the
trivial solution is

det
(
Δ(λ, τ, δ)

) = (λ2 − λγ2 + (1 − γ1)
)2

− α1α2e
−λ(τ+δ).

Let α1 and α2 have the same sign. If we denote τ +δ =
2T and α1α2 = α2, then the characteristic equation is

det
(
Δ(λ, τ, δ)

)= Δ1.Δ2 (3.3)

where

Δ1 = [λ2 − λγ2 + (1 − γ1) − αe−λT
]
,

Δ2 = [λ2 − λγ2 + (1 − γ1) + αe−λT
]
.
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Fig. 1 Maple simulation of
stable region in
(γ1, α, γ2)-space and
(γ1, α)-space. (a) The
trivial solution of
system (3.1) is stable in the
region
{(γ1, α, γ2)|2(1 − γ1) −
γ 2

2 < 0, (1 − γ1)
2 − α2 > 0,

−3 ≤ γ1 ≤ 1,−4 ≤ γ2 ≤ 3,

−4 ≤ α ≤ 4}. (b) In the
region
{(γ1, α)|(1 − γ1)

2 −α2 > 0,

−3 ≤ γ1 ≤ 1,4 ≤ α ≤ 4}
the trivial solution of
system (3.1) is stable

These determine the local stability of the trivial solu-
tion of the system (3.2). We see that Eq. (3.3) is stable
if and only if equations Δ1 and Δ2 satisfy Theorem 2,
where

p := −γ2, q := ±α, r := 1 − γ1 (3.4)

and

r2 − q2 = (1 − γ1)
2 − α2,

2r − p2 = 2(1 − γ1) − γ 2
2 , (3.5)

(
2r − p2)2 − 4

(
r2 − q2)= γ 4

2 + 4α2 − 4(1 − γ1)γ
2
2 .

Now we state the following lemma.

Lemma 3 All the roots of Eq. (3.3) have negative real
parts, if and only if

|ν(b)| > α for any b > 0

where ν(b) = (−γ2b, (1 − γ1) − b2). Moreover,

(i) if 2(1−γ1)−γ 2
2 < 0 and (1−γ1)

2 −α2 > 0, then
this inequality holds for any b > 0, [see Fig. 1(a)],

(ii) if this inequality holds for any b > 0, then (1 −
γ1)

2 − α2 > 0, [see Fig. 1(b)].

Proof Applying Theorem (2) on Δ1 and Δ2 imply that
they have roots with negative real parts iff

|ν(b)| > |q| for any b > 0

where |ν(b)| = (−γ2b, (1 − γ1) − b2) and q = ±α.
This inequality yields to

b4 + γ 2
2 b2 − 2(1 − γ1)b

2 + (1 − γ1)
2 > α2.

It is obvious that if 2(1−γ1)−γ 2
2 < 0 and (1−γ1)

2 −
α2 > 0, then |ν(b)| > |q| for any b > 0. On the other
hand, if the inequality |ν(b)| > |q| holds for any b > 0,
then we have (1 − γ1)

2 − α2 > 0, (b → 0). �

4 Bifurcations for system (1.5)

Investigating the local bifurcations of the trivial solu-
tion of the system (1.5) needs to obtain the eigenvalues
of Eq. (3.3), that is to say Δ1.Δ2 . By using Sect. 2.2,
Eq. (3.3) has a pair of simple purely imaginary roots
when

w± =
√

2

2

{(
2(1 − γ1) − γ 2

2

)

± [γ 4
2 + 4α2 − 4(1 − γ1)γ

2
2

] 1
2
} 1

2 (4.1)

at T = T ±
j , such that

T +
j =

⎧
⎪⎪⎨

⎪⎪⎩

1
w+
{
2π − arcsin

{ γ2
|α|w+

}+ jπ
};

w2+ − r ≥ 0,

1
w+
{
arcsin

{ γ2
|α|w+

}+ jπ
}; w2+ − r < 0

(4.2)
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and

T −
j = 1

w−

{
arcsin

{
γ2

|α|w−
}

+ jπ

}
(4.3)

where j ∈ {0,1,2, . . .} and T ±
j > 0. Lemma 1 im-

plies the following lemma for the characteristic equa-
tion (3.3).

Lemma 4 Suppose that w± and T ±
j are defined by

(4.1), (4.2), and (4.3).

(i) If (1 − γ1)
2 − α2 = 0, then λ = 0 is a root of

Eq. (3.3) which implies the occurrence of the lo-
cal bifurcation, such as transcritical, . . . .

(ii) If either (1−γ1)
2 −α2 < 0, or 2(1−γ1)−γ 2

2 > 0
and γ 4

2 + 4α2 − 4(1 − γ1)γ
2
2 = 0, then the sys-

tem (3.2) undergoes a Hopf bifurcation at the ori-
gin when T = T +

j , j = 0,1, . . . .

(iii) If (1 − γ1)
2 − α2 > 0, 2(1 − γ1) − γ 2

2 > 0 and
γ 4

2 +4α2 −4(1−γ1)γ
2
2 > 0, then the system (3.2)

undergoes a Hopf bifurcation at the origin when
T = T ±

j , j = 0,1, . . . .

Proof (i) Obviously, λ = 0 is a root of Eq. (3.3) if

(1 − γ1) = α or (1 − γ1) = −α.

For (ii) and (iii), it is enough to use Lemma 1. �

Note that if we take T as bifurcation parameter, then
differentiation λ(T ) with respect to T leads to

dλ

dT
= −λ(λ2 − r − pλ)

(p + T λ2 + T r) + λ(2 + Tp)
. (4.4)

Re( dλ
dT

) and Im( dλ
dT

) at critical value of the time delay
are

Re

(
dλ

dT

)∣∣∣∣
T =T ±

j

= w2±(γ 4
2 + 4α2 − 4(1 − γ1)γ

2
2 )1/2

[−γ2 + T ±
j (1 − γ1 − w2±)]2 + [2 − γ2T

±
j ]2w2±

,

(4.5)

Im

(
dλ

dT

)∣∣∣
∣
T =T ±

j

= {w±
(
w2± − 1 + γ1

)(−γ2 − T ±
j

(
w2± − 1 + γ1

))

− γ2w
3±
(
2 − T ±

j γ2
)}

× {[−γ2 + T ±
j

(
1 − γ1 − w2±

)]2

+ [2 − γ2T
±
j

]2
w2±
}−1

. (4.6)

These relations use in Sect. 4.2 in order to study the
Hopf bifurcation for system (3.2).

4.1 Transcritical and Pitchfork bifurcations for
system (1.5)

By Lemma 4, zero solution for system (3.2) can un-
dergo a local bifurcation when α = 1 − γ1 or −α =
1−γ1. Let μ = α − (1−γ1) be the bifurcation param-
eter. We rewrite system (3.2) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2(t),

ẋ2 = (μ − α)x1(t) + α1y1(t − τ) + γ2x2

+ γ3x
2
1 + γ4x1x2 + γ5x

2
2 + γ6x

3
1 + γ7x

2
1x2

+ γ8x1x
2
2 + γ9x

3
2 + O(4),

ẏ1 = y2(t),

ẏ2 = (μ − α)y1(t) + α2x1(t − δ) + γ2y2 + η3y
2
1

+ η4y1y2 + η5y
2
2 + η6y

3
1 + η7y

2
1y2 + η8y1y

2
2

+ η9y
3
2 + O(4),

μ̇ = 0.

(4.7)

The linearization of system (4.7) at origin is

{
Ẋ(t) = A0X(t) + A1X(t − τ) + A2X(t − δ),

μ̇ = 0

(4.8)

where

A0 =

⎛

⎜⎜
⎝

0 1 0 0
−α γ2 0 0
0 0 1 0
0 0 −α γ2

⎞

⎟⎟
⎠

and

A1 = [aij ] =
{
α1, i = 2, j = 3,

0, otherwise,

A2 = [aij ] =
{
α2, i = 4, j = 1,

0, otherwise.
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Theorem 5 System (4.7) has the transcritical bifurca-
tion if

−2γ2 + 2αTm �= 0, γ3 + η3
α

α1
�= 0,

γ6 + η6

(
α

α1

)2

= 0

and the pitchfork bifurcation if

−2γ2 + 2αTm �= 0, γ3 + η3
α

α1
= 0,

γ6 + η6

(
α

α1

)2

�= 0.

Proof Obviously, the linear system (4.8) has eigenval-
ues λ1 = λ2 = 0, which one of them is correspond-
ing to the equation μ̇ = 0 in this system. We compute
eigenvectors associated with these eigenvalues for the
linear system (4.8). Therefore, bases for the center
subspace of system (4.8) and its transpose are

Φ =

⎛

⎜⎜⎜
⎜
⎝

1 0
0 0
α
α1

0
0 0
0 1

⎞

⎟⎟⎟
⎟
⎠

,

Ψ ′ =
(−γ2 1 γ2(

α
α2

) α
α2

0

0 0 0 0 1

)

.

By using the following bilinear form,

〈ψ,φ〉 = ψ(0)φ(0) +
∫ 0

−Tm

ψ(ξ + τ)A1φ(ξ) dξ

+
∫ 0

−Tm

ψ(ξ + δ)A2φ(ξ) dξ

we have

Ψ =
(−γ2l l γ2l(

α1
α

) l α1
α

0

0 0 0 0 1

)

where

l = (−2γ2 + 2αTm)−1 (4.9)

and Tm = max{τ, δ}. Now, we consider the local coor-
dinates z = (u,μ)T on the center manifold. By using

Sect. 2.1, the nonlinear terms in system (4.7) and the
matrix B can be written as follows:

B =
(

0 0
0 0

)

F

((
u,0,

α

α1
u,0,μ

)T)

=
(

0,μu + γ3u
2 + γ6u

3,0,
α

α1
μu +

(
α

α1

)2

η3u
2

+
(

α

α1

)3

η6u
3,0

)T

.

Thus, we get the following system on the center man-
ifold:

{
u̇ = l(2μu + (γ3 + η3

α
α1

)u2 + (γ6 + η6(
α
α1

)2)u3),

μ̇ = 0.

(4.10)

By definition (4.9), system (4.10) is

u̇ = 1

−2γ2 + 2αTm

[
2μu +

(
γ3 + η3

α

α1

)
u2

+
(

γ6 + η6

(
α

α1

)2)
u3
]

which implies the transcritical bifurcation if

−2γ2 + 2αTm �= 0, γ3 + η3
α

α1
�= 0,

γ6 + η6

(
α

α1

)2

= 0

and the pitchfork bifurcation if

−2γ2 + 2αTm �= 0, γ3 + η3
α

α1
= 0,

γ6 + η6

(
α

α1

)2

�= 0. �

4.2 Hopf bifurcation for system (1.5)

We now suppose that conditions (ii) or (iii) in Lemma 4
hold, then system (3.2) has a pair of purely imaginary
roots ±iw at the critical value of time delay T = T∗.
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Introduce the new parameter μ = T − T∗ and
let t → t

T
. We rewrite system (3.2) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = (μ + T∗)x2(t),

ẋ2 = (μ + T∗)(−x1(t) + α1y1(t − τ1) + f (x1, x2)),

ẏ1 = (μ + T∗)y2(t),

ẏ2 = (μ + T∗)(−y1(t) + α2x1(t − δ1) + f1(y1, y2))

(4.11)

where τ1 = τ
T

and δ1 = δ
T

. By using Sect. 2.1, we
want to obtain the center manifold for system (4.11).
Let C = C([−T11,0],R4) be the phase space with
the supremum norm ‖φ‖ = supθ∈[−T11,0] |φ(θ)| where
T11 = max{τ1, δ1}. Assume that u(t) = (x1(t), x2(t),

y1(t), y2(t)), then as usual, ut ∈ C is defined by
ut (θ) = u(t + θ) for θ ∈ [−T11,0]. By Sect. 2.1, this
system can be written as

u̇(t) = Lμut + G(ut ,μ) (4.12)

and for every φ = (φ1, φ2, φ3, φ4)
T ∈ C, we have

Lμφ = (μ + T∗)
(
A0φ(0) + A1φ(−τ1) + A2φ(−δ1)

)

(4.13)

also

G(φ,μ) = (μ + T∗)
(
0, γ3φ

2
1 + γ4φ1φ2 + γ5φ

2
2

+ γ6φ
3
1 + γ7φ

2
1φ2 + γ8φ1φ

2
2

+ γ9φ
3
2 ,0, η3φ

2
3 + η4φ3φ4 + η5φ

2
4

+ η6φ
3
3 + η7φ

2
3φ4 + η8φ3φ

2
4 + η9φ

3
4

)T
.

On the other hand, by using Sect. 2.1 for φ ∈
C1([−T11,0],R4), we have

(A(μ)φ)(θ) =
{

dφ(θ)
dθ

, θ ∈ [−T11,0),

Lμφ, θ = 0
(4.14)

and

(Rμφ)(θ) =
{

0, θ ∈ [−T11,0),

G(φ,μ), θ = 0.

Then system (4.11) is equivalent to

u̇t = A(μ)ut + Rμut (4.15)

Furthermore, define

(A∗(0)ψ)(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

− dψ
dξ

, ξ ∈ (0, T11],
T∗(AT

0 ψ(0) + AT
1 ψ(τ1)

+ AT
2 ψ(δ1)), ξ = 0

for ψ ∈ C1([0, T11], (R4)∗) at μ = 0.
The system (4.11) has a pair of purely imaginary

eigenvalues ∓iwT∗ at μ = 0 and its corresponding
eigenvectors A(0) and A∗(0) are

q(θ) = (q1(0), q2(0), q3(0), q4(0)
)T

eiwT∗θ ,

q∗(ξ) = D
(
q∗

1 (0), q∗
2 (0), q∗

3 (0), q∗
4 (0)

)
eiwT∗ξ

such that

q(0) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

iα1e
−iwτ1T∗

w(K+iL)

−α1e
−iwτ1T∗

(K+iL)

−i
w

1

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

q∗(0) = D

⎛

⎜⎜⎜⎜⎜⎜
⎝

(iw+γ2)(K−iL)e−iwτ1T∗
α1

−(K−iL)e−iwτ1T∗
α1

−(iw + γ2)

1

⎞

⎟⎟⎟⎟⎟⎟
⎠

T
(4.16)

where

K = w2 − 1 + γ1, L = wγ2.

Moreover, D obtains from the condition 〈q∗, q〉 = 1,
where this bilinear form is [2, 12]

〈
q∗, q

〉 = q∗(0)q(0) +
∫ 0

−T11

q∗(s + τ1)A1q(s) ds

+
∫ 0

−T11

q∗(s + δ1)A2q(s) ds

thus

D = w(K − iL)

(−4Kw) + i(2Kγ2 + K2 + L2 + α2e2iwT∗)
.

(4.17)

Now we introduce the coordinates for the center man-
ifold C0 at μ = 0. Let ut be the solution of Eq. (4.15).
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By Sect. 2.1, one can define
{
z(t) = 〈q∗, ut 〉,
W(t, θ) = ut (θ) − 2 Re{z(t)q(θ)}. (4.18)

On the center manifold C0, W(t, θ) can be written as
follows:

W(t, θ) = W
(
z(t), z̄(t), θ

)

= W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z2

2
+ · · ·
(4.19)

where z and z̄ are local coordinates for the center man-
ifold C0 in the direction of q∗ and q̄∗. For the solution
ut ∈ C0 of Eq. (4.15), we have

ż(t) = 〈q∗, u̇t

〉= 〈q∗,A(0)ut + R0ut

〉

= iβz(t) + q̄∗(0)G(ut ,0)

= iβz(t) + q̄∗(0)G
(
W(t, θ) + 2 Re

{
z(t)q(θ)

}
,0
)

= iβz(t) + q̄∗(0)h(z, z̄)

= iβz(t) + g(z, z̄) (4.20)

where β = wT∗, μ = 0, G(ut ,0) = G(ut , T∗) =
h(z, z̄) and

g(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z2

2
+ · · · .

Equations (4.15), (4.18), and (4.20) imply

Ẇ = u̇t − żq − żq̄

= A(0)ut + R0ut − A(0)zq − A(0)z̄q̄ − g(z, z̄)q

− ḡ(z, z̄)q̄

= A(0)W + R0ut − 2 Re
{
q̄∗(0)h(z, z̄)q

}

=

⎧
⎪⎨

⎪⎩

A(0)W − 2 Re
{
q̄∗(0)h(z, z̄)q

}
, θ ∈ [T11,0),

A(0)W − 2 Re
{
q̄∗(0)h(z, z̄)q

}+ h(z, z̄),

θ = 0

then it is rewritten as

Ẇ = A(0)W + H(z, z̄, θ) (4.21)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z2

2

+ H30
z3

6
+ · · · . (4.22)

On the other hand, the following equation comes
from (4.19):

Ẇ = Wzż + Wz̄ż. (4.23)

From comparing Eqs. (4.23) and (4.21), we see that
there exist the following equalities between coeffi-
cients of W(z, z̄, θ) and H(z, z̄, θ):

⎧
⎪⎨

⎪⎩

(A(0) − 2iβ)W20(θ) = −H20(θ),

A(0)W11(θ) = −H11(θ),

(A(0) + 2iβ)W02(θ) = −H02(θ).

(4.24)

In addition, for θ ∈ [−T11,0), we have

H(z, z̄, θ)

= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ)

= −
(

g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z2

2
+ · · ·

)

× q(θ)

−
(

ḡ20(θ)
z2

2
+ ḡ11(θ)zz̄ + ḡ02(θ)

z2

2
+ · · ·

)

× q̄(θ)

= H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z2

2

+ H30
z3

6
+ · · ·

therefore,

⎧
⎪⎨

⎪⎩

H̄02(θ) = H20(θ),

H20(θ) = −g20q(θ) − ḡ02q̄(θ),

H11(θ) = −g11q(θ) − ḡ11q̄(θ).

(4.25)

Now, we can compute W11(θ) and W20(θ) for θ ∈
[−T11,0). By (4.14) at μ = 0, we have

(
A(0)Wij

)
(θ) = dWij (θ)

dθ
(4.26)

for W11(θ) and W20(θ). Thus, Eqs. (4.24), (4.25),
and (4.26), imply the following first-order differential
equation:

Ẇ20(θ) = 2iβW20(θ) + g20q(0)eiβθ + ḡ02q̄(0)e−iβθ

(4.27)
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which has the following solution:

W20 = 3Cβe2iβθ + 3ig20q(0)eiβθ + iḡ02q̄(0)e−iβθ

3β

(4.28)

similarly, we have

Ẇ11(θ) = g11q(0)eiβθ + ḡ11q̄(0)e−iβθ (4.29)

with the solution

W11 = Eβ − ig11q(0)eiβθ + iḡ11q̄(0)e−iβθ

β
(4.30)

where C, E are both four-dimensional vectors and can
be determined by setting θ = 0 in H(z, z̄, θ). By the
continuity of W20 and W11 on [−T11,0), we get

W20(0) = 3Cβ + 3ig20q(0) + iḡ02q̄(0)

3β
, (4.31)

W11(0) = Eβ − ig11q(0) + iḡ11q̄(0)

β
. (4.32)

Let

ut (0) = (u1(0), u2(0), u3(0), u4(0)
)T

where

ui(0)

= zqi(0) + z̄q̄i (0) + Wi
20(0)

z2

2

+ Wi
11(0)zz̄ + Wi

02(0)
z2

2
+ · · · , i = 1,2,3,4.

(4.33)

In addition, we have

H(z, z̄,0) = −2 Re
{
q̄∗(0)h(z, z̄)q(0)

}+ h(z, z̄)

= −g(z, z̄)q(0) − ḡ(z, z̄)q̄(0) + h(z, z̄)

(4.34)

Substituting (4.33) into (4.20) and comparing (4.34)
with (4.22) yield

H20(0) = −g20q(0) − ḡ02q̄(0) + h20,

H11(0) = −g11q(0) − ḡ11q̄(0) + h11

where

h20 = T∗

⎛

⎜⎜
⎝

0
γ3q1

2 + γ5q2
2 + γ4q1q2

0
η3q3

2 + η5q4
2 + η4q3q4

⎞

⎟⎟
⎠

and

h11 = T∗

⎛

⎜⎜
⎝

0
2γ3q̄1q1 + 2γ5q̄2q2 + γ4(q̄1q2 + q1q̄2)

0
2η3q̄3q3 + 2η5q̄4q4 + η4(q̄3q4 + q3q̄4)

⎞

⎟⎟
⎠ .

By (4.14) at μ = 0, we have
(
A(0)Wij

)
(0) = L0Wij (0)

for W11(θ) and W20(θ) at θ = 0. Hence, (4.24) implies

T∗
(
A0W20(0) + A1W20(−τ1) + A2W20(−δ1)

)

= 2iβW20(0) − H20(0) (4.35)

and

T∗
(
A0W11(0) + A1W11(−τ1) + A2W11(−δ1)

)

= −H11(0). (4.36)

Substituting (4.25), (4.28), and (4.31) into (4.35) im-
ply

h20 = ig20

β
�(0, iβ)q(0) + iḡ02

3β
�(0,−iβ)q̄(0)

+ �(0,2iβ)C

since �(0, iβ)q(0) = 0, then

C = �−1(0, i2β)h20

and by using (4.25), (4.30) , (4.32), and (4.36), we
have

E = �−1(0,0)h11.

By using the above analysis, W20 and W11 can be com-
puted. After substituting them in Eq. (4.20), g20, g11,
g02, and g21 can be determined, then we can compute
the following quantities [2, 11, 12]:

C1(0) = i

2β

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ g21

2
, (4.37)
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K2 = − Re{C1(0)}
Re{λ′(T∗)} , (4.38)

β2 = 2 Re
{
C1(0)

}
, (4.39)

T2 = − Im{C1(0)} + K2 Im{λ′(T∗)}
β

(4.40)

where β = wT∗. Indeed:

• K2 determines the directions of the Hopf bifurca-
tion.

• β2 determines the stability of the bifurcating peri-
odic solutions.

• T2 determines the increasing or decreasing of the
period of the bifurcating solutions.

Since the computations are very complicated, we as-
sume additional condition on the system (1.5). Let
f, f1 be odd functions, i.e.,

f (−x1,−x2) = −f (x1, x2)

and

f1(−y1,−y2) = −f1(y1, y2).

Therefore,

g20 = g11 = g02 = 0

and

g21 = T∗
{
q̄∗

2 (0)
[
3η6q̄3q

2
3 + 3η9q̄4q

2
4

+ η7
(
2q̄3q3q4 + q2

3 q̄4
)

+ η8
(
2q̄4q4q3 + q2

4 q̄3
)]

+ q̄∗
4 (0)

[
3γ6q̄3q

2
3 + 3γ9q̄4q

2
4

+ γ7
(
2q̄3q3q4 + q2

3 q̄4
)

+ γ8
(
2q̄4q4q3 + q2

4 q̄3
)]}

. (4.41)

Substituting the values of q and q∗ from (4.16) into
(4.41) lead to

Re
{
C1(0)

} = T∗
2

{
U

[(
Kα1

K2 + L2

)2(
3γ9 + γ7

w2

)

+
(

3η9 + η7

w2

)]

+ V

[(
Kα1

K2 + L2

)2(3γ6

w3
+ γ8

w

)

+
(

α1

K2 + L2

)2

(2KL)

(
3γ9 + γ7

w2

)]

+ V

[
3η6

w3
+ η8

w

]}

where

U = |D|−1{Kw
(−4Kw − sin(2T∗w)α2)

− wL
(
2Kγ2 + K2 + L2 + cos(2T∗w)α2)},

V = |D|−1{wL
(−4Kw − sin(2T∗w)α2)

+ wK
(
2Kγ2 + K2 + L2 + cos(2T∗w)α2)},

|D| = [(4Kw + sin(2T∗w)α2)2

+ (2Kγ2 + K2 + L2 + cos(2T∗w)α2)2]1/2
.

These computations and results state the proof of the
following theorem.

Theorem 6 Suppose that the system (3.2) satisfied
Lemma 4((ii) or (iii)). Then the Hopf bifurcation oc-
curs for system (3.2) and according to the sign of
K2, T2, β2, we have:

• if K2 > 0 (K2 < 0), then the Hopf bifurcation is su-
percritical (subcritical) and the bifurcating periodic
solutions exist at T = T∗,

• if β2 < 0 (β2 > 0), then the bifurcating periodic so-
lutions are stable (unstable),

• if T2 > 0 (T2 < 0), then the period of the bifurcating
solutions increases (decreases).

5 An application example

The dynamics of coupled nonlinear oscillators has re-
ceived much attention over the last years; we study two
van der Pol oscillators with linear coupling

{
ẍ + ε(x2 − 1)ẋ + ω2

1x = α1(y(t − τ) − x(t)),

ÿ + ε(y2 − 1)ẏ + ω2
2y = α2(x(t − δ) − y(t)).

(5.1)

This model is suggested in [28] as the microwave
model where ω2

i + αi = 1, i = 1,2. Also, this model
is considered as the SA-AV nodes in heart which its
synchronization is investigated in [8] by the describ-
ing function method. The advantage of consideration
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of this example is existence (nonexistence) of the bifur-
cations. Now, we rewrite this model as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2(t),

ẋ2 = (−ω2
1 − α1)x1(t) + α1y1(t − τ)

+ εx2 − εx2
1x2,

ẏ1 = y2(t),

ẏ2 = (−ω2
2 − α2)y1(t) + α2x1(t − δ)

+ εy2 − εy2
1y2.

(5.2)

From comparing system (5.2) with system (3.2), it is
easy to see that functions f,f1 are odd and

⎧
⎨

⎩

−1 + γ1 = −ω2
1 − α1 = −ω2

2 − α2,

γ2 = γ7 = η7 = ε,

γi = ηi = 0, i = 3,4,5,6,8,9.

(5.3)

By the results of Sect. 4.1, the transcritical and pitch-
fork bifurcations do not occur in this model.

If ε = 0, (1 − γ1) > 0, and (1 − γ1)
2 − α2 > 0,

then by using Lemma 4(iii), system (5.2) can undergo
a Hopf bifurcation. But g20, g11, g02, and g21 are equal
to zero. Therefore, C1(0), K2, β2, and T2 are also
equal to zero, or equivalently the Hopf bifurcation has
zero radius.

We assume that ε �= 0. Let

ω1 = ω2 = 3, α1 = α2 = −5,

τ = 1.05, δ = 0.802, ε = 4.
(5.4)

By combining (3.4), (5.3), and (5.4), we have

p = −4, q = ±5, r = 4 (5.5)

and according to Lemma (4)(ii), system (5.2) under-
goes the Hopf bifurcation at origin. In fact, its char-
acteristic equation has eigenvalues ±i(w = 1) at T∗ =
T0 = 0.926 (by (4.1) and (4.2)). We define μ = T −T∗
and rewrite system (5.2) as the form (4.11)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = (μ + T∗)x2(t),

ẋ2 = (μ + T∗)((−ω2
1 − α1)x1(t) + α1y1(t − τ1)

+ εx2 − εx2
1x2),

ẏ1 = (μ + T∗)y2(t),

ẏ2 = (μ + T∗)((−ω2
2 − α2)y1(t) + α2x1(t − δ1)

+ εy2 − εy2
1y2)

(5.6)

where τ1 = τ
T

and δ1 = δ
T

. This system has the eigen-
values ±iT∗(±iwT∗) at μ = 0. Its eigenvectors are
computed by using (4.16) and (4.17)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q(0) = (−0.0449 + 0.9989i,−0.9989

+ 0.0449i,−i,1)T ,

q∗(0) = D(4.0409 + 0.8190i,−0.9989

+ 0.0449i,−4 − i,1),

D = −0.1769 + 0.0841i.

(5.7)

It is sufficient to get g21 since g20 = g11 = g02 = 0. By
the formula (4.41), (5.3) , (5.4), and (5.7), we have

g21 = −0.01468 + 0.02916i. (5.8)

The following values are computed by using (4.4),
(4.37), (4.38), (4.39), and (4.40):

λ′(μ = 0) = λ′(T∗) = 0.0449 − 4.0548i, (5.9)

C1(0) = −0.00734 + 0.01458i, (5.10)

K2 = 0.1634, (5.11)

β2 = −0.01468, (5.12)

T2 = 0.7. (5.13)

Hence, the system on the center manifold states as fol-
lows:

ż = (0.0449μ + i(0.926 − 4.0548μ)
)
z

+ (−0.00734 + 0.01458i)z2z̄ (5.14)

which is satisfied (4.20) at μ = 0. According to Theo-
rem 6, (5.11), (5.12), and (5.13), the Hopf bifurcation
is supercritical, the bifurcating periodic solutions are
stable and the period of the bifurcating solutions in-
creases (see Fig. 2).

Remark Although our example is for special values of
ω1, ω2, α1, α2, ε, τ , and δ, we can change them and
obtain the similar results. For example, If we have

ω2
1 = 1

2
, ω2

2 = 2

3
,

α1 = 3

2
, α2 = 4

3
, ε = 1

(5.15)

then system (5.2) undergoes the Hopf bifurcation at
T = 0.785 (τ = 0.9, δ = 0.67) and at T = 6.656
(τ = 3.15, δ = 3.5) when its characteristic equation
has eigenvalues ±i and ±1.44i, respectively.
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Fig. 2 Stable limit cycle with ω1 = ω2 = 3, α1 = α2 = −5,
τ = 1.05, δ = 0.802, ε = 4

• At T = 0.785 and eigenvalues ±i, the reduced sys-
tem on the center manifold is

ż = (2.661μ + i(0.785 − 1.57μ)
)
z

+ (−0.2249 + 0.0809i)z2z̄ (5.16)

and

K2 = 0.0845, β2 = −0.4999, T2 = 0.862.

(5.17)

Therefore, the Hopf bifurcation is supercritical, the
bifurcating periodic solutions are stable, and the
period of the bifurcating solutions increases (see
Fig. 3).

• At T = 6.656 and eigenvalues ±1.44i, the reduced
system on the center manifold is

ż = (1.247μ + i(1.44 − 2.73μ)
)
z

+ (0.2025 + 0.562i)z2z̄ (5.18)

and

K2 = −0.162, β2 = 0.4051, T2 = −0.1047.

(5.19)

Therefore, the Hopf bifurcation is subcritical, the
bifurcating periodic solutions are unstable and the
period of the bifurcating solutions decreases (see
Fig. 4).

Fig. 3 Stable limit cycle with ω1 =
√

1
2 , ω2 =

√
2
3 , α1 = 3

2 ,

α2 = 4
3 , τ = 0.9, δ = 0.67, ε = 1

Fig. 4 Unstable limit cycle with ω1 =
√

1
2 , ω2 =

√
2
3 , α1 = 3

2 ,

α2 = 4
3 , τ = 3.15, δ = 3.5, ε = 1

6 Conclusion

In this paper, system (1.5) of coupled nonlinear oscil-
lators is considered. The effect of the time delay on
the linear stability of the system is investigated. By
analyzing the associated characteristic equation, we
derived the necessary and sufficient conditions on the
trivial equilibrium which guarantee stability. Based on
the center manifold theory, we reduced system (1.5) on
the finite dimensional system of ordinary differential
equations when the characteristic equation had eigen-
values on the imaginary axis. Moreover, the bifurca-
tions of the trivial equilibrium (transcritical, pitchfork,
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Hopf) are studied. We applied our results on the delay-
coupled van der Pol equations.

Acknowledgements Authors are indebted to reviewers for
carefully reading the manuscript and for their valuable com-
ments which improved this paper.

References

1. Atay, F.M.: van der Pol’s oscillator under delayed feedback.
J. Sound Vib. 218(2), 333–339 (1998)

2. Balachandran, B., Kalmar-Nagy, T., et al.: Delay Differ-
ential Equations, Recent Advances and New Directions.
Springer, New York (2009)

3. Baptistini, M., T’aboas, P.A.: On the stability of some ex-
ponential polynomials. J. Math. Anal. Appl. 205, 259–272
(1997)

4. Beuter, A., Glass, L., Mackey, M., Titcombe, M. (eds.):
Nonlinear Dynamics in Physiology and Medicine. Interdis-
cip. Appl. Math. Springer, New York (2003)

5. Eissa, M.H., Hegazy, U.H., Amer, Y.A.: Dynamic behavior
of an AMB supported rotor subject to harmonic excitation.
Appl. Math. Model. 32, 1370–1380 (2008)

6. Enjieu Kadji, H.G., Chabi Orou, J.B., Woafo, P.: Synchro-
nization dynamics in a ring of four mutually coupled bi-
ological systems. Commun. Nonlinear Sci. Numer. Simul.
13, 1361–1372 (2008)

7. Faro, J., Velasco, S.: An approximation for prey-predator
models with time delay. Physica D 110, 313 (1997)

8. Gholizade-Narm, H.: Heart pacemakers synchronization
and an index for evaluating distance of a healthy heart from
sino-atrial blocking arrhythmia. PhD thesis (2009)

9. Glass, L., Mackey, M.C.: Oscillations and chaos in physio-
logical control systems. Science 197, 287–289 (1977)

10. Guo, S., Chen, Y., Wu, J.: Two-parameter bifurcations in
a network of two neurons with multiple delays. J. Differ.
Equ. 244, 444–486 (2008)

11. Hale, J., Lunel, S.: Introduction to Functional Differential
Equations. Springer, New York (1993)

12. Hale, J.: Theory of Functional Differential Equations.
Springer, New York (1977)

13. Heiden, U.: Delays in physiological systems. J. Math. Biol.
8, 345–364 (1979)

14. Jiang, W., Wei, J.: Bifurcation analysis in van der Pol’s os-
cillator with delayed feedback. J. Comput. Appl. Math. 213,
604–615 (2008)

15. Kozlowski, J., Parlitz, U., Lauterborn, W.: Bifurcation anal-
ysis of two coupled periodically driven Duffing oscillators.
Phys. Rev. E 51, 1861–1867 (1995)

16. Kuang, Y.: Delay Differential Equations with Applica-
tions in Population Dynamics. Math. Sci. Engrg. Academic
Press, Boston (1993)

17. Lang, R., Kobayashi, K.: External optical feedback effects
on semiconductor injection laser properties. IEEE J. Quan-
tum Electron. 16, 347–355 (1980)

18. Li, X., Ji, J.C., Hansen, C.H.: Dynamics of two delay cou-
pled van der Pol oscillators. Mech. Res. Commun. 33, 614–
627 (2006)

19. MacDonald, N.: Biological Delay Systems: Linear Stability
Theory. Cambridge University Press, Cambridge (1989)

20. Moore-Ede, M.C., Sulzman, F.M., Fuller, C.A.: The Clocks
That Time Us, p. 306. Harvard University Press, Harvard
(1982)

21. Ohgane, K., Ei, S., Mahara, H.: Neuron phase shift adaptive
to time delay in locomotor control. Appl. Math. Model. 33,
797–811 (2009)

22. Rompala, K., Rand, R., Howland, H.: Dynamics of three
coupled van der Pol oscillators with application to circadian
rhythms. Commun. Nonlinear Sci. Numer. Simul. 12, 794–
803 (2007)

23. Stone, E., Askari, A.: Nonlinear models of chatter in
drilling processes. Dyn. Syst. 17, 65–85 (2002)

24. Suarez, M.J., Schopf, P.L.: A delayed action oscillator for
ENSO. J. Atmos. Sci. 45, 3283–3287 (1988)

25. van der Pol, B., van der Mark, J.: The heartbeat considered
as a relaxation oscillation and an electrical model of the
heart. Philos. Mag. J. Sci. 6, 763–775 (1982)

26. Wei, J., Jiang, W.: Stability and bifurcation analysis in van
der Pol oscillators with delayed feedback. J. Sound Vib.
283, 801–819 (2005)

27. Wirkus, S., Rand, R.: The dynamics of two coupled van
der Pol oscillators with delay coupling. Nonlinear Dyn. 30,
205–221 (2002)

28. Wirkus, S.: The dynamics of two coupled van der Pol os-
cillators with delay coupling. PhD thesis (1999)

29. Zhang, J., Gu, X.: Stability and bifurcation analysis in the
delay-coupled van der Pol oscillators. Appl. Math. Model.
34, 2291–2299 (2010)

30. Zhang, L., Liu, S.Y.: Stability and pattern formation in
a coupled arbitrary order of autocatalysis system. Appl.
Math. Model. 33, 884–896 (2009)

31. Zhang, Y., Zhang, C., Zheng, B.: Analysis of bifurcation in
a system of n coupled oscillators with delays. Appl. Math.
Model. (2010)


	Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
	Abstract
	Introduction
	Preliminary
	Center manifold for DDES
	Stability of characteristic equation

	Linear stability of system (1.5)
	Bifurcations for system (1.5)
	Transcritical and Pitchfork bifurcations for system (1.5)
	Hopf bifurcation for system (1.5)

	An application example
	Conclusion
	Acknowledgements
	References


