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Abstract—Quantum convolutional coding is a technique for
encoding a stream of quantum information before transmitting it
over a noisy quantum channel. Two important goals in the design
of quantum convolutional encoders are to minimize the memory
required by them and to avoid the catastrophic propagation of
errors. In a previous paper, we determined minimal-memory,
noncatastrophic, polynomial-depth encoders for a few exemplary
quantum convolutional codes. In this paper, we elucidate a gen-
eral technique for finding an encoder of an arbitrary quantum
convolutional code such that the encoder possesses these desirable
properties. We also provide an elementary proof that these en-
coders are nonrecursive. Finally, we apply our technique to many
quantum convolutional codes from the literature.

Index Terms—Catastrophicity, memory commutativity matrix,
minimal memory, quantum convolutional codes.

I. INTRODUCTION

quantum convolutional code is a particular type of
A quantum error-correcting code [2]-[4] that is well suited
for the regime of quantum communication [5]-[7]. In this
regime, we assume that a sender and receiver have free access
to local, noiseless quantum computers, and the only source of
noise is due to a quantum communication channel connecting
the sender to the receiver. The advantage of the convolutional
approach to quantum error correction is that the repeated
application of the same unitary operation encodes a stream
of quantum information, and the complexity of the decoding
algorithm is linear in the length of the qubit stream [8]. Many
researchers have generated a notable literature on this topic,
addressing various issues such as code constructions [9], [10],
encoders and decoders [7], [11], [12], and alternate paradigms
with entanglement assistance [13]-[15] or with gauge qubits
and classical bits [16]. Perhaps more importantly for the
quantum communication paradigm, quantum convolutional
codes are the constituents of a quantum serial turbo code [8],
and these codes are among the highest performing codes in
both the standard [8] and entanglement-assisted settings [17].
One of the most important parameters for a quantum convo-
lutional encoder is the size of its memory, defined as the number
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of qubits that are fed from its output into the next round of en-
coding. A quantum convolutional encoder with a large memory
is generally more difficult to implement because it requires co-
herent control of a large number of qubits. Furthermore, the
complexity of the decoding algorithm for a quantum convolu-
tional code is linear in the length of the qubit stream, but it is
exponential in the size of the memory [8]. The decoding algo-
rithm will thus have more delay for a larger memory, and this
could potentially lead to further errors in the more practical set-
ting where there is local noise at the receiving end. Therefore,
an interesting and legitimate question is to determine the min-
imal number of memory qubits required to implement a given
quantum convolutional code.

Another property that any good quantum convolutional de-
coder should possess is noncatastrophicity. As the name sug-
gests, the consequences of decoding with a catastrophic decoder
are disastrous—it can propagate some uncorrected errors infin-
itely throughout the decoded information qubit stream and the
receiver will not know that this is happening. We should clarify
that catastrophicity is a property of the decoder because the only
errors that occur in the communication paradigm are those due
to the channel, and thus, the decoder (and not the encoder) has
the potential to propagate uncorrected errors. We could say just
as well that catastrophicity is a property of an encoder if the
decoder is the exact inverse of the encoder (as is the case in
[8]). Either way, since the property of noncatastrophicity is es-
sential and having a minimal memory is highly desirable, we
should demand for our encoders and decoders to be both min-
imal-memory and noncatastrophic.

The minimal-memory/noncatastrophic question is essentially
understood for the case of irreversible encoders for classical
convolutional codes [18], [19] by making use of ideas in linear
system theory. These results at the surface do not appear to
address the case of reversible classical encoders, which would
be more relevant for answering the minimal-memory/noncatas-
trophic question in the quantum case.

In [7], [11], and [12], Grassl and Rétteler proposed an al-
gorithm to construct noncatastrophic quantum circuits for en-
coding quantum convolutional codes. Their encoders there do
not have a convolutional structure, and their work did not ad-
dress how much quantum memory their encoders would require
for implementation. In follow-up work, we found a minimal-
memory realization of a Grassl-Rétteler encoder by performing
a longest path search through a “commutativity graph” that cor-
responds to the encoder [20], [21]. Our approach was gener-
ally suboptimal because there exist many encoders for a given
convolutional code—starting from a Grassl-Rotteler encoder
and finding the minimal-memory representation for it does not
necessarily lead to a minimal-memory encoder among all pos-
sible representations of the code. Also, the complexity of the
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Grassl-Rétteler algorithm for computing an encoding circuit
could be exponential in general, resulting in an encoding cir-
cuit with exponential depth [7], [11].

The purpose of this paper is to elucidate the technique of [1]
in full detail. The encoders resulting from our technique are con-
volutional and possess the aforementioned desirable properties
simultaneously—they are minimal-memory, noncatastrophic,
and have an O(n?) depth, where n is the frame size of code. In
addition, we prove that the resulting encoders are nonrecursive.
Poulin et al. [8] already proved that all noncatastrophic encoders
arenonrecursive, butour proofofthis fact forthe encoders studied
here is arguably much simpler than the proof of Theorem 1 in [8].
Interestingly, the essence of our technique for determining an
encoder is commutation relations, which often are lurking behind
many fundamental questions in quantum information theory.
The commutation relations that are relevant for our technique
are those for the Pauli operators acting on the memory qubits.
An upshot of our technique for minimizing memory is that it is
similar to one in [22] and [23] for finding the minimal number
of entangled bits required in an entanglement-assisted quantum
error-correcting code [24]. This result is perhaps unsurprising in
hindsight, given that an encoder generally entangles information
qubits and ancilla qubits with the memory qubits before sending
encoded qubits out over the channel.

This paper is organized as follows. For the sake of complete-
ness, we begin by reviewing the definition of a quantum convo-
lutional code. We then review our technique from [1] for deter-
mining a quantum convolutional encoder for a given set of sta-
bilizer generators, and we prove a theorem concerning the con-
sistency of these generators with commutation relations of the
encoder. Section I1I-B introduces the idea of a memory commu-
tativity matrix that is rooted in ideas from [1]. Section V reviews
the state diagram for a quantum convolutional encoder [8], [19],
[25], [26], and the section after it reviews catastrophicity. All of
the above sections feature a “running example” that is helpful in
illustrating the main concepts. Section V-A details our main re-
sults, which are sufficient conditions for any quantum convolu-
tional encoder to be both minimal-memory and noncatastrophic.
These sufficient conditions apply to the memory commutativity
matrix of the quantum convolutional encoder. Section VI then
proves that the encoders studied in Section V-A are nonrecur-
sive. Finally, we conclude in Section VII with a summary and
a list of open questions, and the appendix of [27] gives many
examples of quantum convolutional codes from [6] and [12] for
which we can find minimal-memory, noncatastrophic encoders.

II. QUANTUM CONVOLUTIONAL CODES

In this section, we recall some standard facts and then re-
view the definition of a quantum convolutional code. A Pauli
sequence is a countably infinite tensor product of Pauli matrices

A
1=0

where each operator A; in the sequence is an element of the
Pauli group IT = {I,X,Y,Z}. Let 12" denote the set of
all Pauli sequences. A Pauli sequence is finite-weight if only
finitely many operators A; in the sequence are equal to X, Y,
or Z, and it is an infinite-weight sequence otherwise.
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Fig. 1. Encoder U for a quantum convolutional code that has four physical
qubits for every two information qubits. The encoder I’ acts on 7 memory
qubits, two ancilla qubits, and two information qubits to produce four output
physical qubits to be sent over the channel and 1 output memory qubits to be
fed into the next round of encoding.

Definition 1 (Quantum Convolutional Code): A rate-k/n
quantum convolutional code admits a representation with a
basic set Gy of » — k generators and all of their n2-qubit shifts

goE{GiEHZ+:1§i§nfk}.

In order to form a quantum convolutional code, these generators
should commute with themselves and all of the n.-qubit shifts of
themselves and the other generators.

Equivalently, a rate-k /n quantum convolutional code is spec-
ified by n — k generators hq, ho, ..., hy_i, Where

hi = hia | Rio |...| Py

ha = haoi | hoo |...| oy

: L. ) . (D
bk = hn_pa | hon—k2 | | Pk,

Each entry h; ; is an n-qubit Pauli operator and /; is the degree
of generator A; (in general, the degrees /; can be different from
each other). We obtain the other generators of the code by shifting
the above generators to the right by multiples of n qubits. (In the
above, note that the entries hy,,h21,,..., An—g1,_, are not
required to be in the same column, but we have written it in the
above way for convenience.)

We select the first quantum convolutional code from [12,
Fig. 1] as our running example for this paper. This code has
the following two generators:

hy =XXXX XXIX’

2

he = ZZZZ | ZZIZ | I1ZI1| I1ZZ

IXIT ‘ I7IXX

withn = 4 and n — k£ = 2, implying that the code encodes k& =
2 information qubits for every four physical qubits. Observe
that the above generators commute with each other and with
the generators resulting from all possible four-qubit shifts of the
above generators.

III. PROPOSED ENCODING ALGORITHM

Fig. 1 depicts an example of an encoder for a quantum con-
volutional code. The encoder depicted there can encode our
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running example in (2) that has four physical qubits for every
two information qubits. More generally, a convolutional en-
coder acts on some number 7 of memory qubits, n — & ancilla
qubits, and % information qubits, and it produces 7 output phys-
ical qubits and m output memory qubits to be fed into the next
round of encoding.

For our example in (2), the unencoded qubit stream might
have the following form:

|0) 10} [¢1) [d2) [0) [0) |d3) [B4) - - - 3)

so that an ancilla qubit appears as every first and second qubit
and an information qubit appears as every third and fourth qubit
(generally, these information qubits can be entangled with each
other and even with an inaccessible reference system, but we
write them as product states for simplicity). A particular set of
stabilizer generators for the unencoded qubit stream in (3) is as
follows (along with all of their four-qubit shifts):

117

117 “)

IVANRRINE

ZIIT |\ 1111
II1rr

IIII‘

so that the states in (3) are in the simultaneous +1-eigenspace
of the above operators and all of their four-qubit shifts.

The objective of the convolutional encoder is to transform
these “unencoded” Pauli Z operators to the encoded stabilizer
generators in (2). That is, it should be some Clifford transfor-
mations! of the following form:

Mem. Anc. Info. Phys. Mem.
Ism /A I I X X X X 91,1
911 I I I I X X I X g1,2
91,2 I I I I I X I I g1.3
J1.3 I 1 I 11— 1 T X X em
sm I 7z I T Z 7 Z 7 g2.1
g2.1 1 I I I VA VA I yA g2.2
g22 1 I I I I 7 I 1 g2.3
92,3 I I I I I I Z Z em

' (5)

where, as a visual aid, we have separated the memory qubits,
ancilla qubits, and information qubits at the input with a ver-
tical bar and we have done the same for the physical qubits
and memory qubits at the output. A horizontal bar separates
the entries of the encoder needed to encode the first gener-
ator from the entries needed to encode the second generator.
Each g; ; is a Pauli operator acting on some number m of
memory qubits—these operators should be consistent with the
input—output commutation relations of the encoder (more on
this later). We stress that the above input—output relations only
partially specify the encoder such that it produces a code with
the stabilizer generators in (2), and there is still a fair amount
of freedom remaining in the encoding.

In the general case, a convolutional encoder should transform
aunencoded Pauli Z operator acting on the 7th ancilla qubit to
the ith stabilizer generator £, in (1). The first application of the
encoder U results in an intermediate, unspecified Pauli operator
¢i,1 acting on the 1 output memory qubits. The second appli-
cation of the encoder U results in an intermediate, unspecified

A Clifford transformation is a unitary operator that preserves the Pauli group
under unitary conjugation.
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Pauli operator g; » acting on the m output memory qubits and
so on. The shift invariance of the overall encoding guarantees
that shifts of the unencoded Z Pauli operators transform to ap-
propriate shifts of the generators. A convolutional encoder for
the code should perform the following transformation:

Mem. Anc. Info. Phys. Mem.
Iem 7 ng hii g1.1
91,1 Jon -k Ik hia 91,2
wn—k k
g1, -2 I?{” I% hig,—1 g1, -1
g1, 1 Iemn—k 1%k hig, I%m
e Zy Ik ha1 g2.1
on-k Sk
g2.1 Ien I% h/2,2 g2.2
: : o : : (6)
wn—k k
2.1, 2 I?{” I% ha1,—1 2,151
g21.—1 Ien—k 1%k ha 1. I%m
I®m, Zs I(%k hs,l Js,1
gs.1 I®n7k I(>§k ]7‘5,2 Js.2
on—k ok
ol 2 Ien A hei.—1 Ysl, 1
Gs,1,—1 I{>/<)n7k I%k h.s:,lS I®m

where m is some unspecified number of memory qubits, & is
the number of information qubits, n — & is the number of an-
cilla qubits, and we make the abbreviation s = n — k. Again,
the above transformation only partially specifies the encoding.
Also, note that it is not necessary for the g; ; operators to be in-
dependent of one another and we address this point later on.

A. Consistency of Commutation Relations

A fundamental property of any valid Clifford transforma-
tion is that it preserves commutation relations. That is, the
input commutation relations should be consistent with the
output commutation relations. So, forall 1 < ¢ < n — k and
1 < j < [; — 1, the entries g; ; are m-qubit Pauli operators
that are unspecified above, but they should be chosen in such a
way that the input—output commutation relations are consistent.
That this consistency is possible follows from the fact that the
stabilizer generators in (1) form a valid quantum convolutional
code according to Definition 1, and it is the content of our first
theorem.

Theorem 2 (Consistency of Commutation Relations): Sup-
pose the stabilizer generators in (1) form a valid quantum con-
volutional code. Then, there exists a set of Pauli operators g;_;
forl <¢<n-—kand1 < 7 < I; such that the commutation
relations on the LHS of (6) are consistent with those on the RHS
of (6).

Proof: Let g; ; © gi,1 be a function that equals one if g; ;
and g, ; anticommute and zero if they commute. By inspecting
the transformation in (6), several commutation relations should
be satisfied. First, for all 4, &' € {1,2,...,n — k} and for all
et 0y =1}

gi,l ® gi’yj’ = h’i,l ® hild‘/
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because the first row of each block on the LHS of (6) commutes
with all other rows, and for consistency, the RHS of the cor-
responding rows should commute as well. Next, for all ¢, i’ €
{1,2,...,’”*]{},]. € {1,...,[{72},2111(1‘].’ € {1,...,11‘/72}
913 © gir g0 = (hije1 © hir jrp1) + (gig41 © gir jry1)
because the commutation relations between any of the second
to second-to-last rows in the same or different blocks on the
LHS of (6) should be consistent with those of the corresponding

rows on the RHS. Finally, for all¢,¢ € {1,2,...,n — k} and
je Ll —1)
9ij © girty 1 = hijp1 © hirg,,
because the commutation relations between the last row of each
block and any other row on the LHS of (6) should be consistent
with those of the corresponding rows on the RHS.
If we start from the first row of any block in (6), a forward

commutativity propagation imposes the following equality
(without loss of generality (WLOG) suppose j > j)

min{(l;—3),(1; —5")}
k=1

and if we start from the last row of any block in (6), a backward

commutativity propagation imposes the following equality:

9i5 O girjr = Biji @ hityye (7)

i'=1

9ij © gy = Z hij—i © hy jr_p. (®)
k=0

By adding the RHS of (7) and (8), we obtain the following
equality:

min{(l;—5),(1y —3")} i
Z hiitrk © hir jogpr + Z hig—te ® hyr i
=1 k=0

min{(l; —j+3") I}
k=1
= (D/7'hi) © ha

where we have introduced the delay operator D from [5] and [6].
Finally, due to the commutativity constraints for the generators
of a valid quantum convolutional code, we obtain the following
equality:

min{ (7; —j+35").0; }

>,

k=1

hikj - © hir i

higss g ®hog = (Df*f’hi) ® hi

=0.
Therefore, the RHS of equations in (7) and (8) are the same, and
the different constraints imposed by the encoder on the commu-
tation relations of g, ; and g, ;+ are consistent. |

The next section shows how to choose the operators g; ;
for the memory qubits such that they are consistent while also
acting on a minimal number of memory qubits.

B. Memory Commutativity Matrix

In our running example in (2) and (5), we did not specify how
to choose the Pauli operators g; ; acting on the memory qubits.
It would be ideal to choose them so that they are consistent with
the input—output commutation relations of the transformation in
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(5), and also so that they act on a minimal number of memory
qubits. In this way, we can determine a minimal-memory en-
coder for the particular stabilizer generators in (2).

As stated earlier, any valid Clifford transformation preserves
commutation relations. That is, if two input Pauli operators
commute, then the corresponding output Pauli operators should
also commute (and similarly, two outputs should anticommute
if their corresponding inputs anticommute). So, consider that
the first two input rows in (5) commute. Then, the two output
rows should commute as well, and in order for this to happen,
91,1 and g; » should commute because X X X X and X XTX
commute. For a different case, observe that the first and fifth
input rows commute, and for consistency, the first and fifth
output rows should commute. Thus, g; 1 and g2,; should com-
mute because X X X X and ZZZZ already commute. We can
continue in this manner and enumerate all of the commutation
relations for the memory operators g; ; simply by ensuring that
the input—output commutation relations in (5) are consistent:

[91,1791,2] = [91,1791.3] = [91.1792,1}
={911.922} ={91,1,923} =0 9
(91,2, 91,3] = {91,2. 921} = {912, 92,2}

=[91,2,923] =0 (10)
{913: 921} = (913, 922] = [91.3,923] =0 (11)
(92,1, 92,2] = [92,1,923] = 0 (12)
[92,2,92,3] =0 (13)

where [A, B] = AB — BA is the commutator and {4, B} =
AD 4 DA is the anticommutator. In determining some of the
later commutation relations, we need to rely on earlier found
ones.

Our objective now is to determine the minimal number of
memory qubits on which the operators g; ; should act in order
for the transformation in (5) to be consistent with the commu-
tation relations in (9)—(13). To this end, it is helpful to write
the above commutation relations as entries in a square binary-
valued matrix €2, that we refer to as the “memory commutativity
matrix.”

Definition 3 (Memory Commutativity Matrix): The memory
commutativity matrix 2 corresponding to an encoder of the
form in (6) for a set of stabilizer generators has its entries equal
to

[Q](m),(k,z) = Gig O 9kl (14)

where we think of the double indices (7, j) and (k,1) as single
indices for the matrix elements of €2, g; ; and g ; are all of the
Pauli operators in (6) acting on the memory qubits, and ¢; ; @ ¢
is a function that equals one if g; ; and g; anticommute and
zero if they commute (implying that € is a symmetric matrix).

For our running example in (2), (5), and (9)—(13), the memory
commutativity matrix §2 is equal to

[ 000011 '|
000110
00 0100
01 1 000 (3)
1 10 0 0 0
1 0 0 0 0 0

if we take the ordering g1.1, 91,2, 1.3, 2.1, §2,2, g2,3 and con-
sider the commutation relations found in (9)—(13).
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The memory commutativity matrix captures commutation re-
lations between Pauli matrices, and our objective is to determine
the minimal number of memory qubits on which the memory
operators should act in order to be consistent with the above
commutation relations. This leads us to our next theorem.

Theorem 4 (Minimal-Memory FEncoder): For a given
memory commutativity matrix €2, the minimal number m of
memory qubits needed for an encoder is equal to

1
m = dim (Q) — ;rank ().

Proof: To prove this theorem, we can exploit ideas from
the theory of entanglement-assisted quantum error correction
[24], after realizing that finding the minimal number of memory
qubits on which the memory operators should act is related to
finding the minimal number of ebits required in an entangle-
ment-assisted quantum code. In particular, by the symplectic
Gram—Schmidt procedure outlined in [24]—-[23], there exists a
sequence of full-rank matrices acting by conjugation on the
memory commutativity matrix £2 that reduces it to the following
standard form:

1
o] ®

such that 2¢ + d = dim () for some integers ¢, d > 0.
Let G denote this sequence of operations. Observe that
dim (©) = dim (£29) and rank () = rank (€2) because this
sequence G of operations is full rank. Furthermore, it holds that
rank (€29) = 2¢ because the rank of a direct sum is the sum of
the individual matrix ranks. Observe that the Pauli operators
X, Z1..... X, Z.and Zoy1,. .., Zoqq acting on ¢ + d qubits
have the same commutativity matrix as the standard form
given in (16), and furthermore, these operators are minimal,
in the sense that there is no set of operators acting on fewer
than ¢ 4+ d qubits that could satisfy the commutation relations
in (16). We then perform the inverse G~! on the operators
X1, 72y,..., X, Z, and Z.y1, ..., Zcyq, producing a set of
memory operators g; ; that are consistent with the commutation
relations in (14), ensuring that the encoder is valid, while
acting on the minimal number of memory qubits possible. The
resulting number 1 of memory qubits is then n = ¢ + d, or
equivalently

(&

QOE®|:(1)

k=1

d
[0] (16)
=1

!

1
m =dim (Q) — 51‘&11k Q)
because dim () = 2¢ + d and rank (Q) = 2¢[22],[23]. W

We can apply the above theorem to our running example in
(2) and (5). The rank of the matrix in (15) is full (equal to six),
implying that ¢ = 3 and the minimal number of memory qubits
to encode the generators in (2) is three qubits. Indeed, the stan-
dard form of the memory commutativity matrix is

01 0 1 01
el oot )
A set of Pauli operators with commutation relations corre-
sponding to this standard form is X;, 2y, X», Z», X3, and
Z3. We can multiply these Pauli operators together to produce
the generators g1 = XIX, g1 = IIX, g13 = 1Z1,
g1 = ZXZ, g20 = 1IZ,and g235 = ZI1I with a com-
mutativity matrix equivalent to that in (15). We can then use
these generators as memory operators for the encoder in (5),
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producing the following valid minimal-memory convolutional
encoder for the stabilizer generators in (2):

Mem. Anc. Info. Phys. Mem.
III Z1 11 XXXX XIX
XIX II 11 XXIX 11X
11X II 11 IXII 1Z1
I1Z1 11 I — IIXX 1771 . (17)
117 1z 11 YA IXZ
ZX7Z 17 11 AR VA 117z
VA 17 11 1711 ZI1I
Z11 17 11 1177 117

Once we have determined the transformation that the en-
coder should perform, there is an algorithm for determining
an encoder with polynomial depth [28]. There are many en-
coders which implement the transformation in (17). In order
to specify a particular encoder in full, one would need to
“complete” the above transformation by determining six addi-
tional input—output relations that are independent of the other
input—output relations, so that the resulting 14 input—output
relations form a basis for the Pauli group acting on seven qubits.

IV. OTHER REPRESENTATIONS OF A CODE

We can find other representations of a quantum convolutional
code by multiplying stabilizer generators together or by de-
laying some of them. In this section, we analyze the impact of
these operations on the minimal memory requirements for en-
coders, and we propose an algorithm to find a minimal-memory
encoder among all the representations of a given code.

A. Multiplication of Stabilizers

Suppose we obtain another set of stabilizer generators (say, S”)
for the same code specified in (1), by multiplying one stabilizer
by another. WLOG, suppose that the first stabilizer generator
h1 is multiplied by second stabilizer generator /2, and suppose
thatl; > [lo. Asaresult, only the rows of transformation corre-
sponding to the second stabilizer generator for S’ (the rows in the
second block of the transformation) are different from the rows of
the transformation corresponding to the original set of stabilizers
in (1). In the following, we write the rows of the transformation
corresponding to the first and second stabilizer for S’:

Mem. Anc. Info. Phys. Mem.
I@m Zl I?k ]’I,171 g1.1
91,1 Jon -k 1%k hi2 g1.2

grn—2 | IR IR it -1 9Ll -1

d1,0, -1 Jon—k 1%k hig, rem

& <k
J&m ®Z2 . ka _ hg,l x hl,l 92,1 (18)
n—k Red)?
92,1 I A hao X hio 92,2
g2,1,—1 I&n—k I%k hoy, X hyy, g2.t,

92,1, Jon—k Ik ha 1,41 92,12+1

Gop o | TEnE | %K i -1 g1l -1

ol 1 on—k Tk h’1711 Jem
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The RHS of the last row of the first and second block in
(18) are the same. So we deduce that the memory states of
91,1, —1 and g2 ;, —1 are the same as well. Thus, we can omit the
last row of the second block and exchange g2, —1 by g1, —1
in the transformation. By proceeding in the transformation
and omitting repetitive rows, it will turn into the following
transformation:

Mem Anc. Info Phys. Mermn.
em Z1 Ik hi1 g1.1
91,1 IEn—k Ik hi 91,2
Gri,-1 | IETR) TR i, gLt
91,1, IEnk Ik P11 91,041
N ) )
_ ak
g1, -2 I=n A hig—1 g1, -1
G101 %"= I%k hig e
em 7Z2 I‘?k ]1271 X }7,171 g2.1
92,1 ek Ik haa X his 92,2
92.1,-1 En—k Ik hay, X hig, g1,1
(19)

By multiplying the first row of the first block by the first row of
the second block, the second row of the first block by the second
row of the second block,..., and the l;h row of the first block by
the /5" row of the second block in (19), we obtain the following
transformation:

Mem Anc. Info. Phys. Mem.
=m 7 Ik hia 911
g1.1 Jon=k | ek hi2 g1.2
g1is-1 Jon—k |k hat, g1l
g1, Ien- I h1,41 91,0541
. N . .
g1, -2 Ign—k | ek hig,—1 g1, -1
G111 I‘Xvnfk wak hl L I®m
Iom 7y [Q?k ha 1 91,1 X 92,1
91,1 X 921 Jen—k | ek ha o g1,2 X g2.2
Gigo—1 X g2 | IOm7F | IR ha 1, em
(20)
By comparing the second block of the above
transformation with the second block of (6), it is
clear that if we write the memory commutativity

matrix for {{g1:}qi=1,..0,—13, {9192 ffim1, i—1}> -+ -5
{9n—ti}gi=1,...1,-13} for the new set of stabilizers, the
commutativity matrix will be the same as the one for the
original set of stabilizers, and so the minimal amount of

memory will not change. With a similar approach, we can
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I —= I
Zl+ U gl,/
1 —- - L.
I-- U
I —~ = gl,l+1
.
[ ]
.
8112 L,
- U 81 1j1
I — ] h
” 11
1 — U &4
I —A aa +h12
I— U ’
I —~ =— &1,
°
°
.
81,11 = L. h
I—- U ’
I — — 1

Fig.2. Ifthe firststabilizer k; is delayed by 7 frames, the encoder should trans-
form the “unencoded” Pauli Z operator acting on the first ancilla qubit to the
operator D7 (Iy), as the above figure shows.

show that in the case that Iy < /2, the memory commutativity
matrix will not change as well.

B. Delay of Stabilizers

Now suppose we obtain a different representation for the
code by delaying one of the stabilizer generators. Suppose
WLOG that the first stabilizer is delayed by j frames. There-
fore, the encoder should transform the “unencoded” Pauli
Z operator acting on the first ancilla qubit to the operator
D?(hy) (as Fig. 2 shows). Let g11,, 91,041+ -5 91,0, +5-1
denote the first j memory operators in the Fig. 2. Let £}’ denote
the memory commutativity matrix for the new stabilizer set.
Hence, the encoder should perform the transformation in (22).
(The first block in (22) differs from the first block in (6) and
the others are the same.)

Based on the transformation in (22), we see that all memory
states in {g1.4,+s,$ € {0,1,2,...,45 — 1}} commute with all
other memory stabilizers. Based on this fact, we see that for
the other memory states, the commutativity relations in (7) still
hold

min{(l,,, —j),(li! ‘j’)}

>

k=1

9ij © gy = hijr @ hirjipe. (21)

Therefore, 7 rows and j columns corresponding to
{91.4y,---s 910,451} in the commutativity matrix (£2')
are all zero, and the other rows and columns are the same as
the corresponding rows and columns in §2 (the commutativity
matrix for the original set of generators). Hence, the rank of
Y is the same as the rank of {2, but its dimension is equal to
J + dim(£2). Therefore, it requires j more memory qubits.

In summary, by multiplying stabilizer generators by each
other, the amount of memory does not change, but by
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delaying one of them by j frames, the required memory
increases by j.

Mem. Anc. Info. Phys. Mem.
Ig:m Z1 I®k I(>’§n 9h
910 [Enck ek pEn 91,1 +1
) Dk s
g+ | 177 98I g
91,5451 JEn—k Ik hyy 91,1
91,1 JEn—k I®E hyy g1.2
o L L)
91,2 e k % hyg 91,01
g1 —1 sk %k hyy, em
r=m Zy I9% hayy 92,1
92,1 IEn—k I9% hyy 92,2
92,1, 2 ek IOk by, 92,1
99101 I(>§nfk I®k hQ B Iéj}m

C. Shortening Algorithm

We can take advantage of the above observations to construct
an algorithm that reduces the minimal memory requirements
for a given quantum convolutional code. First suppose that the
first block of each stabilizer generator which acts on the first
n qubits, (i.e., h; 1,4 € {1,2,...,n — k}) are all independent
of each other. If we find another representation for the code by
multiplying the stabilizers, as we proved, the amount of minimal
memory will be the same, and if we find another representation
for the code by delaying some of the stabilizers, the minimal
required memory will be more. Now suppose that there is a de-
pendence among the generators /; 1. Suppose WLOG that A, ;
is equal to £; 1, so that by multiplying 5, 1 with A; the first
block of j" stabilizer /; ; becomes equal to the identity. There-
fore, by shifting it one frame to the left, the amount of minimal
memory requirement will be decreased. Therefore, for finding
the minimal-memory encoder among all representations of the
same code, we should find a representation in which all the first
blocks of the stabilizer generators are independent of each other.
Also we should remove any dependence among the last blocks
of the stabilizer generators as well in order to be confident that
the memory states in (6) are independent of each other and our
formula is valid. In the next section, we propose an algorithm,
that we call the “shortening algorithm,” to be confident that there
is no dependence among the first blocks of the stabilizer genera-
tors and also among the last blocks of the generators. For a given
set of stabilizers, first we should apply the shortening algorithm
and then write the transformation in (6) for the output stabilizer
generators of the algorithm to find the minimal-memory encoder
among all representations of a code.

Algorithm 1 is the algorithm for shortening the stabilizers
to be confident that we are finding the minimal memory re-
quirements among all stabilizer representations of a given
code. There is no dependence among the first blocks and also
last blocks of output stabilizers of the algorithm. The function
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Subset(S) returns all the subsets of S except for the empty
subset. The complexity of the algorithm is exponential inn — k.

Algorithm 1 Algorithm for shortening generators

[; min < minimum degree of h;
fori:=1ton — k do
h; — h; X D~ limin
end for
DepFound « 1
while DepFound = 1 do
DepFound «— 0
fori:=1ton — k do
m— 1
for j :=1ton — k do
ifi # 7 AND/; </; then
Sm — ]’I,j71
m+ +

end if
end for

S « Subset(S)
fory =1,y <2™ —1do .
if the product of members of .S, is equal to h; 3

then
for all h, ; in S, do
hi — hz‘ X ]’Lg
end for
h; «— Dilhi
L — —
DepFound «— 1
end if
end for
CLEAR (S); CLEAR (S)
end for
end while

DepFound 1
while DepFound = 1 do
DepFound «— 0
fori:=1ton — k do
m — 1
for j :=1ton —kdo
if ¢ 75 7 AND lj < [; then
Sm, — hj,lj
m++
end if
end for

S « Subset(S)
fory =1,y <2™ —1do .
if the product of members of .S, is equal to h; ;,

then 5
for all iy, in S, do
h; = h; x Dli—ls hg
end for
I — —
DepFound « 1
end if
end for
CLEAR (S); CLEAR (S)
end for
end while




HOUSHMAND et al.: MINIMAL-MEMORY, NONCATASTROPHIC, POLYNOMIAL-DEPTH QUANTUM CONVOLUTIONAL ENCODERS

V. CATASTROPHICITY

Although the convolutional encoder in (17) has a min-
imal number of memory qubits, it may not necessarily be
noncatastrophic (though, we show that it actually is noncatas-
trophic in Section V-Al). We should ensure that the encoder
is noncatastrophic if the receiver decodes the encoded qubits
with the inverse of the encoder and then exploits the decoding
algorithm in [8] to correct for errors introduced by a noisy
channel. As a prerequisite for noncatastrophicity, we need to
review the notion of a state diagram for a quantum convolu-
tional encoder.

The state diagram for a quantum convolutional encoder is the
most important tool for analyzing properties such as its distance
spectrum and for determining whether it is catastrophic [8]. It
is similar to the state diagram for a classical encoder [19], [25],
[26], with an important exception for the quantum case that in-
corporates the fact that the logical operators of a quantum code
are unique up to multiplication by the stabilizer generators. The
state diagram allows us to analyze the flow of the logical oper-
ators through the convolutional encoder.

Definition 5 (State Diagram): The state diagram for a
quantum convolutional encoder is a directed multigraph with
4™ vertices that we can think of as “memory states,” where m
is the number of memory qubits in the encoder. Each memory
state corresponds to an m-qubit Pauli operator M that acts
on the memory qubits. We connect two vertices M and M’
with a directed edge from M to M’ and label this edge as
(L, P) if the encoder takes the m-qubit Pauli operator M, an
(n — k)-qubit Pauli operator 57 € {I,Z}" " acting on the
n — k ancilla qubits, and a k-qubit Pauli operator L. acting on
the information qubits, to an n-qubit Pauli operator P acting on
the n physical qubits and an m-qubit Pauli operator M’ acting
on the m memory qubits

Mem. Anc. Info. . coder Phys. Mern.
= = .
M S* L P M’

The labels L and P are the respective logical and physical labels
of the edge.

Observe that the state diagram has 4™ vertices and 22+ 7 +%
edges (there are 4™ memory states, 4% logical transitions for
L, and 2" % ancilla operators). This is the main reason that it
is important to reduce the size of the encoder’s memory—it is
related to the complexity of the decoding algorithm.

We do not explicitly depict the state diagram for our run-
ning example because it would require 4> = 64 vertices and
22(3)+44+2 — 4096 edges (though note that the entries in (17)
and their combinations already give 2% = 256 edges that should
be part of the state diagram—we would need the full specifica-
tion of the encoder for our running example in order to deter-
mine its state diagram). A simple example of an encoder that
acts on one memory qubit, one ancilla qubit, and one informa-
tion qubit is depicted in [8, Fig. 8]. Thus, its state diagram has
only four vertices and 32 edges, and the encoder’s state diagram
is depicted in [8, Fig. 9].
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We now review the definition of catastrophicity from [8],2
which is based on the classical notion of catastrophicity from
[25] and [26]. The essential idea behind catastrophic error prop-
agation is that an error with finite weight, after being fed through
the inverse of the encoder, could propagate infinitely throughout
the decoded information qubit stream without triggering syn-
dromes corresponding to these errors. The only way that this
catastrophic error propagation can occur is if there is some cycle
in the state diagram where all of the edges along the cycle have
physical labels equal to the identity operator, while at least one
of the edges has a logical label that is not equal to the identity. If
such a cycle exists, it implies that the finite-weight channel error
produces an infinite-weight information qubit error without trig-
gering syndrome bits corresponding to this error (if it did trigger
syndrome bits, this cycle would not be in the state diagram), and
an iterative decoding algorithm such as that presented in [8] is
not able to detect these errors. So, we can now state the defini-
tion of a catastrophic encoder.

Definition 6 (Catastrophic Encoder): A quantum convolu-
tional encoder acting on memory qubits, information qubits, and
ancilla qubits is catastrophic if there exists a cycle in its state di-
agram where all edges in the cycle have zero physical weight,
but there is at least one edge in the cycle with nonzero logical
weight.3

A. Toward a Minimal-Memory/Noncatastrophic Encoder

This section presents our main results that apply to the task
of finding a minimal-memory, noncatastrophic encoder for an
arbitrary set of stabilizer generators that form a valid quantum
convolutional code. Our first theorem states a sufficient condi-
tion for a minimal-memory encoder to be noncatastrophic, and
this theorem applies to our running example in (2) and (17).

1) Encoders With a Full-Rank Memory Commutativity
Matrix:

Theorem 7: Suppose the memory commutativity matrix of a
given set of stabilizer generators is full rank. Then, any minimal-
memory encoder with a partial specification given by Theorem
4 is noncatastrophic.

2We should note that there have been previous (flawed) definitions of catas-
trophicity in the quantum convolutional coding literature. The first appearing in
[29] is erroneous by the argument in [30]. Suppose that a convolutional encoder
cyclicly permutes the qubits in a frame upward so that the first qubit becomes
the last, and suppose it then follows with a block encoding on the other qubits.
This encoder cannot be arranged into the “pearl-necklace” form required by [29,
Proposition 4.1], but it nevertheless is obviously noncatastrophic because errors
never propagate between logical qubits in different frames.

The definition of noncatastrophicity in [11] is also erroneous. It states that
an encoder is noncatastrophic if it can be arranged into a circuit of finite depth.
This definition excludes the class of recursive quantum convolutional encoders,
which cannot be arranged into a circuit of finite depth. Now, it turns out from
a detailed analysis that every recursive quantum convolutional encoder is cata-
strophic according to the definition in Definition 6 (see [8, Th. 1]), but this the-
orem does not apply to entanglement-assisted quantum convolutional encoders
that can be both recursive and noncatastrophic [17]. Thus, in light of these latter
developments, the definition of noncatastrophicity from [11] is flawed.

3Interestingly, catastrophicity in the quantum world is not only a property of
the encoder, but it also depends on the resources on which the encoder acts [17].
For example, we can replace the ancilla qubit of the catastrophic encoder in [8,
Fig. 8] with one system of an entangled bit, and the resulting encoder becomes
noncatastrophic. This type of thing can never happen classically if the only kind
of resource employed is a classical bit.
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Proof: We need to consider an encoder of the general form
in (6). Suppose for a contradiction that the minimal-memory
encoder with m memory qubits is catastrophic. By Definition
6, this implies that there is some cycle through a set of memory

states {m1, ..., m,} of the following form (with zero physical
weight but nonzero logical weight):
Mem. Anc. Info. Phys. Mem.
mi 81 I I®n Mo
Mo 89 lo, — I®n msy (23)
m, 5p L, Ien my
where 4, ..., m, are arbitrary Pauli operators acting on the

memory qubits, the operators s; € {I,Z2 }®('”""> act on the
n — k ancilla qubits, and the operators /; are arbitrary k-qubit
Pauli operators acting on the & information qubits (with at least
one of them not equal to the identity operator). Observe that all
of the output rows on the RHS of (23) commute with the last
row in each of the n — & blocks on the RHS of the transfor-
mation in (6). This observation implies that all of the rows on
the LHS of (23) should commute with the corresponding rows
on the LHS of the transformation in (6). Therefore, all operators
M1, Ma, .. ., M, acting on the memory qubits commute with the
memory operators g; ;,—1 for all ¢ &€ {1,2,...,n—k}. Con-
tinuing, we now know that all of the rows on the RHS of (23)
commute with the second-to-last row in each of the . — & blocks
on the RHS of the transformation in (17). This then implies that
mi, ..., m, commute with g; ;,_» foralli € {1,2,...,n — k}
by the same reasoning above. Continuing in this manner up the
rows of each of the 7 — & blocks, we can show that the operators
mi,Ma, .. ., M, commute with all of the memory operators g;_;
foralli € {1,2,....,n—k}andj € {1,2,...,]; — 1}.

All of these commutativity constraints restrict the form of the
operators 71, . . . , 71, in the catastrophic cycle. By assumption,
the rank of the memory commutativity matrix is full and equal
to 2m. This implies that there are 2:m memory operators g; ;
and they form a complete basis for the Pauli group on 1 qubits.
It follows that each of the operators m, ..., m, is equal to the
identity operator on m qubits because they are required to com-
mute with all g; ; and the only operator that can do so is the
m-qubit identity operator. So all of the entries in (23) are really
just cycles of the form

Mem. Anc. Info. Phys. Mem.

78m $1 ll J®n Jom

I®7n 89 12 — I®n I®m .

I}ém -5'p lp I@ﬂ I@m
The above input-output relations restrict si,...,s,, and
l1,...,1, further—it is impossible for 51, ..., s,,and {y,...,[,

to be any Pauli operator besides the identity operator. Other-
wise, the encoder would not transform the entry on the LHS to
the all identity operator. Thus, the only cycle of zero-physical
weight in a minimal-memory encoder given by Theorem 4
that implements the transformation in (6) is the self-loop at the
identity memory state with zero logical weight, which implies
the encoder is noncatastrophic. ]
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We return to our running example from (2). We determined
in (17) a partial specification of a minimal-memory encoder for
these generators, and the above theorem states that any encoder
that realizes this transformation is noncatastrophic as well. In-
deed, we can study the proof technique above for this example.
Suppose for a contradiction that a catastrophic cycle exists in the
state diagram for the minimal-memory encoder in (17). Such a
catastrophic cycle has the following form:

Mem. Anc. Info. Phys. Mem.
Ty 811 812 Lhip hio % mo
msa 821 S22 log loo — I®* ms

X o 1 1 I®4
Mp Sp,1 Sp2 'pl tp,2 m
(24)
where mq,...,m, can be arbitrary Pauli operators acting on

the three memory qubits, each s; ; € {I, Z} acts on an ancilla
qubit, and each /; ; is an arbitrary single-qubit Pauli operator
acting on an information qubit (with at least one /; ; not equal
to the identity operator). Observe that all of the output rows on
the RHS of (24) commute with the fourth and eighth rows on
the RHS of the transformation in (17). This observation implies
that all of the rows on the LHS of (24) should commute with the
fourth and eighth rows on the LHS of the transformation in (17).
Therefore, all operators 11, ma, . .., m, acting on the memory
qubits commute with /21 and Z1I. Continuing, we now know
that all of the rows on the RHS of (24) commute with the third
and seventh rows of (17) because [m;, 73] = [m;, Z1] = 0 for
all1 <4 < p. This then implies thatm, . . . , m, commute with
I1'X and I1Z by the same reasoning above. We can continue
one last time to show that all mq, ..., m, commute with X I.X
and Z X Z. Similar to the reasoning in the above theorem, all
of these commutativity constraints restrict the form of the op-
erators my. ..., m, in the catastrophic cycle. In fact, the only
three-qubit operator that commutes with I Z1, ZI1 11Z I1Z,
X1X,and ZX Z is the three-qubit identity operator because the
aforementioned operators form a complete basis for the Pauli
group on three qubits. Applying the same logic as at the end of
the above proof then allows us to conclude that the encoder is
noncatastrophic.

2) Encoders Without a Full-Rank Memory Commutativity
Matrix and With an Empty Partial Null Space: Now suppose
that the memory commutativity matrix of a given set of stabi-
lizer generators is not full rank. As we explained in the proof
of Theorem 7, the memory operators my,...,m, of a cata-
strophic cycle in (23) commute with all memory operators g; ;
in (6). Since the number of commutativity constraints is less
than 2/m in this case (where m is the number of qubits on which
the memory operators act), there are other choices for the cat-
astrophic memory operators my, ..., m, besides the m-qubit
identity operator that are consistent with these constraints. This
implies that some of the encoders implementing the transforma-
tion in (6) may be catastrophic. To illustrate this case, we choose
the second code of [12, Fig. 1] as another running example. This
code has the following stabilizer generators:

XXXX

hy = XXXX | XXIT|IXIX |[IIXX
VANV

ho=Z2277 | ZZII | I1ZIZ | 11Z7



HOUSHMAND et al.: MINIMAL-MEMORY, NONCATASTROPHIC, POLYNOMIAL-DEPTH QUANTUM CONVOLUTIONAL ENCODERS

An encoding unitary for this code should be as follows:

Mem. | Anc. Info. Phys Mem.
wm oz 1\ I I X X X X 91,1
g1 I I I I X X I 1 91,2
gi1,2 I I I I I X 1 X 91,3
91,3 I I I I I I X X 91,4
g1.4 I I | I I —-—X X X X | %,
Iem I z | I I Z Z Z Z 92,1
g?,l I I I I Z Z I I .(]2’2
g2.,2 I I I I I 7 I Z g2.3
'1]2’3 I I I I I I Z Z .(]2’4
wa |\ T I\ T 7z 2z 2z 2| 8™

By inspecting the commutativity relations of the memory oper-
ators g; ; in the above transformation, the commutativity matrix
is

rO 0 0 0 0 0 0 07
0 00 0O0OCT1O0
0 00 0O01O0O0
0= 0 00 0 O0OCO0OTOO
0 00 0 O0OCO0OTOO
001 0O0O0CO0O
01 0 0O0O0CO0OTO
LO O 0O 0 0 0 0 04

with dimension equal to eight and rank equal to four. So, based
on Theorem 4, the minimal number of required memory qubits
is six. A set of memory operators which act on a minimal
number of qubits is as follows:

gi1=211111, ¢1o=11XI1II, g13=111Z11,

gra=I11IZI, go1=1ZII11, ¢o9=111XII,

gos =11Z111, ¢o.=11111Z.

Thus, the encoder implements the following transformation:

Memn. Anc. Info. Phys. Mermn.
IIrrrI Z1 11 XXXX ZITITT
ZIITIT 17 11 XXII IIXIII
I1XI1I1 17 11 IXIX I11z1I
IIIZIT 17 11 IIXX I111zZI
11I11Z1 11 II — XXXX II1IIT .
IIIrr 1z 17 YA VA I1Z1111
I1ZI111 17 17 ZZ11 IIIXI1I
11I1X11 17 17 1717 11Z11I
11zZII1 17 17 11Z7 11111z
111117 17 17 YA VA ]IIIII(ZS)

When the commutativity matrix is not full rank, we should add
some rows to the transformation in (6) to ensure that the en-
coder implementing the transformation is noncatastrophic. To
fulfill this requirement, the first step is to find a set C' of memory
states that can be a part of catastrophic cycle (i.e., memory
states which satisfy the commutativity relations mentioned in
the proof of Theorem 7). In our running example, the memory
operators in a catastrophic cycle should commute with ZITT717,
IIXITL NI ZIT ITTIZ1, IZITII, ITTXTI, ITZ]11, and
IITITZ. Thus, they must be an operator in the following set:

C={Z"Z3? 77 Z5" : e1,e9,e3,e4 € {0,1}}.
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The next step is to search among the rows and their combina-
tions in (6) to find a set S; whose members can potentially be
a part of catastrophic cycle. Entries in S; have the following
form:

Mem. Anc.
M 5% L

Info. Phys.
— T
»n

Mem.
M/

where M and M’ are both elements of the set C', the operator
S% € {I,2}2(=k) acts on n — k ancilla qubits, and L is an
arbitrary k-qubit Pauli operator acting on the information qubits.
In our running example in (25), members of the set S; are ob-
tained by adding the first row to the fifth row, and the sixth row
to the tenth row, giving the following input—output relations:

Mem. Anc. Info. Phys. Mem.
I1IrzI Z1 17 — IIIT ZIITIr- (26)
I7rrrz 17z 1T IIIr IZIIIT

Consider a set S5 of rows with physical output equal to the four-
qubit identity operator. Now we should add such a set of rows
to the transformation so that the output memory operators of the
members of 57 and S2 make a complete basis for the set C'. This
guarantees that the rows potentially part of catastrophic cycle
are just an entry or a combination of entries of S; U S5. So if
we choose the memory states of the elements of S such that the
set S U Sy does not create a catastrophic cycle, we can ensure
that any encoders performing the transformation with the added
rows will be noncatastrophic. In our running example from (25)
and (26), we just add two new rows (the rows after the line) as
follows:

Mern. Anc. Info. Phys. Mem.
HIIZI Z1 17 IIiI ZI1I17
1111z 1z I — 11l IZIIIT . (27)
IIrrii 17 XI 1117 IIIIzZI
IIrrii 17 IX 1117 11111z

All combinations of the entries in (27) are as follows:

Mem. Anc. Info. Phys. Memn.
1111z1 Z1 17 IIiI ZI1I111
11111z 17 17 IIiI IZIIIT
IIIrir 11 X1 IIiI 1111zZ1
IIIrir 11 X IIiI 11111z
I111zZz Z7Z 17 IIiI ZZIIIT
1111z1 Z1 X1 IIiI ZII1Z1
1111z1 Z1 IX i 21117
11111z 17 X1 IIiI IZ11Z1
11111z 17 X IIiI 1Z111Z
IIIrir 11 XX IIiI 1111zz
I111zZz Z7Z X1 IIiI 221171
I111zZz Z7Z X IIiI ZZI11Z
1111z1 Z1 XX IIiI YAREVAA
11111z 17 XX IIiI 171177
I111zZz Z7Z XX IIiI 271177

(28)
By inspecting the rows in (28) it is clear that there is no cata-
strophic cycle.
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Theorem 8 below generalizes the technique from the above
example to give a straightforward way for adding rows when Sy
is an empty set.

Theorem 8: Suppose the memory commutativity matrix of a
given set of stabilizer generators is not full rank, and suppose
further that the set S; corresponding to the transformation is
an empty set. Then adding rows in the following form to the
transformation in (6) ensures that any encoder implementing the
transformation is noncatastrophic:

Mem. Anc. Info. Phys. Mem.
JEm ]@(nfk,) X JEn M
R @
e JECS X, on M,

where X; denotes the Pauli X operator acting on the :th infor-
mation qubit and the operators M, ..., M, form a complete
basis for the set C'.

Proof: Suppose for a contradiction that the entries in (29)
create a catastrophic cycle. Since all input memory operators
in (29) are equal to the m-qubit identity operator, the output
memory operator of the last row in a catastrophic cycle in (23)
should be equal to the identity as well (so that the sequence of
memory states forms a cycle). This implies that the last row of
the catastrophic cycle is as follows:

Mem. Anc. Info. Phys. Mem.
— .
My S* L Iem I®k
So 7, and consequently m,_1,...,r are all equal to the

mn-qubit identity operator. Thus, all of the entries in (23) are
really just cycles of the following form:

Mern. Anc. Info. Phys. Mem.

JEm $1 I Jen J®™m

I@’m S 12 . [@n I®"L .

I(}é??l Sp lp IQ:QTZ I’\X.)Tll
The above input-output relations imply that s;,...,s, and
{1,...,1, are identity operators (otherwise, it would not be

possible to effect the above transformation). Thus, the only
cycle of zero-physical weight is the self-loop at the identity
memory state with zero logical weight, which implies there is
no catastrophic cycle. |

VI. NONRECURSIVENESS

In this section, we demonstrate that the encoders from both
Theorems 7 and 8 are nonrecursive. Recursiveness or lack
thereof is a fundamental property of a quantum convolutional
encoder as demonstrated in [8]. In [8], Poulin ef al. proved that
any noncatastrophic quantum convolutional encoder is already
nonrecursive. Note that this situation is much different from
classical convolutional encoders for which these two properties
are not directly linked. In light of the results of Poulin ef al., it
follows that our encoders from Theorems 7 and § are nonrecur-
sive because they are already noncatastrophic. Nevertheless,
we prove below that the encoders are nonrecursive because
our proof technique is arguably much simpler than the proof of
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Theorem 1 from [8]. Though, before proving these theorems,
we briefly review the definition of recursiveness.

Definition 9 (Recursive Encoder): An admissible path is a
path in the state diagram for which its first edge is not part of
a zero physical-weight cycle. Consider any vertex belonging to
a zero physical-weight loop and any admissible path beginning
at this vertex that also has logical weight one. The encoder is
recursive if all such paths do not contain a zero physical-weight
loop.

We can gain some intuition behind the above definition by re-
calling the definition of a recursive classical convolutional en-
coder. In the classical case, an encoder is recursive if it has an in-
finite impulse response—that is, if it outputs an infinite-weight,
periodic sequence in response to an input consisting of a single
“one” followed by an infinite number of “zeros.” Definition 9
above for the quantum case ensures that the response to a single
Pauli operator (one of { X, Y, Z}) at a single logical input along
with the identity operator at all other logical inputs leads to a pe-
riodic output sequence of Pauli operators with infinite weight.
The definition above ensures that this is not only the case for
the above sequence but also for one in which the ancilla qubit
inputs can be chosen arbitrarily from {I, Z}. Thus, it is a much
more stringent condition for a quantum convolutional encoder
to be recursive.

We are now in a position to prove the main theorem of this
section.

Theorem 10: The encoders from Theorems 7 and 8 are non-
recursive in addition to being noncatastrophic.

Proof: Inorder to prove that an encoder is nonrecursive, we
just need to find a single logical-weight-one admissible path be-
ginning and ending in the identity memory state. First consider
that every memory state in (6) already has a zero-logical-weight
path back to the identity memory state. (For example, for the
entry g1,1 in the second row, one would just need to input / ®k
and 15"~k for the logical inputs and ancillas, which in turn
leads to state gq . Continuing in this fashion leads to the state
91,1, —1, which finally leads to the identity memory state.)

Now consider the encoders from Theorem 7 and consider fur-
ther the following transformation:

e g 9k o X, ~hoyg

where / is some arbitrary n-qubit Pauli operator and ¢ is some
m-qubit Pauli operator. From the fact that the memory commu-
tativity matrix is full rank, we know that it is possible to con-
struct the memory state g by combining the memory states from
(6) (say, for example, ¢ = 9i, .5, - 9is,jn * * " §i,..5, ). Further-
more, by inputting 7% and I*"~* for all subsequent logical
and ancilla inputs, we can construct a path that is a combination
of the paths taken by each of g;, ., 9is.4os - - - » 94, ., - Since all
of these paths end up in the identity memory state, it follows
that the combination of the paths also ends up in the identity
memory state. So there is a logical-weight-one admissible path
beginning and ending in the identity memory state. This con-
cludes the proof for encoders from Theorem 7.

The proof for the encoders from Theorem 8 is similar to the
above proof. First, let us consider the memory states that are
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part of the set C. The rows in (29) added to the transformation
are all weight-one logical edges from the identity memory state
to a state in C because they have the following form:

I @I 9 X; = 19" @ M;.

Since all of the memory states in (6) commute with the elements
of C, we can combine some of these commuting states together
to realize the memory state 1/;. By the same argument as before,
inputting I2* and I®"~* for all subsequent logical and ancilla
inputs eventually leads back to the identity memory state be-
cause all of the individual paths lead back as seen in (6). This
concludes the proof for encoders from Theorem 8. |

VII. CONCLUSION

We have presented an algorithm to find a minimal-memory,
noncatastrophic, polynomial-depth encoder for a given set of
stabilizer generators. Our algorithm first determines a transfor-
mation that the encoder should perform, without specifying the
Pauli operators acting on the memory qubits. It then finds a set
of Pauli operators which act on a minimal number of memory
qubits and are consistent with the input—output commutation
relations of the encoder. The number of minimal memory qubits
depends on the dimension and the rank of the “memory com-
mutativity matrix,” which details the commutativity relations
between the memory operators. Once the memory operators
are determined, there is a polynomial-time algorithm to find
the encoder which performs the transformation. We have also
proved that any minimal-memory encoder with a full-rank
memory commutativity matrix is noncatastrophic. However,
when the memory commutativity matrix is not full-rank, we
should add some rows to the transformation to ensure that the
encoder is noncatastrophic. Theorem 8 includes an explicit way
of adding rows to transformations that have an empty partial
null space. We proved that the encoders from Theorems 7 and 8
are nonrecursive in addition to being noncatastrophic. Finally,
the appendix of [27] contains details of our algorithm for many
examples of quantum convolutional codes from [6] and [12].

Some open questions still remain. First, we are assuming a
particular form for our encoders that they have to take the unen-
coded Pauli Z operators to the encoded stabilizer operators. Al-
though this form for the encoder is natural, it might be the case
that allowing for a different form could lead to encoders with
smaller memory requirements. Another open problem is to find
an explicit way of adding rows to any transformation without a
full-rank memory commutativity matrix in order to ensure that
the encoder is noncatastrophic. It is also an open problem to
find minimal-memory, noncatastrophic encoders for subsystem
convolutional codes [31], [16], entanglement-assisted quantum
convolutional codes [13], and convolutional codes that send
both classical and quantum information [16].
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