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Proper estimation of pore size distribution (PSD) for various solid adsorbents is essential for efficient characterization

of  such materials. PSD determination is inherently an ill-posed problem which can be solved by resorting to Tikhonov

regularization technique. Automatic selection of the optimal regularization level is crucial for efficient extraction of

PSD  from experimental adsorption or condensation isotherms. A detailed comparison of Leave One Out Cross Vali-

dation, L-curve, U-curve and modified L-curve criteria are presented using several real adsorption and condensation

case  studies. A modified U-curve criterion is also proposed and its superior performances are thoroughly validated.

The  new method employs a relatively simple minimization procedure, which is much easier than quite complex and

tedious procedures used by conventional methods to compute their internal optimum parameters. Other practical

issues,  such as efficient computation of L-corner have been received proper attention in this article and a simple
algorithm is presented for this purpose.

©  2012 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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regression problem. Shahsavand (2000) provided a detailed
.  Introduction

n many  industrial applications, the adsorption force is
ispersive by its nature and micro pore size distribution plays
n important role in description of solid heterogeneity (Do,
998). Two novel algorithms of SHN11 and SHN22 (based on
nverse theory and Tikhonov regularization technique3) were
reviously presented in our recent articles for efficient and
eliable estimation of pore size distribution (PSD) of nano-
tructured adsorbents using condensation and/or adsorption
sotherms (Shahsavand and Niknam Shahrak, 2011a,b). As it
as clearly shown in those articles, automatic selection of

egularization parameter is crucial for successful extraction
f PSD from measured noisy isotherms. Leave One Out Cross

alidation criterion and various versions of L-curve and
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1 Stands for Shahsavand–Niknam first method.
2 Stands for Shahsavand–Niknam second method.
3 Also known as: Phillips–Twomey method, constraint linear

nversion method and Tikhonov–Miller regularization.
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U-curve methods are traditionally used for optimal selec-
tion of the regularization level (Amato and Hughes, 1991; Mc
Carthy, 2003; Kunicke et al., 2005; Sourbron et al., 2004; Abascal
et al., 2008; Krawczyk-stańdo and Rudnicki, 2007; Chiang et al.,
2004). Some advantages and disadvantages about using the
regularization technique can be found elsewhere (Arnrich
et al., 2011)

Golub et al. (1979) presented a relatively simple method
for fast calculation of optimal ridge regression parameter
via generalized cross validation (GCV) criterion by resort-
ing to singular value decomposition technique. Golub and
Van Loan (1996) provided a more  rigorous analysis regarding
Leave One Out Cross Validation (LOOCV) criterion for ridge
ccepted 6 July 2012

mathematical derivation along with the use of generalized

neers. Published by Elsevier B.V. All rights reserved.
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distributions of heterogeneous solid adsorbents based on
singular value decomposition (GSVD) technique to extend the
above approaches for higher orders of Tikhonov regulariza-
tion procedure. Numerous applications of LOOCV criterion for
optimal selection of regularization levels have been addressed
in our previous works (Shahsavand and Niknam Shahrak,
2011a,b; Shahsavand and Ahmadpour, 2005; Shahsavand and
Pourafshari Chenar, 2007; Shahsavand, 2009). It was clearly
shown that the LOOCV criterion may dramatically fail in some
situations (Shahsavand and Niknam Shahrak, 2011a,b).

Using an entirely different approach, the L-curve crite-
rion was initially presented by Lawson and Hanson (Lawson
and Hanson, 1995). More  recently, this technique was used by
Hansen and O’Leary (Hansen, 1992; Hansen and O’Leary, 1993)
to select the optimum value of regularization parameters for
several numerical examples. Calvettia et al. (2000) reviewed
various iterative procedures for determination of optimal reg-
ularization level by resorting to the L-curve criterion.

Automatic prediction of the so called L-corner is a major
challenge for prediction of the optimal regularization level via
L-curve criterion. Castellanos et al. (2002) proposed a triangle
method (TM) for finding the corner of the L-curve. Numer-
ical results on the collection of test problems were given
to illustrate the potentiality of the method. They reported
that, although the corner could not be exactly found in some
cases, however, other neighbouring points on the L-curve were
obtained which produced a good solution.

In 2005 and in an extensive research, Herdes et al. (2005a)
presented a methodology based on combination of Grand
Canonical Monte Carlo simulations, regularization procedure
and singular value decomposition (SVD) technique to obtain
PSD from experimental adsorption isotherms. They used dis-
crete Picard condition (DPC) and L-curve (LC) criteria to find
the PSD of a plugged hexagonal template silica (PHTS). In the
same year and in a similar article, Herdes et al. (2005b) used
exactly the same approach to find the PSD of various adsor-
bents assuming cylindrical geometry for all porous materials.
Once again the LC criterion was employed for optimal selec-
tion of zero order regularization parameter.

Morigi et al. (2006) explored how the guidelines developed
within the context of asymptotic expansions can be applied
to iterative methods for solution of ill-posed problems. They
used the L-curve criterion to determine a subset of consecutive
iterates associated with the points in a neighborhood of the
vertex of the L-curve. They remarked that the use of L-curve
may not guarantee to give the best approximant.

In 2004, Hansen et al. (2007) submitted an article (published
in 2007) which described an adaptive implementation of the L-
curve criterion. The algorithm locates the corner of a discrete
L-curve on a log–log scale and does not require any predefined
parameter to capture the global features of the curve in an
adaptive fashion. They used a sequence of pruned L-curves
by considering the curves at different scales. They concluded
that “the heuristic L-curve algorithm can fail no matter how it
is implemented” (Hansen et al., 2007).

Santos and Bassrei (2007) used both L- and �-curve
approaches for the optimal selection of regularization param-
eter in geophysical diffraction tomography. The detection of
the L-curve corner was performed using Hansen’s toolbox. For
the first time, non-zero orders of regularization were used to
construct the L-curve. An interesting interpretation of the L-
curve was presented by dividing it into two distinct regions
of smaller error and smoother solution. They introduced �-
curve criterion based on a curve representing the cosine

of angles between adjacent segments of L-curve discrete
representation. Santos and Bassrei also used several synthetic
data sets to compare the performances of zero, first and sec-
ond order regularization techniques with each other.

Krawczyk-stańdo and Rudnicki (2007) proposed the U-
curve criterion for selection of the regularization parameter
(�). They also compared the new criterion with traditional
L-curve method using several numerical examples and con-
cluded that “it works well in practice” (Krawczyk-stańdo and
Rudnicki, 2007).

Reichel and Sadok (2008) proposed a new L-curve heuristic
to determine the optimal level of regularization for ill-posed
problems via the truncated singular value decomposition
(TSVD) technique. The truncation index was determined by
how well the given data can be approximated by a linear
combination of the first singular vectors or functions. They
concluded that “the residual L-curve also can be applied in
conjunction with other solution methods than TSVD, such
as with iterative methods, extrapolation methods, and multi-
parameter methods”.

Rezghi and Hosseini (2009) introduced a new variant of L-
curve to estimate the zero order regularization parameter for
the solution of discrete ill-posed problems. They used the ver-
tex of Euclidean norm of solution vectors versus square of
regularization parameter (�2) to determine the optimum level
of regularization. The L-corner was also predicted using cur-
vature variations instead of curvature via a newly  proposed
correlation.

Heng et al. (2010) proposed a novel approach for the mod-
ified L-curve method to replace the residual norm and the
regularized solution norm with other model functions. Several
Lemmas and theorems were proved to verify this issue. The
new approach was reported to be less computational demand-
ing compared to traditional L-curve method. The performance
of the proposed technique was tested using an inverse heat
conduction problem (IHCP).

In the present article, a brief overview of our recently
proposed methods (SHN1 and SHN2) for PSD recovery of het-
erogeneous adsorbents from condensation and adsorption
data sets via inverse theory will be presented. The regular-
ization technique will be used to stabilize the solution of
ill-posed adsorption problem. Various criteria such as LOOCV,
L-curve (LC), modified L-curve (MLC), U-curve (UC) and our
new method (the so-called Modified U-curve (MUC)) will be
described in more  details for automatic selection of optimal
regularization parameters. The performances of these criteria
will be thoroughly compared together by using various con-
densation and adsorption experimental data sets borrowed
from literatures (Solcova et al., 2006; Kowalczyk et al., 2005;
Moellmer et al., 2010). A simple algorithm is also presented
for computation of L-corner. Ultimately, it’s worthwhile to
mention that the validation of the SHN1 and SHN2 methods
by synthetic data rather than real cases, has been com-
pletely implemented in our two previously published articles
(Shahsavand and Niknam Shahrak, 2011a,b). So here we will
examine these two methods along our proposed Modified U-
curve criterion just for experimental data sets.

2.  A  brief  review  of  SHN1  and  SHN2
methods

Two novel methods of SHN1 and SHN2 were presented in
our recent articles for reliable prediction of the pore size
inverse theory using mere  condensation data or condensation
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henomenon accompanied with a prior adsorbed layer.
etailed description of these methods has been received suf-
cient attention in those articles (Shahsavand and Niknam
hahrak, 2011a,b). A brief overview will be presented in the
ollowing sections to familiarize the reader with the essence
f the proposed methods.

The following integrals are usually used to find the PSD
f a heterogeneous solid adsorbent (f(r)) from a set of noisy
easured data available for the amount of adsorbed material

t a given sets of pressures (Pi; i = 1, . . .,  n):

(Pi) =
∫ rK (Pi)

0

f (r)dr (mere condensation) (1)

(Pi) =
∫ rk(Pi)

0

f (r)dr + t

∫ max

rk(Pi)

2f (r)
r

dr,

(condensation with a prior adsorbed layer) (2)

The above ill-posed problems of finding f(r) from above
ntegrals can be replaced with a set of linear algebraic equa-
ions {(RTR + � BTB) f (r) = RT }, using a combination of inverse
heory and linear regularization technique. In this equation,

he N × Mt coefficient matrix4 R ∈ �
[
N×
∑N

i=1
M(Pi)
]

has usually
any  more  columns than its rows (depending on the order

f regularization technique used), the overall PSD column

ector (f ∈ �
[∑N

i=1
M(Pi)×1

]
) has dimensions of

[∑N

i=1M(Pi) × 1
]

,

is a [N × 1] vector and � is the regularization parameter.
etailed descriptions of various R matrices corresponding to
qs. (1) and (2) has been presented elsewhere (Shahsavand and
iknam Shahrak, 2011a,b).

Evidently, dimensions of the matrix B depend on the
rder of regularization technique employed to stabilize the
nal PSD solution (f(r)). Using zero order regularization tech-
ique, matrix B simply reduces to the identity matrix of

 ∈ �
[∑N

i=1
M(Pi)×

∑N

i=1
M(Pi)
]

. For first order regularization, the
ouble band matrix B has one fewer rows than its columns.

 =

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 0 0

0 −1 1 0 0

. . . . .

. . . . .

0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ (3)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 8 −28 56 

0 −1 8 −28 

...
...

...
...

0 ·  · · −1 8 

0 · · · 0 −1 
4 M(Pi) is the number of discretized intervals between rK(Pi−1)and
K(Pi)and N is the number of data points of any isotherm.
Similarly, as shown below, the B matrices have two or three
rows fewer than their columns when second or third orders of
regularization are employed.

B =

⎡
⎢⎢⎢⎢⎢⎣

−1 2 1 0 0 0

0 −1 2 1 0 0

. . . . . .

. . . . . .

0 0 0 −1 2 1

⎤
⎥⎥⎥⎥⎥⎦ (4)

B =

⎡
⎢⎢⎢⎢⎢⎣

−1 3 −3 1 0 0 0

0 −1 3 −3 1 0 0

. . . . . . .

. . . . . . .

0 0 0 −1 3 −3 1

⎤
⎥⎥⎥⎥⎥⎦ (5)

This procedure can be continued to construct the corre-
sponding B matrices for higher orders of regularizations. For
example, for eighth order of regularization, the B matrix has
eight rows fewer than its columns and can be easily computed
as:

 56 −28 8 −1 0 . . . 0

−70 56 −28 8 −1 . . . 0

...
...

...
...

...
...

...

 56 −70 56 −28 8 −1 0

−28 56 −70 56 −28 8 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

After construction of matrix R and using proper order of
regularization technique (with appropriate form of matrix B),
the optimal level of regularization parameter (�*) should be
selected to establish the best stabilization of the solution vec-
tor f(r). Various criteria (e.g. LOOCV, LC, UC and MLC) have been
used in literatures for automatic selection of optimum regular-
ization parameter (�*). The following section provides a brief
review of such criteria (along with our new proposed method
(MUC)) accompanied with several experimental test examples
to investigate the performance of each criterion.

3. Automatic  selection  of  regularization
parameter

Various ill-posed inverse problems are frequently encountered
in many  practical engineering assignments. Linear regulariza-
tion technique is usually employed to stabilize the solution
of such ill-posed inverse problems (Press et al., 1992). As
mentioned earlier, combination of inverse theory and linear
regularization technique reduces the solution of integral equa-
tions of (1) and (2) to the solution of the following linear sets
of algebraic equations:

(RTR + � BTB)f (r) = RT  (7)

Visual selection of optimization level is inconvenient and
reliable techniques are required for automatic selection of reg-
ularization parameter. The following sections briefly review
various optimization techniques available to tackle this issue.
Fifteen practical experimental data sets are used to investigate

the performances of each criterion. Only the most successful
or failed performances are presented for each case.
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Fig. 1 – (a) N2 adsorption isotherm on CPG75 adsorbent at 77 K, (b) variations of LOOCV with � and (c) comparison of
extracted PSD (left) with the real PSD (right).
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Fig. 2 – (a) N2 adsorption isotherm on MCM-C14 adsorbent at 77 K, (b) variations of LOOCV with � and (c) comparison of

regularization level. The next section describes some of these
extracted PSD (CV) with the real PSD (XRD).

3.1.  Leave  One  Out  Cross  Validation  (LOOCV)  method

Golub and Van Loan (1996) presented the following equation
to find the Leave One Out Cross Validation (LOOCV) criterion.

CV(�) = 1
N

N∑
k=1

[
eT
k

[IN−H(�)] y

eT
k

[IN−H(�)] eT
k

]2

(8)

H(�) = R(RTR + �BTB)
−1
RT (9)

The optimal value of regularization parameter can be
selected by minimization of the above merit function. Evi-
dently, the inversion of M × M matrix {(RTR + � BTB)} at each
value of � requires an order of ((M × M)3) mathematical oper-
ations which is extremely time demanding. This problem
can be solved by resorting to the generalized singular value
decomposition (GSVD) technique which transforms Eq. (8) to
the following formula5:

CV(�) = 1
N

N∑
k=1

[
yk −

∑r

j=1(uR)kj[(d
2
Rj

)/(d2
Rj

+ �d2
Bj

)]bj

1 −∑r

j=1(uR)2kj[(d
2
Rj

)/(d2
Rj

+ �d2
Bj

)]

]2

(10)

where, b = UTy and r is the effective rank of (RT |BT)T . This cri-
terion can provide correct value of optimal regularization level
(�*) for many  practical situations. Fig. 1 shows a typical exam-
ple of such situation when LOOCV criterion is successfully
used along with SHN1 method to determinate the optimal PSD

of a porous adsorbent from a condensation data set.

5 Detailed mathematical derivation of this equation is presented
in  reference (Golub and Van Loan, 1996).
Fig. 1(a) illustrates the nitrogen adsorption isotherm of
CPG6 75 adsorbent at 77 K, borrowed from literature (Solcova
et al., 2006). Fig. 1(b) demonstrates the variations of LOOCV cri-
terion with regularization parameter and Fig. 1(c) shows the
comparison of optimal PSD extracted at (�* = 0.164) with the
actual PSD obtained from mercury porosimetry. Evidently, the
LOOCV criterion performs an outstanding and impressive job
on recovery of PSD from experimental isotherm using SHN1
method.

Unfortunately, LOOCV criterion does not perform so ade-
quately for all cases. Fig. 2 shows a dramatic failure of this
criterion when applied to SHN2 method for extraction of PSD
from a set of real adsorption data. Fig. 2(a) illustrates the
nitrogen adsorption isotherm on MCM7-C14 adsorbent at 77 K
borrowed from (Kowalczyk et al., 2005). Fig. 2(b) shows the
variations of LOOCV criterion with � and Fig. 2(c) presents
the drastically failed performance of SHN2 method at optimal
level of regularization (�* = 1.3e5) predicted by LOOCV criterion.
The dashed line of Fig. 2(c) shows the real PSD of adsorbent
obtained from XRD8 method.

It is interesting to note that the SHN2 method can perform
very adequately when proper value of regularization param-
eter (determined by visual method or other techniques such
as LC, UC or modified LC) is used. Fig. 3 provides the success-
ful extraction of PSD from the same data set of Fig. 2, when
proper level of regularization (�* = 0.0205) is employed. Obvi-
ously, visual confirmation is not possible for practical cases
(when the actual PSD is not known) and other reliable tech-
niques are required for automatic selection of the optimal
6 Controlled-pore glasses.
7 Mesopore carbon material.
8 X-ray diffraction.
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Fig. 5 – Plot of Eqs. (11) and (13) when first order
regularization is used.

ods for selection of L-corner was originally proposed by
Fig. 4 – Schematic representation of L-curve.

ore  successful techniques. Furthermore, we  have to mention
hat real or actual PSDs usually are extracted via methods that
o not require any adsorption isotherms and or do not include
ny unrealistic assumptions. These methods that we  name
hem as independent methods, like Hg-porosimetery and or
-ray diffraction, can be employed to calculate the pore size
f adsorbents (Solcova et al., 2006).

.2.  L-curve  method

he so called L-curve criterion has gained many  attentions
n the last couple of decades for selection of optimal values
f Tikhonov regularization parameter (Lawson and Hanson,
995; Miller, 1970; Tikhonov, 1963). The L-curve was originally a
lot (almost always in log–log scale) of corresponding values of
he solution and residual norms (defined by Eqs. (11) and (12))
arameterized by the zero order regularization parameter.

(�) =
∥∥û-∥∥2 = uTu (11)

(�) =
∥∥Rû- − y

-

∥∥2 = (Rû- − y
-
)T(Rû- − y

-
) (12)

This curve is constructed by connecting discrete points and
n most cases exhibits a typical “L” shape. The optimal value

f the regularization parameter (�*) is considered to be the one
orresponding to the corner of such “L”, as shown in Fig. 4.
The left side of L-curve is nearly a vertical line and any
point on this side of L-curve provides better accuracy with
poor smoothness. Correspondingly, the right side offers less
accurate solution but fairly proper smoothness is expected.
L-curve corner represents a trade-off between smoother solu-
tions with poor accuracy and rougher solutions with more
appropriate precision (Santos and Bassrei, 2007).

Since in many  previous case studies, zero order regulariza-
tion methods are used, therefore Eq. (11) defines the solution
norm. When higher orders of regularization are attempted,
the so called solution norm should be computed from the
following equation.9

�(�) =
∥∥Bû-∥∥2 = (Bu)T(Bu)  (13)

where B matrix is already defined in Eqs. (4)–(6). Fig. 5 illus-
trates both L-curves of solution norms computed via Eqs. (11)
and (13) versus the residual norm of Eq. (12), when first order
regularization technique is applied to the isotherm of MCM-
14 (see Fig. 2). It should be emphasized that the solution norm
(uTu) belongs to the first order regularization (and not to zero
order regularization) technique. Evidently, Eq. (13) provides
better L-shapes, which enhances the automatic selection of
the so called L-corner. In all coming examples, Eq. (13) will be
used to define the solution norm �(�).

After plotting the L-curve, automatic selection of the L-
corner is a major challenge and as it will be reviewed briefly
in the next section, several techniques have been presented
to tackle this issue.

3.2.1.  Automatic  detection  of  L-corner
Visual selection of L-corner is the quite simple and relatively
less time consuming but the optimum value of regularization
parameter obtains by this method usually is not very accurate
and it can be used for initialization purposes. Other methods
are developed for automatic selection of the L-corner which
for the sake of brevity only two of them will receive proper
attention in this section.

3.2.1.1.  Hansen  method.  One of the most widely used meth-
9 The residual norm should be still computed via equation (12).
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Hansen and O’Leary (1993).  This method finds the corner of
L-curve by resorting to maximum curvature concept. Hansen
and O’Leary proposed the following equation to calculate the
curvature of L-curve at any given level of regularization10

(Hansen and O’Leary, 1993):

k (�) =
(

d�� − d2�d�

((d�)2 + (d�)2)
1.5

)
(14)

Hansen also proposed a more  convenient equation which
does not require second derivatives (d2) for calculation of L-
curve curvature11 (Hansen, 2001):

k (�) = 2
(
��

d�

)(
�2d�� + 2��� + �4�d�

((d�)2 + �2)
1.5

)
(15)

Instead of using the differentiations with respect to �, one
may compute the curvature by direct differentiations of y = f(x)
versus (x).12

k(�) = y′′

(1 + (y′)2)
1.5

(16)

Evaluation of L-corner curvature via Eqs. (14)–(16) is
extremely time demanding for large collections of regular-
ization levels. Initially, two models should be fitted to the
curves of � and � versus � and then the required differ-
entiations should be evaluated. In most cases, the fitted
equations are complex and cannot be easily differentiated.
In such situations, numerical differentiations should be used
which are less accurate and have their own limitations.
Another stronger difficulty arises when the measured data
is contaminated with appreciable amount of noise which
is the dominant case in many  engineering problems such
as determination of pore size distribution of an adsor-
bent from noisy isotherms (Hansen, 2001). This problem
usually leads to over prediction of optimal regularization

parameter.13

10 Where d and d2 denote the first and second differentiations
with respect to �, respectively.
11 Hansen and O’Leary also presented two additional algorithms

for selection of L-corner when other special cases are encountered
(Hansen, 1992).
12 Where y′ and y′′ denote the first and second derivatives of y

with respect to x, respectively.
13 As will be shown later in Fig. 6(b).
method.

Fig. 6 shows the curvatures of the L-curves computed by
Eqs. (11) and (13) and plotted against residual norm defined via
Eq. (12). As it was expected, the curvature of L-curve based on
�(() = uTu fails drastically for first order linear regularization,
while similar L-curve based on �(() = BuTBu shows a perfect
maximum which recovers PSD very close to experimental
value.

Although, there are several other methods (such as: the
point closest to an origin point (Belge et al., 1998) or the point
of tangency with a straight line of negative slope (Reginska,
1996)) in the literature which may provide L-corner, however,
the Hansen method of finding L-corner based on calculation
of L-curve curvature is more  popular. A more  convenient tech-
nique is presented in the next section which can successfully
provide the L-corner with a much simpler procedure.

3.2.1.2. A  Novel  method  for  determination  of  the  corner  of  L-
curve. In our new approach, the L-corner is simply computed
by intercepting the L-curve with a line connecting origin to the
extreme point. As shown in Fig. 7, the horizontal component
of the so called extreme point equals to the maximum value
of x axis and its vertical component is identical with the max-
imum value of y axis. Fig. 8(b) shows that our very convenient
method locates much better the L-corner compared to the rel-
atively complex method of Hansen (Eq. (14) or (15)), when the
L-curve appreciably deviates from L-shape. In other situations,
as shown in Fig. 8(a), both methods predict the same point for
L-corner.
To investigate the effectiveness of L-curve criterion on
recovery of PSD from a real isotherm, the example of Fig. 2
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Fig. 8 – (a) L-curve exhibits L-shape (both methods are successful), (b) L-curve deviates L-shape (our method succeeds while
Hansen method fails to predict the L-corner).
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s used again. As it was shown earlier, LOOCV criterion could
ot provide the correct value of the optimal regularization
arameter. Fig. 9 illustrates the recovered PSDs, when Hansen
ethod and our new simple algorithm are used for L-corner

rediction. Although the optimum regularization levels are
lightly different from each other,14 however, both methods
erform very adequately and can extract the correct PSD from
he isotherm of Fig. 2 using first order regularization tech-
ique. A task, which has been dramatically failed by LOOCV
riterion (see Fig. 2).

Although, L-curve criterion equipped with our L-corner
election technique (which is more  convenient than the
omplex maximum curvature calculation procedure of
ansen and O’Leary) usually provides better performance

han LOOCV criterion for optimal selection of regularization
evels, However, it may fail in some practical applications as
hown in reference (Vogel, 1996). For this reason, other cri-
eria will be addressed in the next section for more  reliable
rediction of optimal regularization levels.
14 �* = 1.192 for Hansen method and �* = 0.35 for our algorithm
3.3.  U-curve  method

Krawczyk-stańdo and Rudnicki (2007) proposed the so called
U-curve criterion for reliable estimation of optimal regulariza-
tion parameter based on the following equation.

U(�) = 1
�(�)

+ 1
�(�)

(17)

Here, �(�) and �(�) are defined by Eqs. (12) and (13) and
denote the solution and residual norms at any given level
of regularization parameter (�). The U-curve is simply a plot
of U(�) (defined by Eq. (17)) versus regularization parameter
(�). In many  real case studies, this curve exhibit typical “U”
shapes and optimum regularization parameter �* should be
computed by finding a point in which the curvature attains a
local maximum (preferably) close to the left vertical part of the
U-curve (Krawczyk-stańdo and Rudnicki, 2007). Fig. 10 shows
the U-curve computed for MCM-C14 adsorbent of Fig. 2 and its
successfully predicted PSD at optimum level of regularization
(�* = 0.161).

As shown in Fig. 11(b), in many  real situations the original
U-curve plot may not provide a distinct minimum. In such
cases, the magnification of the U-curve plot around the U-
corner may show a distinct U-shape with a clear minimum.
Adsorption isotherm of nitrogen on CPG 159 adsorbent at 77 K
(borrowed from (Solcova et al., 2006) and shown in Fig. 11(a)
is used to address this issue. Fig. 11(b)–(d) provides the orig-
inal and magnified U-curves, corresponding curvature plots
versus � and the recovered PSD at �* obtained by pinpointing
the maximum curvature of magnified U-curve.

As it is clearly illustrated in Fig. 11(c), the curvature of
original U-curve (thin line) is monotonic and does not pro-
vide a distinct maximum. On the other hand, the curvature
of magnified U-curve (thick line) shows a perfect maximum
in which the corresponding �* recovers the optimal PSD from
SHN1 method very close to the real PSD obtained from Hg
porosimetry (borrowed from (Solcova et al., 2006)).

For this specific example, the optimal regularization level
computed via maximization of magnified U-curve curva-
ture (Fig. 11(c)) is the same as �* obtained by minimization
of Magnified U-curve (Fig. 11(b)). Evidently, minimization

of a convex univariate function is much simpler than
the tedious and time consuming curvature calculations for
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Fig. 11 – (a) Nitrogen adsorption isotherm on CPG159, (b) original and magnified U-curves, (c) curvature plots of both
d U-

optimal regularization level (�*) than traditional curvature plot
(Rezghi and Hosseini, 2009). Variation of curvature between
U-curves and (d) Optimally recovered PSD based on magnifie

selection of proper �*. Unfortunately, this issue may not be
true in all other cases, especially when the U-curve exhibits a
vertical–horizontal–vertical feature. In such cases, the optimal
point usually lies near the left leg of U-curve (Krawczyk-stańdo
and Rudnicki, 2007).

As shown in Fig. 12 for adsorption of argon at 87.3 K on a
typical Metal-Organic Framework (MOF) adsorbent (Moellmer
et al., 2010), the U-curve plot actually exhibits a monotonic
(rising or falling) characteristics which does not provide a
maximum curvature. In such cases, the U-curve method dra-
matically fails and other more  efficient techniques (such as
modified L-curve method) are required to provide the opti-
mum level of regularization.
curve.

3.4.  Modified  L-curve  method

Rezghi and Hosseini (2009) modified the L-curve (MLC) method
by plotting the solution norms (defined by Eq. (13)) versus
square of regularization parameters �2. In most cases, this
curve exhibits a typical “L” shape, and the optimal value of
the regularization parameter �* is considered to be the one
corresponding to the corner of the “L”. They also proposed a
new algorithm for selection of the corner of modified L-curves
based on curvature variations. It was shown that the curva-
ture variation method provides better means of determining
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two adjacent regularization parameters (�i, �i+1) should be
computed as15:

vi = ki+1 − ki

�2
i+1 − �2

i

(18)

They also emphasized that the optimum value of regular-
ization parameters (�*) corresponds to the point where the
maximum variation in curvature occurs (Rezghi and Hosseini,
2009).

As it was shown in Fig. 12,  the U-curve criterion failed to
provide a point with a proper maximum curvature. Hence it is
unable to offer a correct PSD for the adsorption data presented
in Fig. 12(a). As it can be seen in Fig. 13,  the application of mod-
ified L-curve (MLC) criterion provides two similar optimum
regularization levels when curvature (left axis of Fig. 13(b),
thin line) or curvature variations (right axis of Fig. 13(b),
thick line) are maximized. Fig. 13(c) illustrates that both
optimal levels of regularizations used by SHN2 method lead to
a unique PSD which almost lies over the actual PSD obtained
from X-ray diffraction (XRD). This impressive performance of
the MLC  criterion (among many  others) show that such pow-
erful technique when coupled with SHN1 or SHN2 methods
can successfully used for optimal recovery of PSD from exper-
imental isotherms.
MLC  criterion suffers from computational demanding pro-
cedure of finding curvature and curvature variations for large

15 The curvature (k) is computable via Eqs. (14)–(16).
d their corresponding �* values.

sets of regularization parameters. Moreover, as shown in Fig.
(14) for adsorption of nitrogen over CPG 80 at 77 K (borrowed
from (Solcova et al., 2006)), the predicted PSD (via SHN1)
although correctly pinpoints the peak location, however, it
may show some unrealistic multiple peaks.

3.5.  Modified  U-curve  method

We define a new criterion based on modification of conven-
tional U-curve. In this approach, the modified U-curve plot is
constructed by plotting the summation of both solution and
residual norms (Eq. (19)) versus logarithm of regularization
parameter (log(�)).

MU(�) = �(�) + �(�) (19)

Unlike traditional U-curve criterion which usually deviates
from U-shape, the semi-log MUC plot is almost always lead
to a U-shape curve with a distinct minimum. This new cri-
terion was applied to the CPG 80 isotherm data of Fig. 14(a)
using SHN1 method. As shown in Fig. 15,  the optimum level of
regularization (�*) found by minimization of MU  plot, exactly
recovers the actual PSD.

Evidently, finding the minimum of a univariate function is
much simpler and more  convenient than calculation of curva-
ture or curvature variation. Therefore, the proposed method
is extremely simple to use and to the best of our experience it

never deviates from U-shape and always recovers appropriate
PSD at optimum level of regularization.
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To emphasize this issue and to demonstrate the supe-
ior performances of our newly proposed criterion (MUC), it
s applied to the entire sets of isotherm data used from the
eginning of this article (among many  others16). Fig. 16 clearly
hows that for all of these data sets, the MUC  criterion provides
erfect U-curves with well-defined minima corresponding to
ifferent optimum regularization levels. Fig. 17 illustrates the

mpressive performances of our newly proposed technique
MLC) on recovery of PSD using the optimal regularization lev-
ls found in Fig. 16.

.  Conclusions

 new criterion (MUC) is presented for efficient and con-
enient estimation of optimal regularization level for the
ll-posed inverse problem of finding PSD from isotherm data.
his new criterion outperforms other conventional criteria
uch as Leave One Out Cross Validation (LOOCV), L-curve
LC), modified L-curve (MLC) and U-curve (UC). Several real
ase studies were used to compare the performances of all
bove criteria for estimation of optimal regularization param-
ter used in SHN1 and SHN2 methods as described in our
ecent articles). It was clearly shown that traditional crite-
ia such as LOOCV and UC drastically fail in practice and
an’t provide proper values for optimal regularization param-
ter. The most important advantage of the new MUC criterion

ver LC and MLC  criteria is its simplicity and its reliable

16 Other than these four examples, MLC criterion was also tested
or ten other real case studies. It performed very adequately on
SD recovery of all adsorbents.
performance for estimation of �*. In all 15 cases considered in
this study, the newly proposed method never fails and always
provides proper optimal values for regularization problem
which successfully recovers PDS compared to experimental
XRD or mercury porosimetery distributions. Furthermore, an
easy procedure is presented in Section 3.2 for reliable predic-
tion of L-corner.
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