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INTRODUCTION 
Recently, Su et al. 2006 proposed a Bayesian-McMC implementation for the analysis of 
reaction norm models with unknown covariates. Because conditional posterior distributions 
have standard forms, Gibbs sampling is an obvious and simple McMC strategy to use. 
Typically genetic random effects (breeding values for level and slope of each individual in the 
pedigree) are highly correlated in their posterior distributions. As a consequence, single-site 
Gibbs updates can lead to mixing problems. Possible remedies are to reparameterize (Gelfand 
et al., 1995) and/or to sample the highly dimensional parameters jointly (Liu et al., 1994). 
Relatively little work has been done to compare the benefits of alternative McMC strategies 
(but see Gustafson, 2004). The present study is aimed at illustrating the implementation of five 
McMC strategies for fitting the Bayesian reaction norm model to simulated data. The five 
strategies are single-site Gibbs updates (SG), pairwise (within individual) Gibbs updates (PG), 
blocked (all location parameters updated jointly) Gibbs updates (BG), Langevin-Hasting 
proposal for updating genetic random effects (LH), and finally Langevin-Hasting proposal for 
updating the transformed genetic random effects (TLH). 
 
MATERIALS AND METHODS 
The model. The sampling model for the data y (order n) is of the form 
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where µ is the general mean, h is the vector of environmental values or herd-year effects, a and 
b are vectors of genetic levels and slopes and σe

2 is the residual variance, which is assumed to 
have a scaled inverted Chi-square prior distribution. I is the identity matrix, E and Z are known 
incidence matrices and Zh is an incident matrix containing unknown herd-year effects. The two 
vectors of genetic effects are normally distributed a priori; that is  
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where G2×2 is the covariance matrix of genetic level and slope and is assumed to have an 
inverse Wishart distribution, a priori. A is the additive genetic relationship matrix. The prior 
distribution of herd-year effects and variance of herd year effects are assumed to be normal and 
scaled inverted Chi-squared, respectively. In the transformed model (see below), all variance 
components are assumed to have scaled inverted chi-square distributions a priori, and the 
correlation coefficient is a priori uniformly distributed in [-1,1]. 
 
Posterior distribution and brief description of algorithms. The joint posterior distribution 
in SG, PG, BG and LH strategies is written as  
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In the SG strategy, elements of (a, b) are sampled individually; in the PG strategy the genetic 
level a and the slope b of each individual are sampled from their bivariate normal fully 
conditional distribution. In the BG strategy, the vector of location parameters θ = (µ, a, b) is 
sampled in one step (Garcia-Cortes and Sorensen, 1996; Sorensen and Gianola, 2002). In the 
LH and TLH strategies, all elements of the genetic random effects are sampled and updated in 
one pass. In the TLH algorithm, the genetic random vector (a, b) is transformed in its prior 
distribution into independent standard normal variables as follows: 
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where G = LL´ and A = TDT´ (i.e. Henderson, 1976). The joint posterior distribution of the 
parameters after transformation is: 
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The idea here is that the elements of the transformed random variables will be less correlated a 
posteriori and that this would induce better mixing of the chain. 
 
Simulation. Two sets of data were simulated, one with higher proportion of G×E interaction 
variance (18% of the total phenotypic variance) and one with a smaller proportion of G×E 
interaction variance (6% of the total phenotypic variance). The variance of G×E interaction is 
defined as Var(bh) = σb

2 σh
2 (Su et al., 2006). For both sets of data the following values were 

used: µ = 10, σb
2 = 1, ρ = 0.3 and σh

2 = 10. In dataset 1 (higher interaction) it was assumed that 
σa

2 = 6 and σe
2 = 30 whereas in dataset 2 (lower interaction), σa

2 = 24 and σe
2 = 120. The 

phenotypic variances across herd-years of the datasets 1 and 2 were 56 and 164 respectively. 
Two generations were simulated; the first generation, which did not contain records, consisted 
of 1000 sires and 4000 dams. Each sire mated with 4 dams and each dam produced 2 offspring 
leading to 8000 animals with records in generation 2. The number of herds in both sets of data 
was 50 and each sire had progeny with records in 2 or 3 herds. 
 
Evaluation criterion. Suppose that realizations X1, X2 …Xn are simulated from a target 
distribution (Xi is the ith draw of the vector of parameters X of the model) using a particular 
algorithm and that one computes an estimate of the mean of some function g of the parameters  
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Then ( )µµ −ˆn  converges to N(0, σ2) and σ / n  is the Monte Carlo error associated with 
the estimator µ̂ . The asymptotic variance σ2, which is peculiar for a given algorithm, can be 
estimated using methods proposed in (Geyer, 1992). Here we use what Geyer (1992) calls the 
initial positive sequence estimator. Suppose that n samples are generated using an algorithm 
with a cost per sample (CPU-time per sample, for example) equal to m, and variance σ2. For a 
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Monte Carlo error σ / n  equal to k, it can be shown that the total cost is mσ2 / k2. Then for a 
given value of k, the performance of an algorithm can be measured in terms of mσ2. 
 
RESULTS AND DISCUSSION 
Although the product mσ2 is the relevant quantity to use as a measure of the performance of an 
algorithm, we have chosen to present values of m and of σ2 separately. Estimates of the 
asymptotic variance σ2 of chosen parameters for the five algorithms are shown in tables 1 and 
2. Table 3 shows computing costs m in terms of CPU-time. For dataset 1, BG leads to the 
smallest values of σ2 over the whole set of parameters studied. This is followed by PG, SG, 
TLH and LH. The transformation of (a, b) into iid variables in the prior has a very significant 
positive effect in terms of σ2. However, TLH cannot compete with any of the versions of the 
Gibbs sampler. The results are a little different for dataset 2; BG performs well but does not 
lead to the smallest asymptotic variances across the whole range of parameters. When 
computing cost is taken into account, the picture is less transparent. For variance components 
and the correlation coefficient, SG is the strategy that performs best, followed by BG and PG, 
that do not differ by much. However BG outperforms the other strategies in the case of the 
genetic random effects of the model. This holds for both datasets. The two versions of the 
Langevin-Hastings algorithm are outperformed by the Gibbs samplers in terms of the product 
mσ2. 
 
Table 1. Estimates of σ2 (×10-1) of chosen parameters  
 
 Strategy   µ σe

2     σa
2 σb

2    ρ    σh
2   h1   h2 

SG 32.7 58.2 109 0.42 5.79 15.0 33.4 35.2 
PG 26.4 47.9 77.5 0.48 5.02 11.9 15.7 29.5 
BG 15.1 39.8 73.9 0.30 2.86 10.7 15.1 15.5 
LH 1190 1510 2490 19.5 207 545 964 1310 

H
igh 

G
×E 

interaction 

TLH 70.2 138 208 3.21 11.1 64.4 65.6 88.4 
          

SG 8.36 1010 916 4.27 1.66 14.6 11.1 18.0 
PG 8.74 864 928 4.48 1.63 15.1 11.0 16.6 
BG 4.80 1300 985 7.52 0.74 11.1 6.43 11.1 
LH 168 53910 54600 53.1 22.6 604 159 293 

Low
 

G
×E 

interaction 

TLH 29.5 2030 2650 22.3 2.28 47.0 35.6 38.6 
 
Table 2. Estimates of σ2 of three chosen additive genetic values and slopes  
 
 Strategy       as1    ap1       ap2            bs1      bp1      bp2 

SG 38.5 29.5 25.1 6.97 4.94 4.87 
PG 31.8 23.7 19.2 6.53 4.94 4.39 
BG 8.55 14.2 5.42 0.91 1.05 1.05 
LH 8088 6510 6126 1542 2259 1971 

H
igh 

G
×E 

interaction 

TLH 870 887 833 172 173 220 
        

SG 178 126 132 5.60 3.97 3.96 
PG 131 84.9 83.7 4.13 2.72 2.71 
BG 50.6 19.4 23.5 0.61 0.62 0.61 
LH 21018 24900 17100 534 489 552 

Low
 

G
×E 

interaction 

TLH 4591 4987 5568 106 122 126 
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Tabel 3. Computing time (in seconds) required for each iteration on a pc with 3 Ghz cpu 
speed 
 
 SG PG BG LH TLH 
Computing time 0.094 0.186 0.265 0.330 0.306 
 
CONCLUSION 
The results of the present study confirm that it may be extremely hard to provide advice to the 
practitioner concerning the choice of a given McMC strategy holding broadly across a range of 
target distributions. McMC has revolutionized Bayesian analysis but its efficient use requires a 
considerable degree of tuning and experimentation. 
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