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ABSTRACT 

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication 

and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be 

used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or 

individual doctors. Wireless networks are subject to more packet loss and congestion. To alleviate 

congestion, the source transmission rate and node arrival rate should be controlled.  In this paper, we 

propose Learning based Congestion Control Protocol (LCCP) for wireless body sensor networks.  LCCP 

joins active queue management and rate adjustment mechanism to alleviate congestion. The proposed 

system is able to discriminate different physiological signals and assign them different priorities. Thus, it 

would be possible to provide better quality of service for transmitting highly important vital signs. The 

simulation results confirm that the proposed protocol improves system throughput and reduces delay and 

packet dropping. We also evaluate the performance of the AQM mechanism with no rate adjustment 

mechanism to show the advantage of using both AQM and rate adjustment mechanism together.  
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1.  INTRODUCTION 

The use of Wireless Sensor Networks (WSN) in 

healthcare applications is growing fast in the recent years. 

WBSN is a collection of small, low power sensing devices 

wirelessly connected to a resource-rich aggregation device 

[1]. The wireless body sensor network plays an important 

role for healthcare monitoring applications. For these 

applications, it is essential to be able to reliably collect 

physiological readings from humans via body sensor 

networks. Such networks could benefit from Quality of 

Service (QoS) mechanisms that support prioritized data 

streams, especially when the channel is impaired by 

interference or fading [2]. Due to the nature of wireless 

sensor networks, congestion occurrence is an unavoidable 

problem. It not only wastes the scarce energy due to a 

large number of retransmissions and packet drops, but also 

hampers the event detection reliability. In WSN it is 

important to know how to detect congestion and how to 

control it. The congestion results in a long delay in data 

delivery and wasting of energy due to lost or dropped 

packets. Healthcare applications require QoS in terms of 

both packet loss rate and delay. The vital signs should be 

delivered to the emergency center with lower packet loss 

and delay. As a result alleviating congestion is 

indispensable in WBSNs.  

This paper addresses the problem of congestion control 

in wireless body sensor networks. In this paper a joint 

active queue management and rate adjustment mechanism 

based on learning automata is presented. The rest of this 

paper is organized as follows. In section 2, we present a 

review of  the related researches in transport protocols in 

WSN and WBSN.  A brief overview of learning automata 

is presented in section 3. In section 4, the proposed 

protocol is fully derived. Section 5 evaluates the proposed 

mechanism both theoretically and through simulations. We 

conclude the paper in section 6. 
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2.  RELATED WORK 

The study of transport protocol in WSNs has been the 

subject of extensive research. In [3] a new priority based 

rate and congestion control protocol for wireless 

multimedia sensor networks is presented. It consists of two 

major units, namely Congestion Control Unit (CCU) and 

Service Differentiation Unit (SDU). Each sensor node has 

two different priority indexes: traffic class priority and 

Geographical priority. The total priority of a node is 

defined as the product of these two priorities. The CDU 

determines the congestion intensity by calculating the 

difference between the input and the output rate. The rate 

adjustment unit calculates the new rate based on the 

congestion index and source traffic priority. The SDU 

supports different QoS for different traffic classes. The 

RCRT [4] protocol uses the length of retransmission list as 

the indicator of congestion. The presence of too many 

packets in the retransmission list will be interpreted as 

high density congestion. The RCRT protocol uses its rate 

allocation component to assign rates to each flow in 

keeping with a rate allocation policy. RCRT boasts a 

NACK based end-to-end loss recovery scheme. The sink 

detects packet losses and repairs them by requesting end-

to-end retransmission of the packets from source nodes. In 

[5] a novel congestion control protocol for vital signs 

monitoring in wireless biomedical sensor networks is 

proposed. To minimize congestion in each intermediate 

sensor node, a separate queue is allocated to each child 

node to store its input packets. To discriminate between 

different traffic classes in each intermediate node they use 

a multi-threshold mechanism.  Based on the current 

congestion degree and the priority of its child nodes, the 

parent node dynamically computes and allocates the 

transmission rate for each of its children. When the central 

computer which maintains the physiological data for each 

patient detects any anomaly in the received data, it sends a 

special message to the particular patient’s sensor node and 

increases the patient’s priority. LACAS [6] is a Learning 

Automata-Based Congestion Avoidance Scheme for 

healthcare wireless sensor networks.  In LACAS there is 

an automaton in every intermediate node which regulates 

the node's incoming rate for controlling congestion locally 

in that node. For the input to the automaton at time, t=0, 

the automaton has five action which are based on the rate 

with which an intermediate sensor node receives the 

packets from the source node. The learning parameter is 

drop packets. The most optimal action, at any time instant, 

among the set actions in a node, is decided by the number 

of packets dropped. To be precise, the rate of flow of data 

into a node for which there is the least number of packets 

dropped is considered to be the most optimal action. In 

[7], a mobile environment, in which intermediate nodes 

and destination nodes (doctors) are mobile, is considered 

and a modification of LACAS for mobile environment is 

presented. A dynamic quality of service (QoS) approach 

for U-healthcare in Wireless multimedia sensor and actor 

networks is presented in [8]. The authors consider 

multiple QoS constraints to optimize the network 

utilization. Multiple classes of health information are 

considered. Each class has a bandwidth level. In order to 

adjust the transmission rate, when available bandwidth is 

less than the required bandwidth, a node decides which 

packet classes should be dropped. HU and et al in [9] 

proposed an accurate feature extraction method to 

compress the healthcare signals to reduced congestion. 

Compression data can also reduce data rate. For this 

purpose, a method based on multi-scale wavelet analysis is 

presented.  LACCP is proposed in [10]. LACCP is a 

congestion control protocol based on learning automaton 

in WBSNs. LACCP can adjust intermediate node arrival 

rate and source sending rate using learning automata. 

3.  LEARNING AUTOMATA 

This section presents a brief overview of learning 

automata [11]. A learning automaton is a mechanism that 

can be applied to learn the characteristics of a system’s 

environment. An environment is represented by a triple   

 , ,E c  , where  1 2, ,..., r     is defined as all 

actions of the automaton and r is the total number of 

actions.  1 2, ,..., m    denotes the response received by 

the automaton and  1 2, ,..., rc c c c  represents the set of 

penalty probabilities (each ic  corresponds to an action 

iα in set, α ) .the goal here is to find an optimal action 

among a set of actions so that the average penalty received 

by the environment is minimized. Automaton uses a vector  

        1 2, ,... rP n P n P n P n  which represents the probability 

distribution for choosing one of the actions at cycle n. In 

each cycle n, an action i  is selected with probability ip  

and the environment provides a penalty or reward ic , 

which is used by the automaton to update the probabilities 

in  P n . The general scheme for updating action 

probabilities is: 

 

,

,
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where ( )n is normalized in [0,1]. The lower the value of 

( )n  the more favorable the response. ig  and ih  

(i=1,2,...,r) are continuous, nonnegative functions and  

associated with reward and penalty functions  for action 
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iα , respectively. Depending on the functions ig and ih , 

several linear and non-linear reinforcement (updating) 

schemes can be obtained. Linear schemes are the simplest 

and commonly used. In general definition of linear 

reinforcement schemes, reward and penalty functions can 

be obtained as: 

 

( ( )) . ( )         ,                ( ( )) - . ( ) 
-1

 0 , 1                                                                     

k k k k
b

g P n a P n h P n b P n
r

a b

 

 

           

(2) 

 

The parameter " a " is associated with the reward 

response, and the parameter "b" with the penalty response. 

[11]. 

4.  PROPOSED MODEL 

One of the causes of congestion is the lack of 

correspondence between the source packet sending rate 

and the network available capacity. Network congestion 

causes longer queues in intermediate nodes leading to 

greater end to end delays, which results into lower 

network throughput.  

In WBSN sensors are attached to different patients. 

Each sensor is used to monitor a vital sign. Evidently, in 

such life-critical applications involving a large number of 

patients, congestion is extremely undesirable.  

LACAS[6] is the automata base congestion control 

protocol in healthcare WSN. All the intermediate nodes 

have automata stationed in them, which are tasked to 

monitor and control the rate of flow of data through them. 

The base of LACAS is on equating the packet arrival rate 

and the packet service rate.  LACAS tries to make both of 

these rates equal, preventing any kind of queuing at the 

nodes to a large extent. Although LACAS is capable of 

adaptively learning and “intelligently” choosing “better” 

data rates, it has few following drawbacks: 

 LACAS limited the number of rates (actions) associated 

with an automaton to 5. These 5 rates are defined 

randomly and not changed during simulation.  As a 

result the network may have poor performance due to 

the selecting non-proper rates (actions). Non-proper 

rate allocation may result in inefficient channel 

utilization.  

 LACAS does not require the source nodes to be fed 

back by the intermediate nodes to slow down. 

Although this action can reduce the number of 

forwarded messages, it could not improve the 

performance of the network. If the congestion 

condition continues, intermediate node’s queue 

lengths increase suddenly, this leads to an increase in 

the number of drop packets. Therefore, other 

mechanisms such as redirect, path change, source rate 

decrease and etc are required to reduce congestion.  

 Although LACAS has been presented for healthcare 

applications, it does not consider different types of 

vital signs. In LACAS all traffics are the same.  

In this section, we explain the proposed model in detail. 

Figure 1 shows an overall view of the system under study.  

The proposed congestion control and service 

differentiation protocols are placed in all sensor nodes in 

the system which is designed for remote monitoring of 

patients. The proposed model consists of two different 

parts: 1) a learning and priority based AQM protocol and 

2) a learning automata based rate adjustment mechanism. 

For simplicity, we name the proposed model as LCCP 

(Learning based Congestion Control Protocol). Since there 

are different traffic flows in the WBSN network, and each 

of the network traffic has its own requirements, the 

network should behave differently in response to different 

types of the network traffic. In the current study we 

consider 2 different classes, namely Critical and Normal. 

A critical class is dedicated to loss and delay intolerant 

traffics and a normal class belongs to other traffics. A 

learning based AQM protocol is used in the intermediate 

nodes in order to prevent sudden saturation of queue. This 

will in turn result in controlling the delay and congestion. 

The learning automata based transport protocol is located 

in the sink adjusts the source rate so that the network 

throughput is also maximized while the congestion is 

prevented. In the following subsections, we describe these 

two parts in details.   

 
Figure 1: System overview 

 

A.  AQM mechanism in intermediate nodes  

Since the queues in intermediate nodes have a limited 

capacity, if the rate of packet arrival is more than that of 

the packet exit, the queue will be filled up. This, in turn, 

causes increased packet loss and delays. Sudden saturation 

of queues can be avoided by controlling the rate of packets 

entering intermediate nodes. In a healthcare application, 

different patients would have different medical records in 

the system. If a patient is known to have a special need, it 

would be possible to assign more priority to the data 

transmitted from such a patient.  In the proposed AQM 

protocol a packet is entered to the node's queue, based on 

its traffic class (Critical or Normal).  Each node uses 

learning automata in order to adjust the rate of packet 

arrival. Figure 2 shows learning automata structure of 

intermediate nodes. 

Network 
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Figure 2: Structure of intermediate nodes 

 

In each intermediate node, there is a variable 

automaton which is shown by {A, B, P, T} where A is a 

set four actions as follows: 

A = {Arrival_RateIincerase, No_change , 

Smooth_Arrival_Rate_Decrease, , 

Sudden_Arrival_Rate_Decrease }. B includes the set of 

inputs and P is the probability vector of the four automata 

actions. P(n+1) = T[a(n),B(n),P(n)] is the learning 

automata where n is the stage number. Each automaton 

receives feedback from the environment (the network) 

after selecting every action and rates it either positive or 

negative. Based on the action, the transmission rate could 

be increased or decreased. A summary of the four 

automata actions are given below:  

 No change:  The network has reached stability and 

there is no need to change the arrival rate. 

 Arrival_Rate_Increase: Since the network feedback 

indicates small queue size and channel load, the node 

can increase arrival rate in order to improve 

throughput. 

 Smooth_Arrival_Rate_Decrease: Congestion is likely 

to occur or low density congestion has occurred. 

Therefore, packet arrival rate is decreased smoothly 

in order to avoid queue saturation. 

 Sudden_Arrival_Rate_Decrease: Since congestion 

has occurred packet arrival rate is decreased quickly 

in order to avoid packet loss and queue saturation. 

The intermediate nodes’ learning automata adjusts the 

transmission rate based on two following learning 

parameters: 

 

1) Number of packets in the queue  

2) Number of lost packets 

 

These two parameters provide a good assessment of the 

automata performance. Queue length and packet loss rate 

can be used as congestion detection parameters. A high 

arrival rate may cause a smaller free queue space and a 

larger packet loss rate. Let ( )L t  and ( )L t  show the loss 

variation and loss rate in time t. The learning automata 

placed in each node calculates ( )L t  and ( )Q t as: 

( ) ( ) - ( -1),

( ) ( ) - ( -1)

L t L t L t

Q t Q t Q t

 

 
 

 

(3) 

where L  and ( )L t are loss variation and loss amount 

in time t, respectively.  ( 1)L t  is the loss rate at time t-1. 

Q and ( )Q t are queue length variation and queue length 

in time t respectively. ( 1)Q t   is the queue length at time 

t-1. Network status can be determined based on the values 

of L  and Q . Different values of L will be interpreted 

as follows: 

  0L   The amount of packet loss has not changed. 

 0L  : The amount of network loss has decreased. The 

value of L  shows the amount of decrease. 

 0L  : The amount of network loss has increased. The 

value of L  shows the amount of increase. 

Different values of Q  will be interpreted as follows: 

 0Q  : Queue length has not changed in the network. 

 0Q  : Queue length has decreased in the network. The 

value of Q  shows the amount of decrease. 

 ΔQ > 0 : Queue length has increased in the network. The 

value of Q  shows the amount of increase. 

After choosing an action, the automata rewards or 

penalizes it based on the network feedback and according 

to rules given in the Table 1: 
 

TABLE 1 

 THE AUTOMATON REWARD AND PENALIZE RULES PLACED IN THE 

INTERMEDIATE NODES 

Reward 

Rules 
Rule 1: If  ( ) 0 && ( ) 0Q t L t    Then 

the automaton is rewarded 

Rule 2: if  ( ) 0 && ( ) 0Q t L t     Then 

the automaton is rewarded 

Punishment 

Rules 
Rule 3: if  ( ) 0 && ( ) 0Q t L t     Then 

the automaton is penalized 

Rule 4: if 

( ( ) 0 & & ( ) 0 & & 

     _   _ )

Q t L t

arrival rate initial rate

   


 Then 

the automaton is penalized 

 

The automaton is rewarded and penalized according to 

(4) and (5), respectively. 
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( 1) ( ) (1- ( ))

( 1) (1- ) ( )

i i i

j j

P n P n a P n

P n a P n j j i

  

   
 (4) 

( 1) (1- ) ( )

( 1) ( / -1) (1- ) ( )

i i

j j

P n b P n

P n b r a P n j j i

 

    
 (5) 

 

In the above equations, " a " is the reward and "b" is the 

punishment parameter. 

Shorter queue lengths in intermediate nodes lead to a 

shorter packet waiting time for receiving service. 

Although decreasing packet arrival rate decreases queue 

length, it also increases the number of lost packets 

(packets that will be lost because of low arrival rate) and 

decreases throughput. Therefore, the automaton is to strike 

a balance between queue length and network throughput. 

The number of lost packets will be increased if despite the 

changing of channel load, packet arrival rate remains 

constant. Therefore, an increase in packet loss indicates a 

lack of correspondence between arrival rate and the actual 

packet reception rate (channel load). On the other hand, 

longer queue length is also an indicator of a high volume 

of packets arriving at the node which is a sign of 

congestion. Therefore, although the arrival rate should be 

decreased as queue length nears saturation, with the 

decrease of network throughput and queue length the rate 

of arrival increases again. In other words, if the queue 

length decreases but the number of lost packets increases, 

this is an indicator of lowering network throughput and the 

automata will increase the node arrival rate. An increase in 

the number of lost packets causes the automata in the sink 

to decrease source sending rate in order to decrease 

congestion and increase network throughput. Therefore, 

the automata placed in intermediate nodes and the sink 

will decrease congestion concurrently. 

Despite to LACAS the values of " a " and "b" in (2) 

and (3) are not constant and defined based on the 

congestion level. Thus, various congestion levels have 

different effects on the automata. Although at the 

beginning of operation all probabilities iP  are equal, as 

time passes the reward and punishment mechanism 

explained above will change these probabilities. The node 

arrival rate ( tr ) is updated according to the automata 

actions. Each node has two different arrival rates, namely 

cr and nr  for the Critical and Normal traffic, respectively.  

Thus the following relation for the node arrival rate tr  is 

always true:   

t c nr r r   (6) 

Thus if the number of received critical packets 

increases, the number of normal arrival rate is then 

decreased. The Critical and Normal rates are calculated as 

follows: 

;

,

,

t c c n n c n

c c n n
c n

t t

c c t n n t

a w a w a w w

w a w a
p p

a a

r p r r p r

  

 

 

 (7) 

 

where ta , ca and na are the total received packets, total 

received Critical packets and total received Normal 

packets per time, respectively. cw  and nw are the priority 

weights of Critical and Normal packets, respectively.  

A weighted fair queue (WFQ) scheduler is used to 

schedule the incoming packets. To provide a better quality 

of service for high priority traffic classes, the assigned 

weights used in the WFQ scheduler follows this rule:  

Critical Class has higher priority. 

B.   Rate adjustment mechanism placed at the sink  

In order to control and prevent congestion we need to 

adjust the source rate based on the congestion level in the 

network. To do so, a method is presented based on the 

learning automaton in the sink that learns about the 

network congestion status and assigns the proper rate of 

the source(patient) based on their current status(Critical or 

Normal). If this rate is too low, the network throughput 

decreases drastically. On the other hand, when the source 

rate is too high it causes congestion and reduces network 

performance.  Therefore, the suitable source rate would be 

determined based on the network status.  

In this subsection a new congestion control and rate 

adjustment protocol based on automaton is presented. In 

the proposed protocol, variable learning automaton is 

used. This automaton has six actions as follows:  

A = {CINI, CINO, CIND, CONI, CONO} where C and 

N respectively retuned for Critical and Normal sources 

and I, O and D shows rate Increase, rate nO change and 

rate Decrease respectively. Table 2 gives a summary of 

the six automaton actions. 

TABLE 2 

DEFINITION OF AUTOMATON ACTIONS IN THE SINK 

Actions Critical Sources(C) 

Increase 

rate(I) 

Rate  

no-change(O) 

Normal 

Sources(N) 

Increase rate(I)      CINI        CONI 

Rate no-change(O) CINO CONO 

Decrease rate(D) CIND COND 

Rate no-change(O): The network has reached stability and there is 

no need to change the source rate. 

Increase rate(I): Network congestion has been reduced; therefore 

the source rate will be increased. 

Decrease rate(D): Due to congestion and increase in delay and 

packet loss, the source rate should be decreased. 

 

The rules of determining the desirability of the selected 

action are based on the 3 parameters as follows:  

1)Number of lost packets between two successful 
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deliveries 

2)Throughput  

3)Traffic class. 

 

To calculate the packet loss rate and delay variation, 

the learning automaton in the sink node uses the following 

equations: 

( ) ( ) - ( -1),

( ) ( ) - ( -1),

( ) ( ) - ( -1)

( ) ( ) - ( -1)

c c c

n n n

c c c

n n n

Ls t Ls t Ls t

Ls t Ls t Ls t

T t T t T t

T t T t T t

 

 

 

 

 (8) 

where ( )
c

Ls t  and ( )
n

Ls t  show the total loss variation 

of Critical and Normal traffics at time t ,respectively.  

( )cLs t  and ( )nLs t denote the packet loss rate  of Critical 

and Normal traffics at time t, respectively. 

( )
c

T t  and ( )
n

T t  are throughput variation of Critical 

and Normal packets at time t respectively. ( )cT t  and 

( )nT t denote the throughput  of Critical and Normal 

traffics at time t, respectively. 

After choosing an action, the automata rewards or 

penalizes it based on the network feedback as given  in 

Table 3: 

In Table 3, “ a " is the reward and "b" is the 

punishment parameter. “ a ” and “b” are not constant and 

determined based on the congestion level.  Equation (9) 

shows the relation between different values of the reward 

and punishment parameters. 

3 2 1

2 1

0 1

0 1

a a a

b b

   

  
 (9) 

The automaton is rewarded and penalized according to 

(4) and (5), respectively.  

The larger the value of "number of lost packets" the 

higher the congestion will be. In addition, the lower 

throughput of arrived packets at the sink indicates that the 

number of packets in the intermediate nodes’ queue has 

been increased due to the network congestion. Thus, the 

queuing delay and packet loss rate are increased. 

Therefore, throughput is an efficient parameter in 

determining network congestion.  

 

TABLE 3 

RULES OF AUTOMATON REWARD AND PENALIZE RULES PLACED IN 

THE SINK 

REWARD 

PARAME

TER 

REWARD RULES 

1a  Rule 1: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

1a  Rule 2: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

1a  Rule 3: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

2a  Rule 4: if 

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

3a  Rule 5: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

3a  Rule 6: if 

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

3a  Rule 7: if  

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

3a  Rule 8: if 

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

2a  Rule 9: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

3a  Rule 10: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

Punishment 

parameter 

Punishment Rules 

1b  Rule 11: if 

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

1b  Rule 12: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

2b  Rule 13: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

2b  Rule 14: if  

   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      
 

1b  Rule 15: if 

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

1b  Rule 16: if 

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

1b  Rule 17: if 

 
   & &( ) 0  && ( ) 0 ( ) 0  && ( ) 0c n c nLs t Ls t T t T t      

 

By selecting an action, we expect to have a reduction in 

the number of lost packets and delay. If this does not 

realize, the automaton will penalize itself. Therefore, 

using the information obtained from the sink, the source 

finds out the optimal rate. This will lead to a maximum 

throughput and congestion avoidance. The critical patients 

get more bandwidth than the others.  The pseudo-code of 

the LCCP protocol is given in Figure 3. 

 

Procedure LCCP 

 Given: 

 Set of intermediate nodes’ actions :  

1 2{ , ,..., }N N N N
r     

   Set of sinks’ actions : 1 2{ , ,..., }s s s s
m         

 Set of intermediate nodes’ probabilities:  

1 2( ) { ( ), ( ),..., ( )}N N N N
rP n P n P n P n  

 Set of sinks’ probabilities:   

1 2( ) { ( ), ( ),..., ( )}s s s s
mP n P n P n P n  

 random environment: network 
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 number of intermediate nodes’ actions: r 

 number of sinks’ actions: m 

 penalty value : 1{ ,... }xb b  

 reward value : 1{ ,... }xa a  

 number of lost packets between two successful deliveries at 

time t: Ls(t) 

 queue length at time t: Q(t) 

 packet loss in sink at time t: L(t) 

 end to end delay at time t: D(t) 

 Algorithms : 

1. Initialize the probability of selecting an action from the set of 

actions as follows: 

1.1  In intermediate nodes: 

1
1...iP i r

r
   

1.2  In sink node: 

1
1...iP i m

m
   

Repeat 

2. Pick up action ( ) ( ) n ni  according to ( )P n  

3. Calculate the network changes as follows: 

3.1   In intermediate nodes: 

( ) ( ) - ( -1),

( ) ( ) - ( -1)

L t L t L t

Q t Q t Q t

 

 
 

3.2  In sink node: 

( ) ( ) - ( -1),

( ) ( ) - ( -1)

Ls t Ls t Ls t

D t D t D t

 

 
 

4. Compute the environment response (  ) according to 

calculated values in step 3.  

5.  Update the probabilities according  to environment response 

as follows : 

                if the response (  ) is favorite: 

( 1) ( ) 1 ( )

( 1) (1 ) ( )

i i i

j j

P n P n a P n

P n a P n j j i

     

    
 

               else 

( 1) (1 ) ( )

( 1) ( / 1) (1 ) ( )

i i

j j

P n b P n

P n b r a P n j j i

  

      
 

6.  

6.1  In intermediate nodes: 

          Update the node arrival rate according to 

selected action  by the automaton 

6.1  In sink node: 

          Update the source sending rate according to 

selected action  

end loop 

Figure 3: Pseudo-code of LCCP protocol 

 

LCCP has briefly the following characteristics: 

 LCCP is a learning automaton based congestion control 

protocol that intelligently reduces congestion. Unlike 

the LACAS protocol[6], the number of rates in the 

proposed protocol is not limited. Current rate can be 

increased or decreased according to the congestion 

level and patient (source) condition. Therefore, the 

optimum rate can be achieved.  

 The reward and penalty values are variable. These 

values are determined based on the congestion level. 

So, the automata can be learned with a better quality 

and even less consuming time. 

 LCCP can select the appropriate source rate in order to 

achieve a higher throughput and less packet loss. 

 LCCP tries to choose a suitable packet arrival rate in 

the intermediate nodes by prevent the queuing delay 

so that the end to end delay is to be reduced. 

 In LCCP, unlike the LACAS protocol, patients have 

different priority based on their physiological 

conditions. Thus, the proposed protocol is able to 

provide more network bandwidths for transmission of 

data packets related to the vital signs from patients in 

Critical need. 

5.  SIMULATION RESULTS  

To evaluate the performance of the proposed LCCP 

protocol, we simulated a wireless biomedical sensor 

network including 3 different patients. We used OPNET 

simulator [12]. To simulate a real environment, the 

intermediate nodes’ power consumption parameters values 

are choose the same as 802.15.4-compliant RF transceiver 

CC2430 [13]. The Proposed protocol implementation was 

done by using the 802.15.4 protocol of the MAC layer. In 

addition to the proposed protocol, the well known LACAS 

protocol[6] was also implemented. The simulations were 

run using LAF protocol [14] as routing protocol and 

CSMA protocol as MAC layer protocol. The nodes were 

randomly distributed in the environment. We considered 

the following two different modes. 

 Combined mode: In this mode, two learning based 

AQM mechanisms and rate adjacent mechanism are 

used together to reduce congestion. 

 Split mode: to show the advantage of the combining 

AQM and rate adjacent mechanism, we consider no 

adjustment mechanism and evaluate the performance 

of the proposed protocol using only the AQM 

mechanism.  

We also considered the following two different 

scenarios. In the first scenario, we assume all end sensor 

nodes (the patients) are in Normal condition. In the second 

scenario, at the beginning of the simulation all the patients 

are in Normal condition. Patient1 changes its status to 

Critical condition between time t=40 sec. and t=120 sec. 

Since the Critical status means that the patient is in a 

serious condition, patient1 speeds up its sending rate too. 

As a result in second scenario there are some important 

packets that are injected to the network with higher rates 

and should be delivered to the sink with lower packet 

dropping ratios and delays compared to first scenario. 

In order to assess the performance of the proposed 

AQM algorithm, the following parameters were used in 

the simulation. 

 Packet loss ratio = total number of lost packets / total 

number of generated packets.  

 Energy loss ratio= total number of lost packets / total 

number of received packets by the sink. 

 Delivery ratio= total number of received packets by the 

sink/ total number of generated packets. 
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 Throughput = total number of received packets by the 

sink / time  

 Energy usage =  (initial energy – remaining energy) 

/ initial energy 

 Source delivery ratio = number of patient i packets 

received by sink  

A.  Impact Of joint AQM mechanism with rate 

adjustment mechanism (combined mode) 

Congestion control can be applied inside nodes through 

the Active Queue Management mechanism. AQM can 

potentially reduce packet loss rate in the network. AQM 

together with adjusting traffic rate at source nodes can 

provide a better congestion control and a better QoS in 

terms of both packet loss rate and delay can be achieved.  
 

TABLE 4 

 IMPACT OF THE SERVICE DIFFERENTIATION ON THE PERFORMANCE 

OF THE NETWORK IN COMBINED MODE 

Scenario 1 (all patients are in Normal condition) 

 LCCP LACAS 

Total Critical 

Class 

Normal 

Class 

Total 

Average delay 1.9 - 1.9 9 

Packet loss rate 0.02 - 0.02 0.14 

Network energy 

loss ratio 

0.024 - 0.024 0.15 

Network delivery 

ratio 

0.98 - 0.98 0.89 

Scenario 2 

 LCCP LACAS 

Total Critical 

Class 

Normal 

Class 

Total 

Average delay 2.7 1.9 5 12 

Packet loss rate 0.03 0.01 0.03 0.27 

Network energy 

loss ratio 

0.03 0.02 0.035 0.28 

Network delivery 

ratio 

0.97 0.99 0.97 0.83 

 

Table 4 shows the packet loss rate in the network. In 

sever congestion, the increase in channel load and queue 

length leads to a higher probability of loss in the 

intermediate nodes. Therefore, the number of accepted 

packets in the node is decreased. As a result, the delivery 

ratio is decreased. As seen in Table4, the number of 

Critical lost packets is less than that of the other class. A 

comparison of the loss in LCCP and LACAS protocols 

will show that the LCCP protocol has a much lower level 

of loss than the LACAS protocol. This is because the joint 

AQM mechanism and learning automaton-based 

mechanism in the sink which efficiently adjusts the node 

arrival rate and source transmission rate and avoids 

congestion and loss based on the feedback received from 

the network. This indicates the adaptability of the 

proposed AQM mechanism in the intermediate nodes with 

the congestion control protocol in the sink. Although the 

LACAS protocol adjusts the node arrival rate, the results 

shows the LCCP protocol is more successful in choosing 

the optimal rate. Table 4 also shows the network 

performance of both protocol for scenario1 and scenario2.  

It can be seen that the performance of LCCP protocol is 

better than that of the LACAS protocol. Obviously, 

shorter queue lengths will cause shorter packet queuing 

delay. Critical packets are delay intolerant so these 

packets have a higher priority in entering and exiting the 

node, so they reach their destinations faster. Using a 

proper AQM mechanism which estimates the arrival rate 

based on queue length and channel load along with an 

automaton-based mechanism that determines source 

transmission rate will keep the queue length constant at a 

desirable size and avoid its sudden expansion.  
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(b) 

Figure 4: Source delivery in Combined mode a)Scenario 1 

b)Scenario 2  

 

Figure 4 shows the source node delivery ratio in both 

scenario1 and scenario2. As it is shown in this figure, the 

number of lost packets in LCCP is less than that of the 

LACAS protocol which is a result of using joint AQM and 

rate adjustment protocols. Consequently, in LCCP, the 

number of received packets increases. In the scenario2 

mode, a great number of packets enter sensor nodes 

between time t=40 sec. and t=120 sec. Hence, the queues 

are filled quickly and the probability of loss is increased. 

In this mode, the number of lost packets in the 

intermediate nodes becomes higher in comparison with the 

scenario2 mode. Thus, due to increase in packet loss ratio, 

the network experiments decrease in throughput with 

increased offered load.  
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(b) 

Figure 5: Total throughput in Combined mode a)Scenario 1 

b)Scenario 2  

 

Figure 5 plots the network throughput of both LACAS and 

LCCP protocols. Network throughput is the average rate 

of successful packet delivery. Source reduces its rate due 

to packet loss avoidance. Reducing transmission rate 

should not lead to a network throughput reduction. 

We can observe from figure 6 that the proposed 

protocol can assign network bandwidth to each traffic 

class based on its priority. As shown in figure 6(a), for the 

proposed protocol, when all patients are in the Normal 

condition the network throughput is shared equally 

between the patients. In scenario 2 (figure 6(b)) when 

patient1 went to the Critical condition (during time 

interval [40s, 120s]), the system assigned more bandwidth 

to patient1. Therefore, Patient1’s rate is increased. During 

this time interval there is a decrease in bandwidth 

assignment to the other patients. Unlike the proposed 

protocol, the LACAS protocol is not able to detect this 

change in patient condition, and hence could not adjust its 

bandwidth allocation to the patient in need. 
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Figure 6: LCCP Patients’ throughput in Combined mode a) 

Scenario 1 b) Scenario 2  
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Figure 7: Average nodes’ used energy in combined mode 

a)Scenario 1 b)Scenario 2  
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Figure. 7 illustrates the average energy consumption of 

nodes. Collision is a major source of energy waste in a 

MAC protocol for wireless sensor networks. When a 

transmitted packet is corrupted it has to be discarded, and 

be retransmitted. The retransmission increase energy 

consumption. The goal of the proposed protocol is to 

adjust the sending rate and nodes arrival rate at each node 

properly, in order to improve the lifetime of WBSNs and 

alleviation congestion In the LCCP protocol, some 

messages are sent to the source from sink. Though it 

seems that in the proposed protocol, a node may consume 

more energy but since LCCP can control congestion better 

than LACAS, it consumes a lower energy due to a lower 

collision probability than LACAS.  

B.  Impact of AQM mechanism with no rate adjustment 

mechanism (split mode)  

In the first section, we evaluate the impact of joint 

AQM and rate adjustment mechanism on the performance 

of the network.  Thus in the following experiments we 

consider no source rate adjustment mechanism and 

compare it with the LACAS protocol to show the 

advantage of the proposed learning based AQM 

mechanism with the LACAS protocol. Moreover, the 

advantage of using rate adjustment mechanism together 

with AQM management is shown. In the following results 

only scenario 2 is considered. 

 

TABLE 5 

IMPACT OF THE SERVICE DIFFERENTIATION ON THE PERFORMANCE 

OF THE NETWORK IN SPLIT MODE 

Scenario 2  

 LCCP LACAS 

Total Critical 

Class 

Normal 

Class 

Total 

Average delay 5.5 3.2 10 12 

Packet loss rate 0.04 0.022 0.05 0.27 

Network energy 

loss ratio 

0.04 0.023 0.051 0.17 

Network delivery 

ratio 

0.96 0.98 0.95 0.83 

 

Table 5 shows the performance of the network in 

scenario2 with no rate adjustment mechanism. Comparing 

the results of tables 4 and table 5, the advantage of using 

source rate adjustment is obvious. Queuing delay is a 

function of the number of packets in the queue. In a high 

congestion, intermediate node’s queue lengths increase 

suddenly so that the number of drop packets and delay are 

increased. Obviously, larger queue lengths will cause 

larger packet queuing delay. Therefore, other mechanisms 

such as source rate decrease are required to reduce 

congestion. The proposed automata based AQM 

mechanism has a better performance compared to the 

LACAS protocol. This is because of using proper learning 

parameters and appreciate action list.  
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Figure  8: Source delivery in Scenario 2 in Split mode 

 

Comparing figure 8 with figure 4(b), a high packet loss 

rate has been experienced in the Split mode. Although 

patient1 has a lower packet loss ratio due to its Critical 

status, the overall delivery ratio in the “Split mode” is 

higher than that of the “Combined mode”. The rate 

adjustment mechanism controlling the load applied to the 

network so that congestion (packet losses) has a little 

probability to occur.   
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Figure 9: Total throughput in Scenario 2 in Split mode 
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Figure 10: LCCP Patients’ throughput in Scenario 2 in Split 

mode 

 

Packet loss is one of the reasons why data throughput 

is reduced. Rate adjustment mechanism increases the 

transmission rate when the network becomes underutilized 

and decreases the transmission rate when the network 

becomes over utilized. Comparing figure 9 with figure 

5(b), and also comparing figure 10 with figure 6(b), 

although “Split mode” has a little higher throughput than 
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that of the joint mechanism, it experience a higher packet 

loss too. The objective is to achieve a certain throughput 

without incurring a high packet loss.  

6.  CONCLUSION 

In this paper, we presented a congestion control 

protocol based on learning automaton for multi traffic 

healthcare applications in WBSNs. In healthcare 

monitoring systems, some of philological signals are more 

important than the others, and thus the need to be sent as 

quickly as possible to the central monitoring system. The 

proposed congestion control protocol namely, LCCP can 

adjust intermediate node arrival rate and source rate using 

learning automata. The proposed protocol is aimed at 

satisfying all the requirements of different types of traffic. 

To do so, two different traffic classes namely Critical and 

Normal were considered. In order to control congestion, a 

mechanism based on the learning automaton has been 

placed in the sink. At each intermediate node that gathers 

the patient’s physiological data the sensed data are 

grouped into different classes. Using weighted scheduling 

mechanisms, higher priority classes are given better 

quality of service and more bandwidth than the lower 

priority classes. The simulation results indicate that the 

proposed protocol, by adjusting source rate, avoids loss 

caused by congestion. Furthermore, it has been shown that 

LCCP achieves higher performance and lower packet loss 

than LACAS. 
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