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Abstract

Rainfall plays a key role in hydrological application and
agriculture in wet climatic regions. Lack of short-run rainfall
forecasting is considered as a significant impediment for
scheduling the root zone moisture preparation. Although
many mathematical techniques are available for use, basic
concerns remain unsolved such as simplicity, high accuracy,
real time use in many stations of a region, and the low
availability of inputs. In this study, a nonlinear modeling
with Gamma Test (GT) has been presented to solve some of
the mentioned problems. Forecasting seasonal and annual
rainfall with the variables of four years lagged rainfall data
and geographical longitude, latitude and elevation has been
performed in the North of Iran during 1956-2005. The results
show that Gamma Test is an effective tool for rainfall
forecasting. The applied nonlinear modeling techniques are
Local Linear Regression (LRR), Dynamic Local Linear
Regression (DLLR), and three separate Artificial Neural
Networks (ANN) using Back Propagation Two Layer,
Broyden-Fletcher-Goldfan-Shanno ~ (BFGS), and  the
Conjugate Gradient training Algorithms. The training and
testing data are partitioned by random selection from the
original data set. Not only does the Gamma Test yield the
best input combination, but also the model’'s good
performance leads to the best achievable result. The study
results demonstrate that developed models based on Local
Linear Regression (LRR) technique have better performance
comparing with ANN models. Also, developed ANN model
based on Back Propagation Two Layer training Algorithm is
preferred because of its better performance compared with
the other ANN models.
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Introduction

Predicting the hydrological variables like rainfall,
flood stream, and runoff flow as stochastic or
probabilistic events, is one of the principal subjects in
water resource planning. The hydrological variables
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are usually measuring across the time. Therefore, time
series analysis of their occurrences in discrete periods
is wurgent for monitoring and simulating the
hydrological behavior of a region. Rainfall Forecasting,
as the most affecting factor on hydrological cycle, is
vital in water resources management, irrigation
scheduling, and agricultural management especially in
humid climates (Mimikou, 1983; Hamlin et al., 1987).
In wet and semi-wet climates, irrigation isn’t common
and farmers use rainfall water for supplying crop
water requirements. When rainfall isn’'t enough the
supplemental irrigation will be applied. Therefore
forecasting, modeling and monitoring of rainfall are of
a high importance in agricultural actions (Geng et al.,
1986; Hoogenboom, 2000; Sentelhas et al., 2001).

Notably, while weather forecasting deals with daily
development of the weather up to several days ahead,
seasonal forecasting is concerned with the average
weather condition on timescale of a month to about a
year ahead. Seasonal forecasts are also known as long-
run weather forecasts or short-run climate forecasts
(Chang et al., 2003). Because seasonal forecasts give
information of several months ahead, they can be used
by government, business, agriculture, and industry to
increase productivity, maximize economic benefits
and minimize losses. Specific examples of the
applications of seasonal forecasts are presented in
ECMWEF (1999). The seasonal forecasts based on slow
variation in the earth’s boundary conditions (i.e. sea
surface temperature, soil wetness, and snow cover)
can influence global atmospheric circulation and
rainfall, too (Fu et al., 2007; Rajeevan, 2007; Gonzalez
et al, 2009; Ousmane et al, 2011). A detailed
discussion of the differences between weather and
seasonal forecasting can be found in WMO (WMO,
2002).

In last decades, researchers developed many empirical
methods in the form of statistical or analogue models
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with a long history in seasonal forecasting (Bell, 1976;
Hui et al., 2000). Statistical methods based on historical
observed data, try to build relationships between
(e.g. sea (SST),
atmospheric parameters) and predictands (e.g. rainfall
and temperature). Gilbert Walker used them at the
first part of 20th century to forecast Indian monsoon
rainfall (Allan et al., 1996). Analogue methods try to
find matches between past cases and the current case,
if the initial conditions are alike; the climate pattern

predictors surface temperature

would evolve in much a similar way (Chang et al.,
2003). Empirical models are easy to run and need
relatively little computational resources. The major
disadvantage is that they try to predict complex
nonlinear atmosphere-ocean processes by linear
relationships. They use Markov model (singular value
Decomposition), optimum climate normals, regression,
and canonical correlation analysis (Reason, 2001;
Gissila et al., 2004; Singhrattna et al., 2005; Frederiksen,
2006; Ousmane et al.,, 2011; Shamsnia et al., 2011).
Among suggested techniques, Markov chain has been
used the most (Caskey, 1963; Gates etal., 1976; Delleur
et al., 1978; Garbutt et al., 1981; Richardson et al., 1984;
Geng et al, 1986; Katz, 1977; Richardson, 2000),
though Markov mostly applied for
considering rainfall occurrence. Moreover, some
researchers present this technique combined with
other  techniques like Gamma, exponential
distributions for finding rainfall value in rainy days
(Woolhiser et al., 1982; Sanchez-Cohen et al.,, 1997;
Aksoy, 2000; Fooladmand, 2006). Also, the Markov
chain is usually used for short timescale such as daily
data (Haan et al.,, 1976; Chin, 1977; Buishand, 1977;
Bruhn et al., 1980; Coe et al. 1982; Mimikou, 1983;
Woolhiser et al., 1986; Geng et al., 1986; Hanson et al.,
1990).

chain is

The other approach to seasonal forecasting which is
more recent is dynamic modeling. Dynamic models
use prognostic physical equations:
general circulation models, two-tiered coupled ocean-
atmosphere climate models (first predict SST and then
climate), fully coupled ocean-atmosphere-land-ice
general circulation models (CGCMs) that predict
ocean and atmosphere together (Ousmane et al., 2011).
Dynamic models try to predict the complex
atmosphere-ocean processes using the nonlinear
equations of mass conservation, motion, and energy.
They need enormous computer resources to run, but

atmospheric

can better simulate the physical processes and
therefore have the potential to produce more accurate
forecasts (chang et al., 2003). The rapidly increasing
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power and falling costs of computers have resulted in
a growing popularity in the use of dynamic models.
The reader is referred for reviewing the global
atmospheric models and their performance to Gates et
al. (1999), for the dynamic models to Dalcher et
al.(1988), Latif et al. (1994), Trenberth (1997), Gadgil et
al. (1998), Anderson et al. (1999), Krishnamurti et al.
(1999), Derome (2001), Gadgil et al. (2005), Krishna
Kumar et al. (2005), Saha et al. (2006), Wang et al. (2005)
and Wang et al. (2009) and for studying the
comparison of forecasting skills of empirical models
versus dynamic models to Shukla et al.(2000), Wang et
al.(2001), Glantz (1998), and Anderson et al. (1999).

In last decades, for simulating and modeling of the
systems behavior that are wusually
multivariate, and noisy with high

nonlinear
unknown,
uncertainty, researchers used the potentiality of other
tools; Such tools, that are applicable for forecasting
rainfall, include mostly Artificial Neural Networks;
ANN, Fuzzy Inference System; FIS, Adaptive
NeuroFuzzy Inference System; ANFIS, and Artificial
Intelligent; AI (French et al.,, 1992; Halff et al.,, 1993;
Ozelkan et al., 1996; Wong et al., 2003; Galambosi et al.,
1999; ASCE, 2000a, b; Sahai et al., 2000; Hadli et al.,
2002; Karamouz et al., 2004; Maria et al., 2005; Suwardi
et al., 2006; Kumarasiri et al., 2006; El-Shafie et al., 2007;
El-Shafie et al., 2008; El-Shafie et al., 2009; Fallah-
Ghalhary et al., 2009; El-Shafie et al., 2010a, b, c; El-
Shafie et al., 2011).

Despite a plenty of studies on prediction and
modeling of seasonal and annual rainfall as empirical
statistic and dynamic models with ANNs and FISs, the
application of nonlinear and nonparametric models
and lagged time series data have not been much
considered. Also, there is still certain question to be
answered like which lagged data are relevant to make
a reasonable model. These concerns can be effectively
tackled by using novel technique called the Gamma
Test (GT). The GT was first reported by Koncar (1997)
and Agalbjorn et al. (1997) and later improved and
discussed in details by many other researchers
(Durrant, 2001; Tsui et al., 2002). The domain of a
possible model is now restricted to the class of smooth
functions bounded first partial derivatives. The basic
idea is distinct from the earlier tries with nonlinear
analysis. Before model construction, the Gamma Test
evaluates and estimates the best mean-squared error
for a given selection of inputs that can be achieved by
any smooth model on unseen data. This technique can
be used to find the best embedding dimension and
data length for modeling to achieve a particular target
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output. A formal mathematical justification of the
method can be found in Evans and Jones (2002).

Accordingly, the objective of the study reported here
is to apply the Gamma Test capability for specification
of the affecting parameters on seasonal and annual
rainfall. Also, it makes use of GT-derived input data
for nonlinear modeling of rainfall with Local Linear
Regression (LLR) and Artificial Neural Networks
(ANNSs). However, evaluating nonlinear models is
carried out in training and validation phases after
model construction.

Method and Materials

The Study Area and Used Data

Mazandaran province is in north of Iran with wet and
very wet climate (based on Domarten method), and it
is selected as the study area. This region is near 23842
square Kms. For carrying out the study, we used
monthly rainfall data that have been collected from
four synoptic stations including Gorgan, Rasht,
Ramsar and Babolsar; some of meteorological and
geographical characteristics of these stations are
presented in TABLE 1. The average rainfall of winter,
spring, summer, autumn seasons and annual is equal
to 434, 255, 126, 198, and 1013 mm, respectively. The
rainfall time series are from 1956 to 2005 with a total of
204 monthly records after removing the missing data.
Meteorological data were gained from weather
database of meteorology Organization of Iran. In this
research, after selecting the 204 records and according
to the principal objective, the initial inputs which
influence outputs were determined. Outputs of
forecasting models were summer, spring and annual
rainfall. The forecasting seasonal rainfall especially in
summer and spring in north of Iran is so important,
because it is in accordance with the growth season of
summer crops. During this period temperature and
crops evapotranspiration is high and farmers need
scheduling for supplying crop water requirements. As,
the farming year in Iran starts from October, rainfall
data are arranged based on it, initially. Therefore, a
time series based on four-year monthly lagged data
has been provided. Moreover, the average seasonal
and annual height of sea level and
geographical longitude and latitude are selected as
inputs. Because, there were many input variables, total

rainfall,

analyses were carried out for two distinctive input sets:

1) the average seasonal and annual lagged rainfall data
were just used as inputs and 2) the average seasonal
and annual lagged rainfall with monthly lagged
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rainfall data were used as inputs. According to the
inputs and outputs, we proposed six models as in

TABLE 2.

TABLE 1 GEOGRAPHICAL AND METEOROLOGICAL
CHARACTERISTICS OF FOUR SYNOPTIC STATIONS

Synoptic Stations
Parameters
Gorgan Baolsar Ramsar Rasht

height (m) 13.3 -20 221 -6.9
longitude 5416 e 5239e 5239e 4936 e
latitude 3651 n 3643 n 3643 n 3715n
mean monthly

. 51.6 725 101.8 1134
rainfall (mm)
mean seasonal | 15 o 217.4 305.5 340.2
rainfall (mm)
meanannual o) 870 1222 1361
rainfall (mm)

TABLE 2. FORECASTING MODELS AND INITIAL INPUTS

Model Geographical |Combination Inputs
Sets No. output data rainfall
First |Modell |Annual |Height, latitude |Seasonal and annual
Rainfall |and longitude |rainfall Lagged for 4
(inputs 1 to 3) year (inputs 4 to 25)
Model II |Spring |Height, latitude [Seasonal and annual
Rainfall |and longitude |rainfall Lagged for 4
(inputs 1 to 3) year (inputs 4 to 25)
Model III [Summer [Height, latitude [Seasonal and annual
Rainfall |and longitude |rainfall Lagged for 4
(inputs 1 to 3) year (inputs 4 to 25)
Second|Model IV |Annual |Height, latitude |Monthly, Seasonal
Rainfall |and longitude |and annual rainfall
(inputs 1to 3)  |Lagged for 4 year
(inputs 4 to 41)
Model V (Spring |Height, latitude |[Monthly, Seasonal
Rainfall |and longitude |and annual rainfall
(inputs 1to 3)  |Lagged for 4 year
(inputs 4 to 41)
Model VI|Summer |Height, latitude [Monthly, Seasonal
Rainfall |and longitude |and annual rainfall
(inputs 1to 3)  |Lagged for 4 year
(inputs 4 to 41)

Time series analysis is complicated because of the fact
that we probably do not know how far back in time
we should look to build our prediction model. This
initial decision is not irrevocable and should be guided
by some degree of commonsense analysis on what is
likely to be the case for the given data set and how
many data are available. But, the first considerations
showed that four-year lagged data yielded proper
models and we accepted this assumption and we did
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not use a longer lagged period. For this assumption
and according to two selected data sets and six models,
we used inputs presented in TABLE 2. These inputs
and outputs normalized before analysis. Also, records
were divided into two phases, randomly; training and
validation phases with 146 and 58 records,

respectively.

Gamma test

The trends of almost climatological variables such as
rainfall are complex and involve nonlinear dynamic
systems that usually are unknown. Therefore, data-
driven modeling is useful for modeling especially
when the inner workings of the systems aren’t
understandable. Gamma test, as one of such analytical
tools, assists to select input data before modeling (i.e.,
its result is independent of the models to be
developed). The Gamma test can model the unseen
data with any continuous nonlinear models using
minimum mean square error (MSE) estimation
(Remesan et al., 2008). Also, one reason the Gamma
test is so useful is that it can immediately tell us
directly from the data whether we have sufficient data
to form a smooth non-linear model and how well that
model is liable to be (Dunn et al.,, 2001). As before
explained, the Gamma test was firstly reported by
Koncar (1997) and Agalbjorn et al. (1977) and later
discussed in details by many researchers (Durrant,
2001; Jones et al., 2002; Evans, 2002). In this research,
WinGamma software was used, which has been
developed for accomplishing GT process. Some
definitions used in software and Gamma test
processes are given as follows (Jones, 2001):

Model: The basic idea is quiet distinct from the earlier
attempts with nonlinear analysis. A smooth data
model is a differentiable function from inputs x = (xu...
xm) containing predicatively useful factors that can
influence the output. It is assumed that the data can be
represented by an unknown model, so:

y=f(xy,.ox,)+r 1)

Where the input vectors xie R™ are vectors confined to
some closed bounded set CeR™ and, without loss of
generality, the corresponding outputs yieR™ are
scalars, and is a random variable that represents noise.
Without loss of generality it can be assumed that the
mean of the distribution is zero and that the variance
of the noise var(r) is bounded. The domain of a
possible model is now restricted to the class of smooth

functions which have bounded first partial derivatives.
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Gamma Test: An algorithm to estimate the variance of
the noise module Var(r) on each of the outputs is
bounded and independent of the input values. For
each choice of inputs found out, as the number of data
points increases, we try to set up the asymptotic
Gamma statistic for each output. Both the inputs and
outputs should be continuous real variables from
some bounded range. The underlying function
presumes smooth and this means bounded first and
second derivatives. If the independence condition is
false, this is not necessarily fatal, and the Gamma test
will return an average noise variance over the whole
input space. This test is used to show how the Gamma
statistics estimation varies as more data is used.
Eventually, if enough data are used, the Gamma
statistic should converge to the true noise variance on
the output for which it has been computed. The
Gamma test calculates the mean-squared p* nearest
neighbour distances &(p) ( 1<p<p .. ) and the
matching y(p). Although, the Gamma test is an
unknown function of, it can directly estimate Var(r)
from data:

1 M
op (p) = M;‘xmi,p] - xi‘ )
and y(p), is:
M 2

1
™ (P)=m;(]/1\1[i,p]—]/i) (15P3Pmax) 3)

Finally, the fitted regression line passes through
Su(P), 7m(P)AL P < pmax) points, like:

y=Ao+T 4)

The vertical intercept of the (5(p), y(p)) regression line
referred to "Gamma Statistic, r" Effectively, T is the
limit y as 6—0, which in theory is Var(r). Also,
gradient (A) is an index of model complexity, as the
lager value of gradient represents the more model
complexity (Jones, 2001).

Near Neighbor: This records the index of the kt
nearest neighbor that has setTABLE boundary in the
Gamma test. When estimating the Gamma statistic,
pmax should be selected proportional to the size of the
data set. In general, in a Gamma test experiment, we
should keep the number of near neighbors less than 30.
Usually 10-20 is a good choice (Jones, 2001). We wish
to find the nearest set of points to a query point with
near Neighbor search.

M-Test: The M-test is a way to assess whether the
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Gamma statistic estimates Var(r) reliably. It is
performed by computing the Gamma statistic for a
given subset of the available data. Whereby at each
successive calculation of the Gamma statistic we
increase by a insignificant extension, until we have
either used all the data or the statistic has converged
enough towards a fixed value.

Model Identification: This is used to select those
inputs which can be best applied to predict a selected
output (some inputs may be noisy or irrelevant). The
most applicable model identification techniques are
Full Embedding, Genetic Algorithm, Hill Climbing,
Sequential Embedding and Increasing Embedding.

Mean Squared Error (MSError): If y (i) (1, 2... M) is a
set of values of an output and y*(i) is a set of
predictions for y(i) then the MSError of the predictions
is:
M
MSError——z y*(i)— y(l) (5)
=1

Standard Error (SE): The standard error of regression
line is calculated as follows:

Pmax
SE(T) = Z(F(z) rf (6)

Where, identifier i is the ith Gamma regression point

value and T is its mean.
The Modeling Procedures

In this study, the Gamma test explored different
combinations of inputs to assess their influence on the
rainfall ~ forecasting. There were meaningful
combinations of inputs; from which, the best one can
be determined by evaluating the Gamma value. This
shows a measure of the best attainable estimation
using any modeling methods for unseen smooth
functions of continuous variables. We divided data
into two parts; training data (70% of data) and testing
data (30% of data), before modeling. When, we choose
the set of inputs for a particular output that has the
minimum asymptotic Gamma statistic - this is known
as model identification. According to the selected
inputs and output in training period, using the
WinGamma software, rainfall forecasting models were
built by: 1) Static local linear regression, 2) Dynamic
local linear regression, and 3) three different types of
The ANNs
Conjugate

network.

neural network training algorithms.

contain two layer back propagation,
gradient descent and BFGS neural
Predictions on new input data for which the outputs
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are unknown can also be made using the best
identified model.

Local linear regression models are fast to make. These
models can also be easily updated as new training
data becomes available, which is not the case with
neural networks. Indeed WinGamma also offers a
dynamic local linear regression option which is exactly
local linear regression with dynamic updating. This
choice is useful for time series prediction and then it is
not used in this research. Neural network models cost
time to compose but in parts of the input space where
data are sparse, their generalization is better than local
linear regression. Neural networks can predict at
blinding speeds compared with local linear regression
based algorithms, so for some applications it is well
worth the time and effort to set up a neural model.

Local linear regression: Local Linear Regression (LLR)
can produce accurate predictions in regions of high
data density in input space, but it is liable to produce
unreliable results for non-linear functions in regions of
low data density.

Dynamic local linear regression: It is basically
identical with LLR with the extra feature that as new
data are seen for the first time they are incorporated
into the model. You can see its effect by starting the
model with little training data and running a test on
many data. As new test data is encountered, dynamic
LLR will make steadily better predictions. This
Method is mainly applicable for the time series
analysis (Jones, 2004).

Two layer back propagation: This technique uses the
standard back propagation algorithm to produce a
two-layer feed forward neural network. With all the
neural network training algorithms, one should note
the choice to recalculate the target MSError. This is
useful if a part of the data for training and testing has
been altered. Two layer back propagation also needs:
a) the initial learning rate with positive value that
controls the first step size in weight adjustment, b)
Momentum constant which is positive, and controls
the extent to which the size and direction of the
current step in weight space is influenced by the size
and direction of the previous step, and «c)
Regularization constant that is positive, and limits the
size of weights.

Conjugate gradient descent: This shows variation and
improvement on two-layer vanilla back propagation,
and it is more effective but wants more memory. The
procedures for set up are similar.
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BFGS neural network: BFGS neural network training
algorithm is a quasi-Newton method performed
iteratively using successively improved estimations to
the inverse Hessian. It provides progressive
adjustment of the neural network weights by gradient
descent (Fletcher, 1987). Probably the fastest and the
most efficient neural network training algorithm
offered by winGamma is a varied version of the
Broyden-Fletcher-Goldfarb-Shanno learning algorithm.
This algorithm wuses second differences and is
sometimes degraded by very noisy data, but generally
it is proper to use this alternative first when trying to
produce a neural model. We know that feed forward
networks with as few as one hidden layer can act as
universal approximation for continuous functions over
a compact set (Cybenko, 1989; Hornik et al., 1989).
Details of such modeling for chaotic systems can be
found in (Jones et al., 2002; Tsui et al., 2002), and
(Evans et al., 2002).

Model Selection Criteria

For evaluation constructed model, we used three
reference statistics containing logical values. These
three reference statistics are Correlation Coefficient (R),
Root Mean Standard Error (RMSE) and Mean Biased
Error (MBE).

If known_y’s and known_y*'s are observations and
predictions respectively and have a different number
of data points, RMSE equation for the standard error is:
— — 2
v W -Dy* )]
P )

1 N
RMSE = | — *—
\/n—z Zb > (-7

the equation for the Pearson product moment
correlation coefficient, R, is:

RMSE:\/ 1 [Z(y*_y*)z_[ZW—y)(y*—y*)]] ©

n-2 > (y-9)?

and the mean biased error, MBE, is:

MBE= -3 (y-') ©)

Results and Discussion

Data Analysis and Model Input Selection Using the
Gamma Test

The GT estimates the minimum mean square error
(MSE) that can be achieved when modeling the unseen
data using any continuous nonlinear models. As
mentioned, discovering effective parameters on
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annual and seasonal rainfall is difficult and time-
consuming. Therefore, much vital information is
derived from rainfall data with different lags using the
Gamma test. The GT provides input data guidance
before a model is developed and greatly reduces
construction time of the model. At first, we loaded all
data to WinGamma and considered rainfall time series
and tried to find the best embedding (i.e. the
embedding with I' closest to zero). But, before
selecting the best embedding we should determine
near neighborhood and the number of inputs. The
measurement data noise and sampling rate are the
basis for finding out the near neighbor in the Gamma
test. If the data are noisy, this adjusTABLE factor will
be larger to get a reliable Gamma value. Also, high
rate of measurement sampling needs many near
neighbors. However, if the measurement sampling
rate is low, too many near neighbors will make the
Gamma value fuzzy. A compromise needs to select a
suiTABLE number of near neighbors, so the Gamma
value is relatively reliable and close to its true value.
We tested different near neighbors and selected a
suiTABLE amount of pmax for different data sets.
Neighbor values earned 16 for Annual rainfall models
I and IV, 13 for spring seasonal rainfall model II, 10 for
spring seasonal rainfall model V and summer seasonal
rainfall model VI and 20 for summer seasonal rainfall
model IIT (TABLE 3).

One of the key questions we need to answer
practically is how much data we need to get an
accurate estimation of Gamma, and subsequently to
build a model which can be predicted with suiTABLE
accuracy. Answering this question, we run the Gamma
test using increasing M and then plot a graph of Gama
values against M values. Typically, what will happen
is that for small M the graph will have much
variability, but as M increases the graph will stabilize
to an asymptote which reflects the true value of the
noise variance. When the graph has stabilized, there is
nothing more to gain by using a larger M sets and it is
maximum number of points shared in nearest
neighbors' selection. Therefore, the quantity of data
was analyzed using M-test and selecting sufficient
data to provide an asymptotic Gamma estimate and
subsequently a reliable model. The results showed that
there was sufficient data around M=198 data points, so
all the data were used for selecting inputs. Moreover,
available data are relatively suiTABLE in forecasting
annual and seasonal rainfall. These are values what
the graph stabilizes such that we can have some
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confidence that our estimate is reasonably accurate
(Fig. 1 and TABLE 3).
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FIG. 1 M-TEST FOUND FOR DATA SETS OF MODEL IV

We have seen that combining Gamma regression line,
scatter plot, and M-test can provide an estimate of
Var(r) as a qualitative degree of confidence. Also, this
combination marks the measure of the best index
MSError attainable for modeling the unseen smooth
functions of continuous variables. Here we can see
interesting variations of the best MSError level with
different input combinations in all models. Since a
single Gamma test is a relatively fast procedure it is
possible to find that selection of inputs which
minimizes the asymptotic value of the Gamma statistic
and it makes the ‘best selection’ of inputs. Thus,
expected inputs were assessed by the Gamma test and
classified into two categories; effectiveness and non-
effectiveness. As far as the inputs are many (41 inputs
for annual rainfall model I), the possible combinations
are too much, (24-1=2199023255551 combinations);
therefore, running Gamma test is impractical for all
the combinations. For resolving it, we used three
shortcut approaches of model identification: Genetic
algorithm, Hill climbing and Sequential Embedding
for selecting the best inputs. The mentioned methods
presented the different combinations of inputs with
the lowest Gamma statistic and MSError level. In this
study, Genetic algorithm was used for the best
selection, more often. We examined possible
embeddings. However, the minimum value of was
observed when we used the lagged different input
data sets, and the best embeddings were presented in
TABLE 3. The gradient (A) is considered as the
indicator of model complexity (a larger value gradient
indicates a model of greater complexity). A low MSE
and low gradient data model can be considered as the
best scenario for modeling. V-Ratio measures the
degree of predictability for given outputs using
available inputs. The smaller value of V-Ratio was
observed when we considered all the inputs. We can
see that the various combinations of lagged rainfall
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data influence outputs and can make a good model
and don’t need to apply all inputs. Notably, the lagged
data through 4 years ago have high effect on output in
all models.

Nonlinear Model Construction and Testing

After selecting the “optimal” inputs with Gamma test,
we built predictive models for six sets of outputs and
performed the wusual analysis. As the model
identification process is massive, we summarized their
implications. Two types of models were constructed 1)
LLR models and 2) ANN models. Nonparametric
producer based on LRR models does not need training
in the same way as neural network models. But, we
randomly divided data set into two parts: training and
validation. For constructing LLR models, the optimal
number of near neighbors was determined by trial and
error, that principally depend on the noise level.

TABLE 3 THE GAMMA TEST AND THE BEST SELECTIVE MASKS

AND THEIR PERFORMANCE CRITERIA FOR FORECASTING

FUNCTION IN DIFFERENT MODELS (INCLUSION AND
EXCLUSION INDICATED BY A1 OR 0 IN THE MASK

RESPECTIVELY)
Modell | Modell | Modell | Modell | Modell | Modell
I II 111 v v VI
Parameters
Annual| Spring |Summer|Annual | Spring [Summer
Selected 1111001{1011011{01010111{1101000{0110111{11101100

imask 1101100{1011101|01110011{0111100|0100001|11011010
1110101{1110111{11101111{0110101|0101111|01110000
1111 0010 0 1101101{1100110|01111101
0011011|1101111|11010011
111111 | 110101 0

Gamma (I') | 5.88e-6 | 0.0627 | 0.0738 |4.14e-7 | 5.21e-5 | 4.09e-6

Gradient (A) | 0.0234 | 0.0451 | 0.0262 | 0.0117 | 0.0385 | 0.0337

IMSError 0.0041 | 0.0142 | 0.0118 | 0.0048 | 0.0155 | 0.0120

Coef. of

1 74 704 1 R 1
Deter. (R2) 0.7488 | 0.7046 0.9998
IV-Ratio 2.35e-5| 0.2512 | 0.2954 | 1.65e-6 | 0.0002 | 1.64e-5
Neighborhood | = ¢ 13 20 16 10 10
values
M values 198 198 198 198 198 198

A proper number of near neighbors was 13 to 15 for
LLR models. The performance of LLR models were
compared to developed models based on neural
network technique. The various general statistics were
applied to select the best models and to compare the
results of the LLR and the neural networks models.
The used statistics were namely correlation, root mean
squared error (RMSE) and MBE. The details of
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modeling statistics are given in TABLE 4 for the
validation phase. In this study, other than the three
different ANN models, we constructed ANN models
trained with various hidden layer neuron number
combinations and selected the best value for the
number of hidden layer and their
performance was compared to other models (TABLE
4).

neurons,

Forecasting rainfall using the LLR model resulted in
the best statistics value. For all presented models, it
was seen that the LLR model had a better performance
compared to BFGS, conjugate gradient and two layer
back propagation ANN models in the training and
validation. From TABLE 4, one can find that models
presented based on ANN is struggling to produce
high quality performance. In general, for ANN models,
the results of the study also indicate that the predictive
capability of constructed model based on two layer
back propagation neural network is better compared
to BFGS algorithm and conjugate gradient networks
for all the mentioned statistics. The comparative
analysis of these models using mentioned basic
statistic has been carried out for the training and
validation and the results of validation period are
shown in TABLE 4.

Moreover, it was seen that the extracted results for
forecasting annual and spring rainfall have superior
performance  when the
combinations of monthly and seasonal data to only
seasonal rainfall data used. But this is not validated for
modeling summer rainfall. Also, the best modeling
results by Gamm test obtained for forecasting annual
especially when
combinations of monthly and seasonal rainfall, namely
Model IV.

input variables are

rainfall, input variables are

We graphically presented the more complete results of
Local Linear Regression models in FIGURES 2 and 3.
FIGURE 2 shows scatter plots of computed and
observed annual (Model I and Model 1IV), spring
(Model II and V) and summer (Model III and VI)
rainfall during training and validation phases.
Moreover, FIGURE 3 is a close up view of the actual
annual rainfall and forecasting results of Local Linear
Regression model comparison on a subset 100 on the
test data constructed. The applied inputs include
height, latitude and longitude and monthly, seasonal
and annual rainfall for 4 years ago. We clearly found
out the LRR models, which use different combinations
of inputs, works well in forecasting.
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TABLE 4. COMPARISON OF THE GENERAL STATISTICS VALUES OF
VALIDATION FOR THE SELECTED MASKS BASED ON TABLE 3

9 Neural network
]
» gg_ 5 Local- Conjugate Twl:) l;la(yer
@ |® |73 [Statistics| linear BFGS gradient ac
® 2 : neural ropagati
g 5 regression neural |PrOP3&
TR network on neural
= networks
= network
§ ? R 0.844 0.783 0.655 0.819
2|2 | RMSE 104.18 120.05 179.35 111.56
o
~|17| MBE 11.39 -17.94 25.33 9.74
R 0.656 0.308 0.190 0.399
|5 12
g % RMSE 38.72 61.93 61.45 42.64
- : 5
= MBE -2.84 -11.64 -7.47 -5.67
Z ® R 0.653 0.626 0.594 0.549
9)
S|5| RMSE | 6586 | 7018 | 6470 | 6965
=1lc]
=|"| MBE 13.65 1.76 9.77 12.73
R 0.9350 0.821 0.848 0.853
sl
& g RMSE 91.05 160.49 152.41 146.59
—
<|™| MBE 25.43 36.25 10.93 21.42
o g o R 0.675 0.169 0.133 0.317
§ 8|2 | RMSE | 3578 76.02 96.35 72.03
A=,
MBE 2.18 2.22 10.18 -2.98
z % R 0.554 0.279 0.381 0.454
19)
& g RMSE 75.30 141.79 120.31 114.38
o
=|R MBE -11.92 25.30 18.46 10.11
(a) 2000 -
1800 A
% 1600 -
E 1400 A
g 1200 -+
E 1000 A
E 800 -~
T 600 -
& 400 -
200 -+
0 T T T 1
0 500 1000 1500 2000
Acual Rainfall
Modell
400
(b) 350 - y=0.973x
— %
T 300 - R?=0.861
‘® 250 -
o
T 200 4
5 150 -
]
¥ 100 A
o
50 -
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23




www.seipub.org/ijepr

(c) 700 -
600 -
500 -
400 -

300 -

Predicted Rainfall

200 A

100 A

-100 100 300 500 700

Acual Rainfall
Model 1l

(d) 2000 -
1800 -
1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 -

0 —————————

Predicted Rainfall

0 200 400 600 800 10001200 14001600 18002000

Acual Rainfall
Model IV

(e) 400 -
350 A
= 300 -
ol
£ 250 4
T
-3
3z 200 A
s}
5 150 A
s
a8 100 -
50 A
0 )
0] 100 200 300 400
Acual Rainfall
Model V
® 700 -
600 A
F 500 -
=
e 400 -
3
£ 300 -
=2
2 200 -
o
100
0 T T "
0 200 400 600 800
Acual Rainfall
Model VI

FIG.2 A COMPARISON OF THE ACTUAL RAINFALL DATA
AND PREDICTION OUTPUT BASED ON LRR MODEL (A TO F)
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Conclusion

Rainfall forecasting plays an important role in water
resource, agriculture and environment management.
We've investigated the prediction models that are
simple, applicable, and accurate and also need
reachable data. Therefore, constructing models based
on only lagged monthly rainfall and its timely
combination is mentioned and different models are

created and tested.

In application areas, such as meteorological modeling,

where the underlying processes have high uncertainty
and caveats and are conjectural, applying Gamma test
to the selection of relevant variables in the
construction of nonlinear models is a useful technique.
In this study, we have illustrated how Gamma test is
in combination with nonlinear techniques engaged in
the construction of non-parametric smooth models for
forecasting rainfall. This study deals with an approach
to predict rainfall in north of Iran just using lagged
monthly rainfall data sets for four years ago and
geographical longitude, latitude and elevation in every
station. The nature of selecting input variables were
analyzed by considering the effects of different input
combinations on general statistics related to Gamma
test. The quantity of data needed to construct proper
models for forecasting annual, spring and summer
rainfall was determined using M-test in WinGamma,
which has identified to 198.

Also, we have demonstrated the use of nonlinear
modeling methods such as Local-linear regression
(LLR) and ANNs with BFGS neural network,
Conjugate gradient neural networks and Two layer
back propagation neural network training algorithms

in modeling annual, spring and summer rainfall.

LLR models reasonably performed well in comparison
with ANNSs training algorithms in validation.
Moreover, two layer back propagation neural network
training algorithms is to be preferred because of its
better performance compared to the other ANN Model.
In the meantime, the LRR technique was able to
provide more reliable estimations compared to ANN
models. It would be interesting to explore this to
confirm whether similar results could be repeated in

other regions in future.
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