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ABSTRACT. A stable adaptive interval type-2 fuzzy sliding mode control for a class of nonlinear systems is investigated. The method is based on 
interval type-2 fuzzy logic system (IT2 FLS) to approximate unknown nonlinear functions. The use of this type-2 control requires an additional 
operation which is the type reduction, in comparing with typ-1 control. The proposed controller use singleton fuzzifier, product inference engine, 
center of sets type reduction and average defuzzifier. Based on the Lyapunov method, we design the adaptive interval type-2 fuzzy sliding mode 
control with mathematical proofs for stability and convergence of the closed-loop system. Two nonlinear system simulation examples are presented 
to verify the effectiveness of the (IT2 FLS) that is introduced. 
 

1. Introduction 
     The control of nonlinear systems has been one of the important research topics; and therefore, many approaches have been proposed to 

date [1, 2].Generally there are two kinds of uncertainties, one caused by lake of information about structure and parameters of a system and the other 
caused by internal and external disturbances. One of the methods, which address uncertainty in plant, dynamics, is sliding mode control (SMC) 
which is a robust nonlinear discontinuous feedback control technique with the drawback of chattering. The chattering is the main drawback of SMC, 
which can excite undesirable high-frequency dynamics. In order to reduce chattering phenomenon, a small boundary layer is introduced around the 
sliding surface for better control accuracy [3]. However, the state trajectory of the resulting system may no longer converge to the sliding surface [4]. 
SMC also requires the general structure of the plant and parameter uncertainties to remain within known intervals. In the recent years some 
techniques have been emerged for control of nonlinear systems especially techniques based on fuzzy logic systems (FLS) [5-7]. It has been proven 
that fuzzy logic can approximate any nonlinear function to any desired accuracy because of the universal approximation theorem [8]. Fuzzy logic 
provides an important tool for utilization of human expert knowledge in complement to mathematical knowledge. This is mainly due to the 
possibility of making use of fuzzy knowledge-based control to deal with systems whose dynamics are not so well understood and whose models can 
not be so conveniently established [4]. Among the FLS which can handle uncertainty in plant dynamics is adaptive control. The objective of adaptive 
control is to introduce an adaptation law that adjusts the parameters of the controller against system uncertainties and disturbances. Many recent 
researches have utilized an adaptive fuzzy sliding mode control approach (AFSMC) to handle uncertainties and disturbances, such as in [9-12] which 
they use type-1 FLS. Quite often, the information that is used to construct the rules in a FLS is uncertain [13, 14]. Type-1 FLSs are unable to directly 
handle rule uncertainties, since their membership functions are type-1 fuzzy sets. On the other hand, type-2 FLSs involved in this paper whose 
antecedent or consequent membership functions are type-2 fuzzy sets that can handle rule uncertainties. In this paper we introduce an adaptive 
interval type-2 fuzzy sliding mode control for a class of uncertain SISO nonlinear systems. The proposed controller use advantage of IT2 FLS and 
adaptive sliding mode controller. Two nonlinear system simulations are presented to verify the effectiveness of the proposed method. 
 

2. TYPE-2 FUZZY LOGIC SYSTEMS 
A type-2 fuzzy set in universal set X is denote as ܣሚ which is characterized by a type-2 membership function in (1, 2) 

  
ሚܣ  ൌ  אሻ௫ݔ෨ሺߤ  (1)            ݔ/
ሻݔ෨ሺߤ                   ൌ  ௫݂௨ఢೣ

ሺݑሻ/ܬ   ,    ݑ௫߳ሾ0,1ሿ                                        (2) 
   
Where ߤ෨ሺݔሻ is called a secondary membership function (MF) or a vertical slice and ௫݂ሺݑሻ is called secondary grade. The domain of a secondary MF 
is called the primary membership of ݔ noted ܬ௫ where ܬ௫߳ሾ0,1ሿ for  ܺ߳ݔ  ; u is a fuzzy set in [0,1] , rather than a crisp point in [0,1]. When ௫݂ሺݑሻ ൌ
1 for  ܬ߳ݑ ௫ , then secondary membership functions are interval sets and ܣሚ in (1, 2) can be rewrite as  
 
ሚܣ  ൌ  אሻ௫ݔ෨ሺߤ ݔ/ ൌ  ሾ ௨ఢೣݑ/1

ሿ/ݔ௫ఢ     ௫߳ሾ0,1ሿ     (3)ܬ   ,   
  
 Interval type-2 fuzzy sets (IT2 FSs) illustrate a uniform uncertainty at the primary membership of ݔ. Many researchers use this type of type-2 fuzzy 
sets because of their simplicity of calculation especially in the type reduction [17-19].An IT2 FS ܣሚ is described by its lower and upper MFs, ߤ෨ሺݔሻ 
and ߤ෨ሺݔሻ , respectively . The Footprint of uncertainty for an IT2 FS is described in terms of these MFs, as  
 

FOU (ܣሚ)=ڂ ሾ௫ఢ ,ሻݔ෨ሺߤ  ሻሿ                                      (4)ݔ෨ሺߤ

                            
   
Fig.1 illustrates a type-2 fuzzy MF with its FOU, upper and lower bound. Generally, basic structure of an IT2 FLS consists of fuzzifier; fuzzy rule 
base; fuzzy inference engine; type reducer and defuzzifier. An IT2 FLS is a mapping ݂: ܴ ՜ ܴଵ. After fuzzification, fuzzy inference, type reduction 
and defuzzification, a crisp output can be obtained. Fig.2 shows the general structure of an IT2 FLS, and in following sections we will introduce each 
block in the IT2 FLS. 
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   2.1. Fuzzifier 

The fuzzifier maps a crisp input into fuzzy sets, these fuzzy sets, in general, can be type-1 or type-2 fuzzy input sets ܣሚ. However, in this paper 
we use only singleton fuzzifier which output of it will be a single point of a nonzero membership. 

 
2.2. Rule base 

The ݅௧ rule in the IT2 FLS can be written as bellow  
ܴ ෨ଵܨ ଵ isݔ  If 

 and  ݔଶ is ܨ෨ଶ
 and … ݔ is ܨ෨  then ݕ is ܩ෨    ݈=1, 2, …, M    (5)  

Where ݔ’s and ݕ are the input and output of the IT2 FLS respectively and ܨ෨ and ܩ෨ are the antecedent and the consequent sets respectively,                     
which both can be IT2 FSs. 
2.3. Inference engine    

The inference engine combines rules and maps input vector ݔ)=ݔଵ,ݔଶ,…,ݔሻ் to an output scalar ݕ. by performing input and antecedent 
operations, the firing set will be obtain as following  

  
∏=ሻݔሺܨ  ி෨ೕߤ



ୀଵ ሺݔሻ         (6)   

Whereas, in this paper only IT2 FSs are used and the meet operation is implemented by the product t-norm, the firing set will be as following 

,ሻݔሻ= [݂ሺݔሺܨ  ݂

ሺݔሻሿ         (7) 

 ݂ሺݔሻ= ߤி෨భ
*ߤி෨మ

*…*ߤி෨
        (8)  

 ݂

ሺݔሻ ൌ ி෨భߤ

*ߤி෨మ
*…*ߤி෨

      (9)   

 Where ݂ሺݔሻ and ݂

ሺݔሻ are the ݅௧  lower and upper membership function, respectively. The firing set ܨሺܺሻ is combined with the consequent of            

the  ݅௧  rule using the product t-norm to derive the fired output consequent sets. 
 

2.4. Type reduction and defuzzification 
Type reduction was proposed by Karnik and Mendel [14, 20]. This block is the main difference between type-1 and type-2 fuzzy logic systems. 

Due to output of the inference engine is type-2 fuzzy set, it must be type-reduced before defuzzifier can be used to generate a crisp output. Five 
different type reduction methods are described in [20] which are based on computing the centroid  of an IT2 FS. Center of sets (COS) type 
reduction is most widely used, which is adopt in this paper, and can be expressed as 

 ܻ௦ ൌ (ܻଵ,…,ܻெ,ܨଵ,…,ܨெ)= [ݕ,ݕ] =  …   …  1/ ∑ ಾ
సభ ௬

∑ ಾ
సభಾభ௬ಾ௬భ    (10) 

Where   ݂߳ܨ ൌ ሾ݂ሺܺሻ, ݂

ሺܺሻሿ  , ݕܻ߳ ൌ ሾݕ

, ݕ
ሿ. 

Whereas, in this paper we use IT2 FS then ܻ௦ is the interval set determined with its left end point, ݕ , and its right end point ݕ .We defuzzify the 
set obtained from type reducer by using the average of ݕ and ݕ [17], therefore crisp output  is  : 
 
ሻݔሺݕ) =ሻݔሺݕ    ሻሻ/2   (11)ݔሺݕ
 
In general, there are no closed form formulate for ݕ  and ݕ ; however Mendel and Karnik developed two algorithm for calculating these two end 
points in [21]. If we use singleton fuzzifier, product inference engine and COS type reducer  ݕ and ݕ can expressed as  

=ݕ                 
∑ ௬

ಾ
సభ
∑ ಾ

సభ
ߠ = 

     (12)ߦ்

Where ߠ
 ൌ ݕ

 and  ߠ ൌ ሾߠ
ଵ, … , ߠ

ெሿ் , ߦ
= 

∑ ಾ
సభ

  and ߦ= [ߦ
ଵ, ߦ,…

ெሿ் 

∑=ݕ  ௬ೝ
ಾ

సభ
∑ ಾ

సభ
ߠ = 

     (13)ߦ்

Where ߠ
 ൌ ݕ

 and ߠ ൌ ሾߠ
ଵ, … , ߠ

ெሿ் , ߦ
 = 

∑ ಾ
సభ

  and ߦ= [ߦ
ଵ, ߦ,…

ெሿ். Now we briefly provide the computation procedure for ݕ .without loss of 

generality, suppose ߠ
 are arranged in ascending order i.e.  ߠ

ଵ  ߠ
ଶ  ڮ  ߠ

ெ. After calculating ߠ and ߠ with the algorithm COS in [21], we have 
the following steps : 

Step1: compute the ݕ in (12) by initially setting ݂
 ൌ ሺ݂  ݂


ሻ/2 for ݅=1,2,…,M where ݂and ݂


are computed by (8),(9). 

Step2: find ࣥ (1≤ࣥ≤M-1) such that ߠ
ࣥ  ݕ  ߠ

ࣥାଵ. 

Step3: compute the ݕ′ in (12) by ݂
=݂


 for ݅  ࣥ and ݂

=݂ for ࣥ ൏ ݅. 
Step4: if  ݕ′ ് ݕ  setݕ ൌ ′ݕ  and go to step2. If′ݕ ൌ ′ݕ  is equal withݕ  then stop loop andݕ . 
The proceeding to compute ݕ is similar to compute ݕ , only in step2 find ࣥ(1≤ࣥ≤M-1) such that ߠ

ࣥ  ݕ  ߠ
ࣥାଵ and in step3, compute the ݕ′ 

in (13) by ݂
=݂ for ݅  ࣥ and ݂

=݂

 for ࣥ ൏ ݅. ݂ . 

Now the defuzzified crisp output obtain as 
 
 = ሻݔሺݕ        

௬ೝା௬

ଶ
 = ଵ

ଶ
ሺߠ

ߦ்  ߠ
 ሻ      (14)ߦ்

 
3. SLIDING MODE CONTROL 

Consider a general class of  SISO  n’th order nonlinear system as  
 

,ݔሺሻ=݂൫ݔ                            ൯ݐ  ݃൫ݔ, ݑ൯ݐ  ݀ሺݐሻ                (15) 
ݕ                            ൌ   ݔ
Where ݂ and ݃ are unknown bounded nonlinear functions , where the bounds need not be known, ݀ሺݐሻ is the unknown external disturbance, ܴ߳ݑ 
and ܴ߳ݕ are input and output of the system, respectively, ݔ ൌ ሾݔ, ሶݔ , … ,  ሺିଵሻሿܴ߳ is the state vector of the system which is assumed to be availableݔ
for measurement. We assume external disturbance ݀ሺݐሻ is bounded by a known constant D, i.e.  
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݀ሺݐሻ   (16)                                           ܦ
 

And assume, System (15) is controllable,  ݃൫ݔ, ൯ݐ ് 0. Without loss of generality, we assume ݃൫ݔ, ൯ݐ  0, i.e. can be negative and the control can be 
similarly derived. The control objective is to determine a feedback control ݑ ൌ  of the system follows the desired state ݔ ሻ such that the stateݔሺݑ
vector ݔௗ ൌ ሾݔௗ, ,ሶௗݔ … , ௗݔ

ሺିଵሻሿ in the presence of disturbances and uncertainties, that is the tracking error 
 

 ݁ ൌ ݔ െ ௗݔ ൌ ሾ݁, ሶ݁ , … , ݁ሺିଵሻሿ்  (17) 
 

Should converge to zero. Then a sliding surface in the space of the error state can be defined as 
 
൫݁൯ݏ  ൌ ்ܿ݁ ൌ ݁ሺିଵሻ  ܿିଵ݁ሺିଶሻ  ڮ  ܿଵ݁            (18) 

 
Where ܿ ൌ ሾܿଵ, … , ܿሺିଶሻ, ܿሺିଵሻ, 1ሿ்ܴ߳ are the coefficients of the Hurwitz polynomial ݄ሺݎሻ ൌ ሺିଵሻߣ  ܿሺିଵሻߣሺିଶሻ  ڮ  ܿଵ, i.e. all the roots 
are in the open left-hand (ߣ is a Laplace operator). If the initial condition ݁ሺ0ሻ ൌ 0 then the tracking problem can be considered as the state error 
vector remaining on the sliding surface ݏ൫݁൯ ൌ 0 for all  ݐ  0. A sufficient condition that the system controlled is stable is given in [1] as: 
 
 ଵ

ଶ
ௗ
ௗ௧

ଶ൫݁൯ݏ  െߟ ,  |ݏ|ߟ  0 (19) 
 
Where ߟ is a constant design parameter. Then sliding condition of (19) can be rewritten as follow 
ሶݏݏ   െݏ|ߟ|    Or   ݏሶ  െ ݊݃ݏߟሺݏሻ        (20) 

Where  

ሻݏሺ݊݃ݏ ൌ ቐ
ݏ  ݎ݂          1    0
ݏ  ݎ݂         0   ൌ 0
െ1        ݂ݏ  ݎ ൏ 0

      (21) 

 
By taking the time derivative of both sides of (18), we obtain:  
  
ሶݏ  ൌ ∑ ܿ݁ିଵ

ୀଵ  ሺሻݔ െ ௗݔ
ሺሻ ൌ ∑ ܿ݁ିଵ

ୀଵ  ݂൫ݔ, ൯ݐ  ݃൫ݔ, ݑ൯ݐ  ݀ሺݐሻ െ ௗݔ
ሺሻ  (22) 

 
Substituting (22) into (20), sliding condition can be re-expressed as: 
 

 ( ∑ ܿ݁ିଵ
ୀଵ  ݂൫ݔ, ൯ݐ  ݃൫ݔ, ݑ൯ݐ  ݀ሺݐሻ െ ௗݔ

ሺሻሻ  െ ݊݃ݏߟሺݏሻ       (23) 
 
The control problem is to obtain the optimal control input כݑ which guarantees the sliding condition (23). If  ݂൫ݔ, ,൯ݐ ݃൫ݔ,  ,ሻ are knownݐ൯ and ݀ሺݐ
we can design the optimal sliding mode control law as below: 

i) If  ݏ ൌ 0  
כݑ   ଵ

൫௫,௧൯
ൣെ ∑ ܿ݁ିଵ

ୀଵ െ ݂൫ݔ, ൯ݐ െ ݀ሺݐሻ  ௗݔ
ሺሻ൧                       (24) 

ii) If  ݏ ് 0 
כݑ             ଵ

൫௫,௧൯
ൣെ ∑ ܿ݁ିଵ

ୀଵ െ ݂൫ݔ, ൯ݐ െ ݀ሺݐሻ  ௗݔ
ሺሻ െ  ሻ൧     (25)ݏሺ݊݃ݏߟ

Therefore optimal control כݑ is 
 
כݑ  ൌ ଵ

൫௫,௧൯
ൣെ ∑ ܿ݁ିଵ

ୀଵ െ ݂൫ݔ, ൯ݐ െ ݀ሺݐሻ  ௗݔ
ሺሻ െ  ሻ൧    (26)ݏሺ݊݃ݏ∆ߟ

Where ߟ∆  ߟ  0. 
 

4. Adaptive sliding mode control based on IT2 FLS 

The result in (26) is realizable only while ݂൫ݔ, ,ݔ൯ , ݃൫ݐ ,ݔሻ  are well known. Since these are unknown, we replace ݂൫ݐ൯ and ݀ሺݐ ,ݔ൯ and ݃൫ݐ  ൯ݐ
by the IT-2 FLS መ݂൫ߠ|ݔ൯ and ො݃൫ߠ|ݔ൯ which are in the form (14). The resulting control input is as follow  
 
ூݑ  ൌ ݑ ൌ ଵ

ො൫௫|ఏ൯ 
ൣെ ∑ ܿ݁ିଵ

ୀଵ െ መ݂൫ߠ|ݔ൯  ௗݔ
ሺሻ െ ሺߟ∆   ሻ൧    (27)ݏሺ݊݃ݏሻܦ

 
Where D obtain from (16) and  
 
 መ݂൫ߠ|ݔ൯ ൌ መାመೝ

ଶ
ൌ ଵ

ଶ
൫ߠ

் ߦ  ߠ
் ൯ߦ ൌ ߠ

            (28)ߦ்

   ො݃൫ߠ|ݔ൯  ൌ ොାොೝ

ଶ
ൌ ଵ

ଶ
൫ߠ

் ߦ  ߠ
் ൯ߦ ൌ ߠ

        (29)ߦ்
Theorem1. Consider the nonlinear SISO system (15) and the control input u in (27) if the fuzzy based adaptive laws are chosen as 
ሶߠ ൌ  ߛଵߦݏ      (30) 
ሶߠ ൌ ߛଶߦݏ      (31) 
ሶߠ ൌ ߛଷߦݏ(32)      ݑ 
ሶߠ ൌ ߛସߦݏ(33)      ݑ 
 
The closed loop system signals will be bounded and the tracking error will converge to zero asymptotically. 
Proof. Define the optimal parameters of fuzzy systems 
ߠ

כ ൌ arg ݉݅݊
        ఏఢஐ

ሾsup
௫ఢோ

| መ݂൫ߠ|ݔ൯ െ ݂൫ݔ,  ൯|ሿ                                 ሺ34ሻݐ

ߠ
כ ൌ arg ݉݅݊

        ఏఢஐౝ

ሾsup
௫ఢோ

| ො݃൫ߠ|ݔ൯ െ ݃൫ݔ,  ൯|ሿ                                 ሺ35ሻݐ

Where  Ω  and  Ω are constant sets for  ߠ and ߠ respectively, and they are defined as Ω ൌ ൛ߠܴ߳ห หߠห   ሽ  and  Ωܯ ൌ ൛ߠܴ߳ห 0 ൏
หߠห  , ሽܯ where ܯ and ܯ are positive constant. The minimum approximation error is defined as:  
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type-2
type-1

 
߱ ൌ ൣ݂൫ݔ, ൯ݐ െ መ݂൫ߠ|ݔ

൯൧כ  ൣ݃൫ݔ, ൯ݐ െ ො݃൫ߠ|ݔ
 (36)               ݑ൯൧כ

 
Then from substituting (27) and (36) into (22), derivative of sliding surface is 

ሶݏ ൌ  ܿ݁
ିଵ

ୀଵ

 ݂൫ݔ, ൯ݐ  ݃൫ݔ, ݑ൯ݐ  ݀ሺݐሻ െ ௗݔ
ሺሻ 

ൌ ݂൫ݔ, ൯ݐ െ መ݂൫ߠ|ݔ൯  ቀ݃൫ݔ, ൯ݐ െ ො݃൫ߠ|ݔ൯ቁ ݑ  ݀ሺݐሻ െ ሺߟ∆   ሻݏሺ݊݃ݏሻܦ
ൌ መ݂൫ߠ|ݔ

൯כ െ መ݂൫ߠ|ݔ൯ ( ො݃൫ߠ|ݔ
൯כ െ ො݃൫ߠ|ݔ൯ሻݑ  ݀ሺݐሻ െ ሺߟ∆  ሻݏሺ݊݃ݏሻܦ  ߱ 

ൌ ൫ߠ
ߦ்כ െ ߠ

൯ߦ்  ൫ߠ
ߦ்כ െ ߠ

ݑ൯ߦ்  ݀ሺݐሻ  െ ሺߟ∆  ሻݏሺ݊݃ݏሻܦ  ߱ 
ൌ 

ߦ்  
ݑߦ்   ݀ሺݐሻ  െ ሺߟ∆  ሻݏሺ݊݃ݏሻܦ  ߱  

ൌ ଵ
ଶ

ሺ
் ߦ  

் ሻߦ  ଵ
ଶ

ሺ
் ߦ  

் ݑሻߦ   ݀ሺݐሻ  െ ሺߟ∆  ሻݏሺ݊݃ݏሻܦ  ߱               (37) 
 
Where  ൌ ߠ

כ െ   andߠ ൌ ߠ
כ െ  :. Now the Lyapunov function is defined asߠ

 
ܸ ൌ ଵ

ଶ
ଶݏ  ଵ

ସఊభ
 

்   ଵ
ସఊమ

 
்   ଵ

ସఊయ


்   ଵ
ସఊర


்     (38)

 
Where ߛଵ and ߛଶ are positive constant. The time derivative of V is: 

ሶܸ ൌ ሶݏݏ  ଵ
ଶఊభ

 
் ሶ   ଵ

ଶఊమ
 

் ሶ   ଵ
ଶఊయ


் ሶ   ଵ

ଶఊర


் ሶ  

ൌ ሺݏ
1
2

ሺ
் ߦ  

் ሻߦ 
1
2

ሺ
் ߦ  

் ݑሻߦ   ݀ሺݐሻ – ሺߟ∆  ሻݏሺ݊݃ݏሻܦ  ߱ሻ  
ଵ

ଶఊభ
 

் ሶ   ଵ
ଶఊమ

 
் ሶ   ଵ

ଶఊయ


் ሶ   ଵ
ଶఊర


் ሶ  ൌ 

1
ଵߛ2


் ൫ሶ   ൯ߦݏଵߛ 

1
ଶߛ2


் ൫ሶ   ൯ߦݏଶߛ 

1
ଷߛ2


் ൫ሶ   ൯ݑߦݏଷߛ  

ଵ
ଶఊర


் ൫ሶ   ൯ݑߦݏସߛ  ሻݐሺ݀ݏ െ ∆ߟሺݏ  ሻݏሺ݊݃ݏሻܦ   (39)   ߱ݏ

Where ሶ  ൌ െߠሶ , ሶ  ൌ െߠሶ , ሶ  ൌ െߠሶ and  ሶ  ൌ െߠሶ , substituting (30), (31), (32) and (33) into (39), then we have  
 

ሶܸ ൌ ሻݐሺ݀ݏ  െ ∆ߟሺݏ  ሻݏሺ݊݃ݏሻܦ  ߱ݏ ൌ ሻݐሺ݀ݏ െ ∆ߟሺ|ݏ|  ሻܦ  ߱ݏ  െ|ݏ|ሺߟ∆ሻ   (40)   ߱ݏ
to be  based on the approximation theorem [8], it can be anticipated that the term ߱ݏ should be very small if it not equals to zero in the IT-2 FLS, 
we obtain : 

ሶܸ ൌ െ|ݏ|ሺߟ∆ሻ  0                         (41) 
Since ܿ ൌ ሾܿଵ, … , ܿሺିଶሻ, ܿሺିଵሻ, 1ሿ்in which the ܿ’ݏ are all real and are chosen such that ݄ሺߣሻ ൌ ∑ ܿߣሺିଵሻ,

ୀଵ ܿ ൌ 1 is a Hurwitz polynomial, 
we have lim௧՜ஶ |݁ሺݐሻ| ൌ0, therefore lim௧՜ஶ |ሺ݁ሻݏ| ൌ0, the proof is completed. 
 

5. Simulation Examples 

In this section, we want to apply our proposed adaptive fuzzy controller for two examples. The first example is a regulation problem to let the 
output of a first order nonlinear system to track a constant trajectory. The second example is to let a second order nonlinear system to track a sin-
wave trajectory. 
Example 1. Consider a first order system as follow  
ሶݔ    ൌ ଵିషೣ

ଵାೣ   ሻ    (42)ݐሺݑ
We defined  ݏ ൌ ݁, the desired trajectory ݔௗ ൌ 0 , the initial state ݔሺ0ሻ ൌ 1.5 , step size is 0.02 s and ߟ∆ ൌ 0.2 . Choose four member membership 
over interval [-3,3] as follow 
 
ேଶߤ ൌ ଵ

ଵାୣ୶୮ ሺହሺ௫ାଶሻሻ
ேଶߤ    ,           ൌ .଼

ଵାୣ୶୮ ሺହሺ௫ାଶሻሻ
 

ேଵߤ ൌ exp ሺെሺݔ  1ሻଶሻ   ,  ߤேଵ ൌ 0.8exp ሺെሺݔ  1ሻଶሻ  
ଵߤ ൌ exp ሺെሺݔ െ 1ሻଶሻ    ,  ߤଵ ൌ 0.8exp ሺെሺݔ െ 1ሻଶሻ     (43) 

ଶߤ ൌ ଵ
ଵାୣ୶୮ ሺିହሺ௫ିଶሻሻ

ଶߤ           ,          ൌ .଼
ଵାୣ୶୮ ሺିହሺ௫ିଶሻሻ

 

Where ߤ and ߤare upper bound and lower bound membership functions, respectively. The initial consequent parameters ߠሺ0ሻ and ߠሺ0ሻ are 
chosen uniformly over interval   [-2,2] and [-1.6,2.4] , respectively. Let the learning rate  ߛଵ ൌ ଵߛ ൌ 40 . 
Figs. 3,4 show  the system response , and compare  adaptive sliding mode control (ASMC) based on type-1 and interval type-2 fuzzy sets. Simulation 
results show effectiveness of interval type-2 method against type-1 method. From Fig.3 we can see the steady tracking error of type-2 is less than 
type-1.  

 

 
 
 

Example 2. Consider a second order nonlinear system in the form of 

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

time(Sec)

 

 
type-2
type-1

 Fig.3 system output for type-1 (dot line) and interval type-2 (solid line) Fig.4 the tracking performance  ݁ଶଷ
௧ୀ  of  type-1 (dash line) ݐ݀

and interval type-2 ( solid line) 
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type-1
type-2

ሶଵݔ   ൌ  ଶݔ
ሶଶݔ                                     ൌ െ0.1ݔଶ െ ଵݔ

ଷ  ሻݐሺݑ  ݀ሺݐሻ                    (44) 
  ݀ሺݐሻ ൌ 5 cosሺݐሻ  0.5sin ሺ4ݐሻ 
 
Where ݀ሺݐሻ is an unknown disturbance with known bound D=5.5. We defined  ݏ ൌ ሶ݁  4݁, the desired trajectory is ݔௗ ൌ sin ሺݐሻ. The membership 
functions for system states ݔଵ and ݔଶ are chosen as in (43), then there are 16 rules to approximate the system function݂. The initial state ݔଵሺ0ሻ ൌ 2 , 
ଶሺ0ሻݔ ൌ 2 , step size is 0.02 s and ߟ∆ ൌ 0.2 and the initial consequent parameters ߠሺ0ሻ and ߠሺ0ሻ are chosen uniformly over interval [-2,2] and   
[-1.6,2.4] , respectively. Let the learning rate  ߛଵ ൌ ଵߛ ൌ 20 . Figs .5,6 ,shows the system response to the input and error signal for adaptive sliding 
mode control based on type-1 and interval type-2 fuzzy sets. From the simulation results it can be seen that the ASMC based on interval type-2 has 
better response against the type-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

6. Conclusions 

In this paper an adaptive interval type-2 fuzzy sliding mode controller for a class of nonlinear systems designed. We introduced the type-2 
fuzzy logic system to approximate the unknown nonlinear term whose antecedent and consequent membership functions are type-2 fuzzy sets 
that can handle rule uncertainties. The simulation results show that the controller achieves good control performance and guarantees the system 
stability and has good performance against the type-1 method.  
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Fig.5 System output for type-1, interval type-2 and desired output. Fig.6 the tracking performance  ݁ଶଶ
௧ୀ  of  type-1 (dot ݐ݀

line) and interval type-2 ( solid line) 


