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ABSTRACT

In this paper, fuzzy‑based closed‑loop controller is applied to obtain a robust controller for blood glucose regulation 
in type I diabetes mellitus patients. The control technique incorporates expert knowledge about treatment of disease 
by using Mamdani‑type fuzzy logic controller to robustly stabilize the blood glucose concentration in normoglycemic 
level. Controller performance is considered in terms of its ability to reject the multiple meals, on an averaged 
nonlinear patient model. Robustness of the controller is tested over a group of patients with model parameter 
varying considerably from the average model. The controller provides the possibility of more accurate control of 
blood glucose level in the patient in spite of uncertainty in model parameters and measurement noise. The proposed 
controller has showed superiority over other classical control techniques. A comparative study is presented with well‑
known conventional H∞ control technique. Simulation results show the superiority of the proposed scheme in terms 
of reference tracking, disturbance rejection, and measurement noise in comparison with other approaches.
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1. INTRODUCTION

Diabetes mellitus has affected a large number of patients 
worldwide. Type I diabetes is a disease in the glucose-
insulin endocrine metabolic regulatory system, in which 
the body immune system destroys pancreatic beta 
cells, the only cells in the body that make the hormone 
insulin, which regulates blood glucose [1]. In normal 
physiology, the body maintains blood glucose levels 
within a narrow range of 70 to 110 mg/dl. When a 
normal person is subjected to a glucose meal, the glucose 
concentration in plasma increases from basal value and 
so the pancreatic β-cells secrete insulin. The insulin in 
plasma is hereby increased, and the glucose uptake 
in muscles, liver, and tissues is raised by the remote 
insulin in action. This lowers the glucose concentration 
in plasma, implying the β-cells to secrete less insulin, 
from which a feedback effect arises [2]. However, in 
type I diabetic patients whose pancreas does not release 
insulin, blood glucose level remains in much more than 
basal value for long period of time. When glucose level 
remains high for extended periods of time, the patient is 
at risk for neuropathy, nephropathy, blindness, and other 
long-term vascular complications. However, the result 
of the Diabetes Control and Complications Trial (DCCT) 
showed that an intensive insulin therapy can reduce 
the risk of developing complications [3]. Consequently, 

an intensive therapy is encouraged for type I diabetic 
patients prescribed by a continuous subcutaneous insulin 
infusion pump.

Control strategies of diabetes treatment can be categorized 
as open-loop control, semi closed-loop, and closed-loop 
control. Current treatment methods utilize open loop 
control in which physicians inject a predetermined 
dose of insulin subcutaneously based on three or four 
times daily glucose measurements, usually by an 
invasive method of finger prick. This method not only 
is painful and inconvenient but also unreliable because 
of approximation involved in type and the amount of 
insulin delivered. In semi closed-loop control, insulin 
infusion rate adjust according to intermittent blood 
glucose readings. This technique is sub-optimal and 
unable to accomplish the aforementioned normalization 
and also suffered from long sampling time problem of 
missing fast or inter-sample disturbances. However, 
closed-loop control method which acts as an artificial 
pancreas is the most effective way of diabetes treatment 
and could improve the quality of life and life expectancy 
of patients. Ultimately, a true artificial pancreas is a 
closed-loop device that enables a person with diabetes 
to maintain normal glucose levels by providing the right 
amount of insulin at the right time, just as the pancreas 
does in non-diabetic individuals [4].
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In the near term, we expect artificial pancreases to be 
external devices comprising of insulin pumps, already 
widely available; continuous glucose monitors (CGMs), 
which are coming on the market now; and an appropriate 
control algorithm. Figure 1 shows the block diagram of 
a closed-loop control system of diabetic patients. In this 
system, the control algorithm would calculate optimal 
insulin delivery rate designed to keep the patient under 
metabolic control, and a signal would drive a mechanical 
pump to deliver the desired amount of insulin.

Since recent advances have made programmable and 
variable-rate infusion pumps [5], the feedback control 
system mimics the normal function of a pancreas more 
closely. However, creating a device which would 
accurately replace multiple insulin injections per day 
for a long period of life is not an easy task. It should 
be made from biocompatible materials and as small as 
possible. Four major sites for invasive insulin delivery 
are subcutaneous, intramuscular, intravenous, and 
intraperitoneal [6]. The subcutaneous site is the simplest 
and safest in long term but the absorption of insulin from 
subcutaneous tissue is delayed. The intramuscular site is 
usually preferred for people affected by brittle diabetes 
who have a subcutaneous barrier to insulin absorption. 
The intravenous has rapid delivery with negligible dead-
time. The main problem of this approach is presence 
of the intravenous lines which may not be suitable for 
some patients. Intraperitoneal is the most physiological 
insulin delivery, though the major disadvantage is its 
difficult access. The recent advances have brought in non-
invasive modes of insulin delivery such as transdermal 
and oral [6]. These modes are not painful like the invasive 
modes but have problems such as low skin permeability 
in transdermal mode and issues concerned with the oral 
bioavailability for the oral mode.

CGMs are devices that provide continuous “real time” 
readings and data about trends in glucose levels. Blood 
glucose monitoring devices are classified as invasive, 
minimally invasive, and non-invasive. Fully invasive 
systems can be either beside clinical devices or self-
monitoring meters. Such system allows continuous 
monitoring, therefore increasing the amount of clinical 
information. System which puncture the skin are still 
standard techniques for home monitoring reading 
glucose concentration through electrochemical or optical 
disposable strips for finger prick blood samples [7].  
Efforts have been made to reduce the level of invasiveness 
by decreasing the blood sample volume to a few 
microliters, and measuring areas of the body less sensitive 
to pain than fingertips, such as forearm, upper arm, or 
thigh. Minimally invasive measurements sample the 
interstitial fluid with subcutaneous sensors [8]. Even 
in this method, the discomfort causes difficulties to the 
patient’s therapy. Hence, the recent researches has been 

focused on developing the non-invasive glucose control 
devices [9].

In testing the performance of the control algorithm, a 
virtual patient needs to be implemented by using a suitable 
mathematical model. It has been assumed that glucose 
measurements are done subcutaneously, considering that 
accurate sensors are available for such measurements. 
During the last decades, many mathematical models have 
been derived to describe dynamics of glucose-insulin 
regulatory system [10-12]. These models have ranged 
from linear to nonlinear with increasing the levels of 
complexity [13]. However, the primary drawback of these 
mathematical models is identifying a nominal patient 
to implement the model parameters. It is evident that 
physical characteristics vary from person to person and 
so different patients have different responses to the same 
treatment, which in turn can cause parameter variations in 
the system. Thus, designed controller should be robust to 
uncertainty in model parameters and meal disturbances.

With these mathematical models, different algorithms 
based on control theory have been developed to control 
the blood glucose level in people with diabetes. Some 
of these algorithms include proportional-integral-
derivative [14,15] and proportional-derivative [16], 
that need a linearized model for the design, as well as 
H∞ control technique. If linear models are employed 
for the patients, control algorithm like H∞ control can 
guarantee some level of performance, but full robustness 
cannot be achieved via this algorithms. However, as far 
as linear control algorithms are concerned, H∞ control 
offers a promising result in maintaining blood glucose 
regulation in diabetic patients. Some interesting result of 
this method can be found in [17,18]. Also, optimal control 
algorithms are applied for blood glucose regulation 
in semi closed-loop control system [19,20]. However, 
the important point in most of these researches is that 
proposed controller has been designed with regard to 
mathematical model as a crisp model, and uncertainty 
in the model parameters has been not considered. 
Therefore, although these methods would offer good 
responses in simulations, it is likely that they would 
not be successful in practice and failed while applying 
to an actual patient. A fuzzy controller to keep a 
normoglycemic average of blood glucose concentration 
was designed in [21]. Although simulation results were 

Figure	1:	A	closed‑loop	glucose	control	system.
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promising for the nominal patient, uncertainty in patient 
model parameters has not considered.

In the control theory, the fuzzy logic has emerged as 
a powerful tool to employ expert knowledge about 
the systems for implementing an appropriate control 
low [22]. Specially, the ability of expert knowledge in 
the fuzzy logic field has increased a lot of attention in 
the biomedical engineering field [23,24].

The ultimate goal of this research is to develop a consistent, 
robust controller for safe, predictable regulation of blood 
glucose levels in diabetic patients. This work employs fuzzy 
logic control scheme to obtain a robust feedback controller 
to stabilize the blood glucose concentration of type I diabetic 
patients around normal value, where a Mamdani-type of 
fuzzy controller is designed by using expert knowledge 
about diabetes mellitus treatment. Insensitive to typical 
error in commercial device and multiple meal disturbances, 
accuracy, robustness to model parameter variations, and 
appropriate settling time are main features of proposed 
algorithm. The text is organized as follows.

In section 2, the physiological model is introduced 
to show the dynamics of glucose-insulin regulatory 
system of human body. Section 3 includes the design 
of knowledge-based fuzzy logic controller. Simulation 
results are included in section 4. A comparative study 
with open-loop control and classical H∞ algorithm is 
presented in section 5. Finally, the paper is closed with 
the interpretation and discussion of the results.

2.	 MATHEMATICAL	MODEL	OF	GLUCOSE‑
INSULIN REGULATORY SYSTEM

Although complex models are accurate for regimen 
evaluation, they are not suitable for real-time control, 
because they require patient specific data and known 
glucose input. However, simple models capture 
essential dynamic behaviors and provide a more suitable 
foundation for real-time control design.

The goal of this paper is to develop a control technique 
based on a physiological model that capture the essential 
system dynamics, which do not require unavailable data, 
and are applicable to a wider variety of subjects. Simple 
models capture these essential dynamic behaviors, 
providing a more suitable model for real-time control 
design and analysis.

Bergman’s minimal model has been proposed as a 
powerful modeling approach to estimating the insulin 
sensitivity and the glucose effectiveness, which are very 
useful in the study of diabetes, and is the most popularly 
used model in the literature which has the following 
advantages [25,26]:

• to be physiologically based,
• having parameters that can be estimated with a 

reasonable precision,
• parameters with values that are reasonable and have 

physiological interpretation,
• best able to simulate the dynamics of the system with 

the smallest number of identifiable parameters.

The third-order model is comprised of a glucose 
compartment, G; a remote insulin compartment, X; 
and an insulin compartment, I. The remote insulin 
compartment mediates glucose uptake within the 
glucose space to the peripheral and hepatic tissues. The 
model equations are [26,27]:
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Where, t=0 is the glucose injection, + denotes positive 
reflection, and

G(t): The plasma glucose concentration at time t 
(mg/dl), X(t): Is the generalized insulin variable for 
the remote compartment (min-1), I(t): Is the plasma 
insulin concentration at time t (μU/ml), Gb: Is the basal 
preinjection value of plasma glucose (mg/dl), Ib: Is the 
basal preinjection value of plasma insulin (μU/ml), p1: 
Insulin-independent rate constant of glucose rate uptake 
in muscles, liver, and adipose tissue (per min), p2: The 
rate of decrease in tissue glucose uptake ability (per min), 
p3: The insulin-independent increase in glucose uptake 
ability in tissue per unit of insulin concentration above Ib 
(min-2(µU/ml)), n: The first order decay rate for insulin 
in plasma (per min), h: The threshold value of glucose 
above which the pancreatic β-cells release insulin, γ: 
The rate of the pancreatic β-cells’ release of insulin after 
the glucose injection and with glucose concentration 
above h [(μU/ml) min-2 (mg/dl)-1], G0: The theoretical 
glucose concentration in plasma (mg/dl) at time 0, I0: 
The theoretical insulin concentration in plasma (μU/
ml) at time 0.

The term γ[G(t)‑h]+ in the third equation of the model acts as 
an internal regulatory function that formulates the insulin 
secretion in the body, which does not exists in diabetic 
patients. The metabolic portrait of a single individual is 
then determined by the following parameters:

Insulin Sensitivity: S
p
pI =

3

2
 (2)

Glucose Effectiveness: S pG = 1  (3)

Pancreatic responsiveness:
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Where, Imax is the maximum value of insulin in plasma. SI 
is measured in (µU/ml)-1 per minute; SG in min-1 and ϕ1  
in min-1μU/ml per mg/dl. These factors are important 
indicatives of how glucose and insulin act inside that 
person’s body.

The available clinical data indicate that the value of 
p1 parameter for diabetic patient will be significantly 
reduced and it can be approximated as zero [20]. Model 
parameters and constants are adopted from [25,26] 
and are given in Table 1. Note that these values were 
calculated for a person of average weight and vary from 
patient to patient, which makes the design of controller 
a more challenging task.

D(t) shows the meal glucose disturbance and can be 
modeled by decaying exponential function of the 
following form [17]:

D t A Bt B( ) exp( ),= − > 0  (5)

Where,t is in min and D(t) is in (mg/dl/min). u(t) is the 
exogenous insulin infusion rate. The model is simple, 
yet accurately represents the essential dynamics of 
the human glucose-insulin regulatory system. The 
controller uses a feedback loop that employs the blood 
glucose level G, and its derivative (dG/dt), as sensor 
inputs, and the exogenous insulin infusion rate u(t) as 
the control output.

To verify the physiological model, the control input, 
u(t), is set to zero in system (1) and the responses of a 
healthy person and diabetic patient are obtained. As seen 
in Figure 2, a healthy person’s blood glucose value is 
stabilized in normal value in spite of meal disturbance, 
but a patient’s glucose level remains dangerously in 
much more than basal value.

3.	 DESIGN	OF	THE	KNOWLEDGE‑BASED	
CONTROLLER

The block diagram of fuzzy logic controller for blood 
glucose regulation is shown in Figure 3.

The controller is designed with a Mamdani-type fuzzy 
architecture with two input linguistic variables and 
one output variable. The input variables are the plasma 
glucose level G(t) and its rate of change dG/dt, and the 
output variable is the exogenous insulin infusion rate. 
The characteristics of the input and output variables 

are given in Tables 2 and 3, respectively. The types of 
membership functions applied in the design are chosen 
triangular membership functions for simplicity. These 
membership functions were selected according with the 
fuzzy classification of the input and output variables. The 
shapes of input membership functions are presented in 
Figure 4. The output membership function is then shown 
in Figure 5.

By the definition of the input and output membership 
functions, 21 IF-THEN rules were defined. These 
rules were of AND (minimum) type antecedent. The 
output (defuzzification method) is calculated by the 
CENTROID method. The linguistic rules are detailed in  
Table 4.

Table 1: Parameters of the model
Parameter Value
p1 0.0316
p2 0.0107
p3 5.3 × 10‑6

N 0.2640
H 80.2576
Γ 0.0042
Gb 70
Ib 7

Figure	 2:	 Healthy	 person	 and	 diabetic	 patient	 glucose	
regulatory	system.

Figure	3:	Fuzzy	logic	control	block	diagram.
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Table 4: Fuzzy IF‑THEN rules
Glucose Glucose rate of change

Negative Zero Positive
Extreme Extreme Extreme Extreme
Very high Very high Very high Extreme
High High High High
Medium Medium Medium medium
Normal Zero Zero Zero
Low Very low Low Low
Very low Very low Very low Very low

Figure	4:	Input	membership	functions.

Figure	6:	Control	action	surface.

Figure	5:	Output	membership	function.

Table 2: Characteristics of input variables 
Input variables Interval Membership functions 
Glucose level G(t) [40 400] mg/dl Very low Low Normal Medium High Very high Extreme 
Glucose deviation [‑20 20] mg/dl Negative Zero Positive 

Table 3: Output variable characteristics 
Output variables Interval Membership functions 
Insulin infusion u(t) [‑1 8] [µU/mg/min2] Very low Low Normal Medium High Very high Extreme 

Figure 6 shows the output surface of the controller. It is 
obvious that controller inputs change with the output in 
a piecewise linear manner.

4. SIMULATION RESULTS

4.1	 Blood	Glucose	Closed‑loop	Response

In the first set of simulation designed, fuzzy logic 
controller is applied to virtual patient as shown in Figure 3 
and blood glucose patient’s response obtained in presence 
of meal disturbance at time t=0. As seen in Figure 7, 
maximum tracking error in this case is 4.51 mg/dl.

4.2	 Measurement	Noise

In order to consider the effect of measurement noise, a 
white Gaussian noise with amplitude 0.15 is applied to 
the system and response of blood glucose level of diabetic 
patient is obtained. Figure 8 demonstrates that the fuzzy 
logic controller remains close to normoglycemic average 
in presence of error in measurements.

4.3	 Correction	of	Severe	Initial	State

In third set of simulations, the proposed fuzzy logic 
controller is applied to nonlinear patient model and 
severe initial state of type I diabetic patient is corrected. 
Figure 9 shows the simulation result of this section. 
Also, to check the robustness of controller to parameter 
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Figure	 7:	 Closed‑loop	 response	 based	 on	 fuzzy	 controller	
(a)	blood	glucose	(b)	insulin	infusion	rate.

Figure	8:	Closed‑loop	response	in	presence	of	measurement	
noise.

Figure	9:	A	severe	initial	state	correction.

Figure	 10:	 Blood	 glucose	 regulation	 under	 two	 meals,	
at	 time	 t=0	 and	 t=360	minutes.	 (a)	 Plasma	 glucose	
concentration	 with	 initial	 state	 of	 70	 mg/dl	 (b)	 Plasma	
insulin	 concentration	 with	 initial	 state	 of	 7	 MicroU/ml	
(c)	Exogenous	insulin	infusion	rate.

variations in model, three sets of parameters for three 
different patients are used. As it can be seen in Figure 9, 
the controller is able to stabilize the patient blood glucose 
in suitable time period in spite of meal disturbance. 
Initial conditions of patient model variable are given  
in Table 5.

4.4	 Multiple	Meal	Disturbances

In the next set of simulations, multiple meal disturbances 
is applied at time t=0 and t=360 minutes and response 
of controller is obtained using normal initial condition 
for model variables. As shown in Figure 10, proposed 
controller acts successfully in controlling the blood 
glucose level in presence of multiple meal disturbances. 
It is obvious that the transient responses of the different 

patients to the same controller are different, but in all 
cases, the glucose is completely stabilized at the basal 
level with an appropriate settling time. The controller 
performance demonstrates superiority of using fuzzy 
logic control and shows more effective results in terms 
of settling time and uncertainty in the model parameters, 
comparing with the results discussed in [20,21].

Also, Figure 11 demonstrates that closed-loop control 

Table 5: Initial conditions of model variables
Parameter Patient 1 Patient 2 Patient 3
G(0) 200 220 180
I(0) 55 50 60
X(0) 0 0 0
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works slightly better than open-loop control in terms 
of peak reduction and settling time. This Figure also 
includes a plot of the response for a normal person under 
the same conditions.

The values of the model parameters that have been used 
in implementing the controller are given in Table 6.

5. H∞ CONTROL TECHNIQUE

Another approach to controlling blood glucose in 
diabetic patients is H∞ control approach [17,18]. The goal 
of this control methodology is to bind the worst-case 
closed-loop performance of the process under study as 
measured by the induced-2 norm space representation. 
To evaluate the performance of an H∞ controller vs fuzzy 
logic control approaches detailed here, some cases are 
examined. The nominal controller is compared with an 
H∞ controller in terms of settling time, overshoot, and 
sum-square error. As shown in Table 7, fuzzy controller 
with 59.53% in sum squared error and 50.51% reduction 
in settling time acts better than H∞ controller. Therefore 
fuzzy controller is superior in terms of reference tracking.

Also, Figure 12 demonstrates the response of two 
controllers in presence of measurement noise. As it 
can be seen, closed-loop control system based on fuzzy 
controller operates better than H∞ control. Overall, the 
performance of both control algorithms is excellent.

Controller performance degrades when uncertainty is 
present. In order to compare the performance of two 
controllers, model parameters are perturbed from 
average value. Figure 13 shows blood glucose response 
with H∞ controller (right figure) and fuzzy controller 

Figure	11:	Comparison	of	feedback	and	open‑loop	glucose	
regulatory	systems.

Figure	12:	Performance	of	fuzzy	controller	and	H∞	controller	
against	measurement	noise.

Table 6: Parameter values
Normal Patient 1 Patient 2 Patient 3

p1 0.0317 0 0 0

p2 0.0123 0.02 0.0072 0.0142

p3 4.92×10‑6 5.3×10‑6 2.16×10‑6 9.94×10‑6

γ 0.0039 0.005 0.0038 0.0046

n 0.2659 0.3 0.2465 0.2814

h 79.0353 78 77.5783 82.9370

Gb 70 70 70 70

Ib 7 7 7 7

G0 291.2 220 200 180

I0 364.8 50 55 60

Table 7: Comparison of fuzzy controller and H∞ controller
Controller Settling 

time (min)
Overshoot 
(mg/dl)

Sum-squared error

H∞ 217.4 5.29 3.7919×103 3×10
Fuzzy logic 107.6 3.63 1.5346×103 3×10

(left figure). The H∞ controller performance in terms of 
glucose tracking in presence of uncertainty is superior 
in contrast with fuzzy logic algorithm. H∞ controller is 
robust to 90% parameter variations in patient model, 
while fuzzy controller is almost unstable for more than 
70% parameter variations.

6. CONCLUSION

In this work, a closed-loop control system based on 
fuzzy logic control for type I diabetic patients has been 
proposed. In order to incorporate knowledge about 
patient treatment, the controller is designed using a 
Mamdani-type fuzzy scheme. It is important to mention 
that the control algorithm is essence model-free. The 
proposed controller can successfully tolerate dynamic 
uncertainty in patient model while rapidly rejecting meal 
disturbances and tracking the constant glucose reference. 
Robustness was tested over a group of three patients, 
with model parameters varying considerably from the 
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averaged model. As shown in this paper, the fuzzy 
logic framework has the potential to synthesize expert 
knowledge to treat diseases. In addition, it is proved 
that this method has preference over other conventional 
techniques in blood glucose control. The fuzzy logic 
controller has shown to have comparable performance to 
the H∞ control technique in terms of online computation. 
In relation to robustness to uncertainty, both controllers 
show good performance; however, H∞ control is 
more robust than fuzzy controller. The selection of a 
control algorithm is clearly a multi-objective problem 
where fuzzy and H∞ approaches have their individual 
advantages and shortcomings. The suggested scheme is 
expected to enhance the automation of insulin delivery 
in Type I diabetic patients.
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