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Abstract In this paper, we first present dynamic equation
of n-link snake robot using Lagrange’s method in a simplified
matrix form and verify them experimentally. Next, we intro-
duce a new locomotion mode called spinning gait. Central
pattern generators (CPGs) are used for online gait genera-
tion. To realize spinning gait, genetic algorithm is used to find
optimal CPG network parameters. We illustrate both theoret-
ically, using derived robot dynamics and experimentally that
the CPG-based online gait generation method allows con-
tinuous and rather smooth transitions between gaits. Lastly,
we present an application where the snake robot is guided
from an initial to final position while avoiding obstacles by
changing CPG parameters.

Keywords Snake robot · Central pattern generator ·
Serpentine gait · Dynamic · Genetic algorithm

1 Introduction

Snake robots are serially connected, multilink-articulated
mechanisms, which propel themselves by body shape undu-
lations. One of the first known biologically inspired snake
robots was built by Hirose and co-workers at the end of 1972
[1]. His robot used wheels to create a no side-slip condition
for each of the links. A survey of snake robot designs was
presented by Hophkins [2].

Snake robots can move with different modes of locomo-
tion (gaits). Serpentine, concertina and side-winding are the
three common snake-like gaits in snake robots [3]. There are

S. Hasanzadeh · A. Akbarzadeh (B)
Center of Excellence on Soft Computing and Intelligent
Information Processing, SCIIP,
Mechanical Engineering Department,
Ferdowsi University of Mashhad, Mashhad, Iran
e-mail: ali_akbarzadeh_t@yahoo.com

also non- snake-like gaits which do not exist in nature but are
useful in snake robot motion. Flapping gait [4] is an example
of non-snake-like gaits. More recently, a novel gait, called
FHS, that keeps the head link of the robot towards its target,
was introduced by the authors [5].

Modeling and control of snake robot have been addressed
by many researchers. A comprehensive survey on snake robot
modeling and locomotion has been performed by [6]. In
general, control methods may be classified into two broad
classes. Sine wave trajectory tracking [7] and online trajec-
tory generation [8]. Recent studies use central pattern genera-
tors, CPGs, to generate desired trajectories which can be used
by an online controller. CPGs are neural circuits found in both
invertebrate and vertebrate animals that can produce rhyth-
mic patterns of neural activity without receiving rhythmic
inputs. CPGs present several interesting properties including
distributed control, the ability to deal with redundancies, fast
control loops, and allowing modulation of locomotion by
simple control signals. These properties, when transferred
to mathematical models, make CPGs interesting building
blocks for locomotion controllers in robots. There are many
researches who have realized control of animal-like robots
based on CPG model. A good review of application of CPGs
in locomotion control of robots can be found in [9].

In the area of snake robots, Crespi et al. [10] proposed
CPG-based controller for amphibious snake-like robot and
constructed an experimental model. Ma et al. [11,12] pro-
posed different control architectures for serpentine locomo-
tion based on CPG network and simulated them considering
mechanical dynamics of a snake robot. More recently, Ryu
et al. [13] proposed a CPG-based control architecture which
was able to adapt the motion of the robot to varying
coefficients of body-ground friction. In all of these works,
CPGs were used to change the parameter of a specific gait.
In the present paper, we aim to study the capability of CPGs in
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producing smooth transitions between different gaits and
apply it to multimodal locomotion of snake robot. In partic-
ular, we try to contribute to answer the following questions:
(1) how different gaits can be generated for different pur-
poses, and (2) how a smooth transition between different
gaits can be achieved.

The goal of this research is to contribute to generate loco-
motion that more closely imitates real snakes in nature by
allowing the robot the choice of a new gait as well as using
CPGs as its motion generator which also used by real snakes.
To do this, in Sect. 2, we drive the dynamic equation for an
n-link snake robot using coulomb friction model. This model
will enable us to run our simulation and perform gait para-
meter optimization. To improve locomotion, we introduce a
new gait called spinning gait in Sect. 3. This gait allows the
robot to turn with a minimum radius. This feature enables
snake robot to improve its maneuverability in environment
full of obstacles. A quick and smooth transition between gaits
is a difficult problem that is merely addressed in literature. In
Sect. 4 and 6, we demonstrate both theoretically and exper-
imentally that CPGs may be used to overcome this problem
by allowing a continuous and a smooth transition between
serpentine and spinning gaits.

2 Snake robot model

A planar snake robot consisting of n links connected through
n−1 joints is depicted in Fig. 1a. Each link is rigid with uni-
formly distributed mass and is equipped with a torque actu-
ator (motor). Moment of inertia of the motors is neglected.
Each link is of mass mi , length li and moment of inertia
Ji . Let (xci , yci ) and θi define the center of gravity and the
angle between the link and the x axis, respectively. Values
of di represent location of mass center of i th link. (xb, yb) is
coordinate of the end of tail link.

Free-body diagram of the robot is depicted in Fig. 1b,
where Ti are the joint torques from the actuators, and fni

and fti are the force due to the friction between the links
and the horizontal surface. As illustrated in Fig. 1b, ϕi , (i =
1, . . ., n − 1) are relative angles of two adjacent links.

To generate significantly different friction coefficients in
normal and tangential directions, a wheel or a blade may be
attached to each link. We consider a simple coulomb friction
model to simulate friction between each link and ground:

fei = −mi gμesign(ve
i ), (1)

where e = t, n (t and n represents tangential and normal
directions). g is the gravity constant. μt and μn are nor-
mal and tangential coulomb friction coefficients. Subscript
i corresponds to the i th link, fti and fni are friction forces
in tangential and normal directions, respectively. vi t and vin

are velocities of the center of mass of i th link. The signum

function is denoted by sign(x). The friction forces along the
x and y axis can easily be obtained by coordinate transfor-
mation from t-n to x-y. According to Fig. 1a, the coordinates
of the mass center of i th link are

yci = yb +
i−1∑

j=1

l j sin θ j + di sin θi (2)

xci = xb +
i−1∑

j=1

l j cos θ j + di cos θi (3)

Velocities of mass center of each link are obtained by taking
derivation from Eqs. 2 and 3. Thus, the kinetic energy of the
n-link snake robot can be defined as

K =
n∑

i=1

[
1

2
Ii θ̇

2
i + 1

2
mi (ẋ2

c + ẏ2
c )

]
(4)

Substituting derivatives of Eqs. 2 and 3 into Eq. 4, and sum-
marizing will result in

K =
n∑

i=1

[
1

2
(Ii + mi d

2
i )θ̇2

i + 1

2
mi (ẋ2

b + ẏ2
b )

]

+
n∑

i=1

⎧
⎨

⎩mi di θ̇i

i−1∑

j=1

[
l j θ̇ j cos(θi − θ j )

]
⎫
⎬

⎭

+
n∑

i=1

[
mi di θ̇i (ẏb cos θi − ẋb sin θi )

]

+
n∑

i=1

⎧
⎨

⎩mi

i−1∑

j=1

[
l j θ̇ j (ẏb cos θ j − ẋb sin θ j )

]
⎫
⎬

⎭

+
n∑

i=1

⎧
⎪⎨

⎪⎩
1

2
mi

⎡

⎣
i−1∑

j=1

(l j sin θ j θ̇ j )

⎤

⎦
2

+1

2
mi

⎡

⎣
i−1∑

j=1

(l j cos θ j θ̇ j )

⎤

⎦
2
⎫
⎪⎬

⎪⎭
(5)

The instantaneous system configuration will be known upon
having (xb, yb) and θi (1 ≤ i ≤ n). Therefore, the generalized
coordinates are selected as follows

q j = [θ1, θ2, . . . , θn, xb, yb] (6)

As there is no variation in potential energy, the equations of
motion can be written as

d

dt

(
∂K

∂q̇i

)
+ ∂K

∂qi
−Qqi

= 0 (i = 1, 2, . . . n + 2) (7)

Non-conservative forces that do work when generalized
coordinates are given virtual displacements are actuators
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Fig. 1 n-link snake robot: geometrical parameters (a), free body diagram (b)

torques (Ti i = 1, 2, . . ., n − 1) and friction forces ( fxi and
fyi i = 1, 2, . . ., n). Taking derivative from Eqs. 2 and 3,
generalized forces,Qqi , can be obtained as

Qθ j = d j ( fyi cos θ j − fxi sin θ j )

+ l j

⎡

⎣cos θ j

n∑

i= j+1

( fyi )− sin θ j

n∑

i= j+1

( fxi )

⎤

⎦

+ Tj−1 − Tj (8)

Qxb =
n∑

i=1

( fxi ) (9)

Qyb =
n∑

i=1

( fyi ), (10)

where Qθ j are generalized forces related to generalized coor-
dinate θ j .Qxb and Qyb are generalized forces related to xb

and yb, respectively. By substituting Eqs. 5, 8, 9 and 10 into
Lagrangian formulation, Eq. 7, the dynamic model for the
n-link snake robot can be derived as

BT = M(θ)q̈ + H(θ, θ̇ ) + F(θ) (11)

where M(θ) is the (n + 2) × (n + 2) positive definite and
symmetric inertia matrix, H(θ, θ̇ ) is the (n + 2)×1 matrix
related to centrifugal and Coriolis terms with Hi as its i th
member, F(θ) is an (n + 2)×1 matrix related to friction
forces, B is an (n+2)×(n−1) constant matrix.T is (n−1)×1
matrix of input torques and q, q̇, q̈ are (n + 2) × 1 matrix
of generalized coordinates and their derivatives. θ, θ̇ , θ̈ are
n×1 matrix of links absolute angles and their derivatives.
The details of the terms M, H, B and F used in Eq. 11 are
presented in Appendix. The final dynamic equation, Eq. 11,
has a simplified matrix format and can easily be expanded
for any number of links.

2.1 Torque to motion

The forward dynamic problem deals with finding motion of
the snake robot, while input joint torques are given. To solve
the forward dynamic problem, we simply solve Eq. 11 using
Euler method. Equation 11 is an (n + 2)-dimensional linear
equation of (n + 2) unknown variables (q̈ ∈ Rn+2). By solv-
ing this equation, we can obtain angular acceleration for all
links (θ̈ ∈ Rn) as well as the acceleration of a point at the end
of tail link (ẍb, ÿb). By integration, links angular velocities
(θ̇ ), joint angles (θ), position (xb, yb) and velocity (ẋb, ẏb) of
a point at the end of tail link can all be obtained. Therefore,
snake robot motion is derived for when input torques for all
joints are supplied.

2.2 Shape to motion

In this section, we attempt to drive at the motion of the snake
robot given the relative angles of the adjacent links. Another
words, given instantaneous relative angles and their deriva-
tives (ϕ, ϕ̇, ϕ̈), Eq. 11 can be solved to find applied torques
and coordinates of the tail of the robot which will determine
the motion of the robot. Relation between absolute value and
relative value of joint angles is:

ϕi = θi+1 − θi , (12)

where i = 1, 2, . . ., n − 1. We can rewrite Eq. 12 in matrix
form as,

θ = Eϕ + eθ1, (13)

where ϕ is an (n-1)-dimensional vector of [ϕ1, ϕ2, . . ., ϕn−1] ,
θ1 is the absolute angle of the tail link, Ei j and e are defined as,

Ei j =
{

1 i > j
0 others

e = [1, 1, . . . 1]T (14)
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To obtain motion based on given shape, we first decouple the
dynamic Eq. 11 into two parts

p M(θ)θ̈ + p N (θ)r̈b + p H(θ, θ̇ ) + p f (θ) = DT (15)
q M + (θ)θ̈ +q Nr̈b +q H(θ, θ̇ ) + q f (θ) = 0, (16)

where

M =
[ p Mn×n

p Nn×2
q M2×n

q N2×2

]
, H =

[ p Hn×1
q H2×1

]
, rb =

[
xb

yb

]

(17)

Matrix p f , q f and D are defined in Appendix. By substitut-
ing second derivative of Eq. 13 into Eq. 16, we arrive at,

r̈b = −q N−1
(q M θ̈ + q H θ̇ + q f )

= −q N−1q M(E φ̈ + eθ̈1) − q N−1
(q H θ̇ + q f ) (18)

Substituting Eq. 18 into Eq. 15, we obtain

DT +(p N q N−1q M− p M)eθ̈1 = (p M− p N q N−1q M)E φ̈

−p N q N−1
(q H θ̇+q f )

+p H θ̇ + p f (19)

Equation 19 is an n-dimensional linear equation represent-
ing the dynamic of the n-link snake robot. In the direct
dynamic formulation, inputs are the n-dimensional vector of
joint angles [ϕ1, ϕ2, . . ., ϕn−1] and the outputs are n unknown
variables θ̈1 ∈ R and torque, T ∈ Rn−1. Therefore, by solv-
ing Eq. 19, we can obtain the joint torques, Ti , and tail link
rotation acceleration, θ̈1. Substituting these values back into
Eq. 18 will obtain acceleration of the tail end, r̈b. The tail
link joint angle (θ1) and its angular velocity (θ̇1) as well as
velocity of the tail end (ṙb) and its moving distance (rb) are
all obtained through integration. The complete parameters
defining robot motion are derived for the case when changes
in body shape, ϕ, are known. Therefore, upon specifying
changes in body shape, we can drive at necessary joint torques
to generate the desired robot motion. Our use of the derived
dynamic equation in this paper is twofold: (1) as simulation
tool for evaluation of the proposed control schemes (2) for
calculation of fitness function of GA in Sect. 3.2.

3 CPG control locomotion

The CPGs found in vertebrates are composed of neural oscil-
lators. Real neurons have very complicated behaviors and,
therefore, it is difficult to build a mathematical model to
closely simulate it. CPG-based approaches for locomotion
control often use systems of coupled nonlinear oscillators
for generating the traveling waves necessary for locomotion
([10,14,15]). These approaches are implemented as differen-
tial equations integrated over time with the goal to produce
the traveling wave as a limit cycle. The system is then robust

Fig. 2 CPG network for snake robot

against transient perturbation as it asymptotically returns to
limit cycle. In this article, we use CPGs model which is origi-
nally proposed by Crespi et al. [15] to generate trajectories of
relative joint angles for snake robot. Limit cycle of the CPGs
has a closed form solution with explicit frequency, amplitude
and wavelength. The CPGs is composed of double chain of
oscillators with nearest neighbor coupling (Fig. 2).

The CPG is implemented as the following system of 2N
coupled oscillators [15]:

θ̇i = 2πνi +
∑

j

wi j sin(θ j − θi − φi j )

r̈i = ai

(ai

4
(Ri − ri ) − ṙi

)

xi = ri (1 + cos(θi )), (20)

where the state variables θi and ri are phase and amplitude of
the i th oscillator, parameters νi and Ri determine the intrin-
sic frequency and amplitude, and ai is a positive constant.
Weights wi j and phase biases φi j are used to define coupling
between oscillators. Variable xi is the rhythmic and positive
output signal extracted out of oscillator i . The values of joint
angles, ϕi , are determined by taking the difference between
signals from the top and bottom oscillators.

ϕi = xi − xi+N (21)

To obtain limit cycle of CPG, we need to select values for
parameters defined in Eq. 20. The phase biases, ∅i j , between
paired oscillators which are working on each joint are set
equal to π . Phase biases between neighbor oscillators i and
i+1 are set to + �∅i and those between i+1 and i are set to -
�∅i . The frequency parameters are equal for all oscillators,
i.e. νi = ν. We also name all amplitude parameters on top
side of the CPGs to be Ri = Ti for i = (1, . . ., N ) and Ri =
Bi for the bottom side, i = (N + 1, . . ., 2N ). It was proved
that for the case of coupling two oscillators with dynamic
Eq. 20, CPGs converge to sinusoids with a fixed phase dif-
ference [15]. Therefore, in the case of multiple coupled oscil-
lators with different values of phase bias, �∅i , CPGs asymp-
totically converge to a limit cycle with phase difference that
is equal to summation of phase biases between each coupled
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Table 1 CPG settings for serpentine gait

Parameter names Symbol Value

Top side amplitude parameters Ti T

Bottom side amplitude parameters Bi B

Connection weights wi j 4

Positive constant ai 10

Phase bias, between paired oscillators φi j π

Phase bias, between descending neighbor oscillators φi j −�φ

Phase bias, between ascending neighbor oscillators φi j +�φ

Fig. 3 Oscillatory angles ϕ1(t) and ϕ4(t) for serpentine gait (T =
0.25, B = 0.25 and ν = 0.5 are doubled at t = 10 s)

CPGs. The limit cycle is then defined by the following closed
form solution for the i th actuated joint:

ϕi (t) = Ti−Bi +(Ti +Bi ) cos

⎛

⎝2πνt+
i∑

j=1

�φ j +φ0

⎞

⎠,

(22)

where ∅0 depends on the initial conditions. In this equation,
the values of Ti − Bi and Ti + Bi determine offset and ampli-
tude of the i th joint angle, respectively. For the rest of this
paper, we name CPGs parameters along with coupling coef-
ficients, CPG network parameters.

3.1 Realization of serpentine gait

Serpentine movement shown in Fig. 4 is one we see in almost
all snakes. The most straightforward way to generate serpen-
tine gait in a serial chain is by having the joint angles vary
sinusoidally with a common frequency and a constant phase-
lag between consecutive joints. Considering Eq. 22, setting
CPG parameters as Table 1 leads the robot to move with
serpentine gait.

To change robot speed, we use CPG to change the values
of amplitude (T + B) and frequency (υ) at t =10 s, while

Fig. 4 Snake robot moving with serpentine gait (Motion is the result
of relative joint angle shown in Fig. 3)

Fig. 5 Oscillatory angles ϕ1(t) and ϕ4(t) for serpentine gait (offsets
are increased at t=10 s)

other control parameters remain constant (Fig. 3). Resultant
motion of the robot is shown in Fig. 4. To obtain this motion,
joint angles generated by CPGs, dynamic equation of CPGs
(Eq. 20) is solved along with dynamic equation of the robot
(Eq. 18 and Eq. 19). Euler method is used for solving both
set of equations with the same integration step size, 1ms.
Robot parameters used in simulation are li =2m, di =1m,
Ji =0.33 kgm2, μt =0.05, μn=0.5. Next, to induce rotation,
value of offset (T − B) is changed at t =10 s, while other
control parameters remain constant (Fig. 5). The resultant
motion of the robot is simulated using dynamic equations
and is shown in Fig. 6.

3.2 Realization of spinning gait

In this section, we introduce spinning gait which will allow
robot to turn with minimum radius. When the robot encoun-
ters an obstacle, it is desirable to turn around as quickest
as possible with minimum radius of curvature. Spinning gait
further improves snake’s maneuverability. In this locomotion
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Fig. 6 Snake robot turning with serpentine gait (Motion is the result
of relative joint angle shown in Fig. 5)

mode, robot spins around itself while its mass center follows
a circle with a small radius. Serpentine gait may also be used
to obtain a rotational behavior of snake. This is performed by
setting a large value for offset, T -B. However, this locomo-
tion results in entire body of snake following a circular path.
This can potentially increase the possibility of collision with
obstacles. Therefore, we present a solution on how to adjust
CPG network parameter to generate spinning gait.

Problem of finding CPG network parameters for spinning
gait is an optimization problem that can be solved with dif-
ferent methods. Considering the total system (combination
of mechanical system and neural system), the total dynam-
ics is too complicated to discuss analytically. In such case,
synthetic approaches are more effective. Since derivative of
the objective function is not available, only derivative-free
optimization methods such as Simplex Search or Genetic
Algorithms can be used. Although GA is computationally
expensive, in this paper, we use it as optimization method,
since finding spinning gait parameters is an offline procedure.
GA process steps are listed as follows:

• Optimization parameters To reflect the symmetries of
the robot and to reduce the number of parameters to
be optimized, several parameters are set to the same
values. Phase biases between opposite neighbor oscil-
lators are set to be equal (i.e. Δ∅i = Δ∅i+N−1 for
instance Δ∅1 = Δ∅4). Therefore, optimization para-
meters reduced to 11(T1–T4,B1–B4, Δ∅1–Δ∅3).

• Constraints Because of mechanical limit of motor rota-
tion angle, the value for the relative joint angle is also
bounded. Considering Eq. 22, the maximum value of the
relative joint angle is constrained as,

|Ti − Bi | + |Ti + Bi | ≤ ϕmax,i (i = 1, . . . , N ), (23)

where ϕmax,i is the maximum rotation angle of i th joint.

• Fitness function Fitness function in our study is a function
of CPG network parameters and is calculated by measur-
ing orientation of the mid-link during the fixed time of
locomotion simulation, Eq. 24.

Fitness Function = 1/�θmidlink (24)

To find CPG network parameters which generate spinning
gait with maximum speed, the difference between minimum
and maximum values of the measured mid-link absolute ori-
entation has to be maximized. Here, amount of rotation of
the mid-link is used as a quantitative measure for the rotation
of the whole robot. Calculation of fitness function is related
to mechanical dynamics of the robot as well as friction coef-
ficients of the surface which the snake robot moves on. After
adjusting the CPG network parameters, Eq. 20 is solved, and
relative angle of adjacent links, ϕi , is calculated. Using these
values, dynamic Eq. 19 and then Eq. 18 is solved, and motion
of the snake robot is derived (Sect. 2.2). The time of simula-
tion is crucial for achieving good results. Stable locomotion is
usually reached after short amount of time. Prior to this time,
instable locomotion, we may get a positive fitness score that
should be ignored. Therefore, we found, letting the simula-
tion run a certain amount of time before starting the fitness
evaluation solves this problem. In this study, we used the ori-
entation of the robot after four simulated seconds as starting
configuration and the orientation after 30 s as end configu-
ration to measure the rotation. We also introduce additional
constraint for the fitness function. We require that motion of
the center of mass of the whole system must remain in a lim-
ited area. We define this area as a circle with radius of 80 %
of the length of the robot. If robot exceeds the circle during
simulation, corresponding genome is destroyed. If this con-
straint is not introduced, the optimized parameters found by
GA will be that of a serpentine motion.

We find CPG network parameters for given υ = 0.5 rad/s
and ϕmax = π /2. Environmental conditions is parameterized
by parameters μt =0.05 μn=0.56. After 300 generations, best
fitness value converges to 0.0708. Best individuals corre-
sponding to the best fitness value are T1 = 0.445, T2 =
0.445, T3 = 0.785, T4 = 0.785, B1 = 0.785, B2 =
0.785, B3 = 0.445, B4 = 0.445, �∅1 = −0.284,

�∅2 = 0, �∅3 = −0.284.
Interestingly, optimal CPG parameters have the following

properties: phase differences of the generated waves tend to
be equal except the second one that tends to be zero. Ampli-
tudes of the generated waves tend to be equal. Offset terms
also converge to approximately the same values with opposite
signs for first and second CPG relative to third and fourth one.
Using these parameters and the dynamic equations, snake
robot achieves spinning gait shown in Fig. 7. The center of
mass of our 5 m long snake moves with speed of 27.16 deg/s
in a circle with radius of 3.5 m. As shown, snake robot real-
izes a sharp turning using spinning gait. The relative joint
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Fig. 7 Snake robot moving with spinning gait (a path followed by
center of mass of the robot, b the path followed by tail of the robot.
Poses are numbered through time)

angle trajectories generated by optimized CPG network are
shown in Fig. 8.

As demonstrated in this section, we optimized a specific
criterion of the robot motion while giving a general periodic
pattern to the robot joint angles in the form of sine waves.
The result was interestingly a new locomotion mode for the
robot. Other criteria of the robot motion might be defined and
optimized to produce an improved motion in terms of energy
efficiency or ease of control. For instance, the authors used
the same procedure to find a gait called FHS gait in which the
aim was to keep the snake robot head toward target during
motion [5]. Therefore, this procedure might be used as a
general frame work for finding new gaits for robots which
propel themselves by periodic undulations of their bodies.

3.2.1 Sudden changes in spinning CPG parameters

Often time, during motion, we may need to change the
locomotion parameters for example to change the speed of
motion. In this section, we demonstrate that CPG-based con-
troller allows us to change parameters of spinning gait so that
joint angles can change in a continuous and rather smooth
manner. If a simple sine function was used to generate the
motion then online modifications of the parameters of the
sine function (e.g. the amplitude or the frequency) will lead
to discontinuous jumps of joint angles. This will result in
instantaneous torque changes and thus jerky movements.

Regarding to Eq. 22, spinning gait speed can be changed
by means of changing frequency (υ). This change is per-
formed at time equal to 10 s, while all other parameters
remain constant. Results are shown in Fig. 8. As shown, CPG-
based controller can generate continuous and rather smooth

Fig. 8 Relative joint angles φ1(t) ∼ φ4(t) for spinning gait, while
frequency is doubled at t = 10 s

trajectories for spinning gait in spite of abrupt change in fre-
quency, doubling of rotational speed.

4 Smooth transition between locomoion modes

Many animals are capable of using multiple gaits. Often
simple electrical stimulation of a particular region of the
brain stem in vertebrate animals can induce dramatic gait
changes, for instance from walk to trot to gallop in cat.
Several computational studies of gait transitions exist, for
instance by modeling gait transitions as bifurcation phenom-
ena but few have been applied to robotics. In snake robot,
the ability to use different modes of locomotion increases
maneuverability of the robot in an environment full of obsta-
cles such as search and rescue operations. Therefore, con-
structing a control structure that utilizes different locomotion
modes is an issue of great importance. This control struc-
ture should offer the capability of continuous and smooth
transition between locomotion modes when it receives com-
mand from higher level controller to change the locomotion
gait.

Since differential equations of CPGs typically act as first
or second order filters, they typically produce smooth mod-
ulations of the produced trajectories even when the control
parameters are abruptly changed. This feature of CPGs has
been used by researchers to produce smooth changes in speed
or direction of robots which moves with a specific gait [14].
However, to the best of authors’ knowledge, the transition
point when a complete gait change occurs has not been
studied in previous researches. There are instances when
we need to abruptly change a whole set of CPG parame-
ters to a new one. In this section, our aim is to verify by
simulation that CPG-based trajectory generation is indeed
an ideal solution for this problem. Further, in the paper, we
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Table 2 CPG network
parameters for spinning and
serpentine gaits

Parameter Serpentine Spinning

Top side amplitude parameters T1, T2 0.445 0.445

Top side amplitude parameters T3, T4 0.445 0.785

Bottom side amplitude parameters B1, B2 0.785 0.785

Bottom side amplitude parameters B3, B4 0.785 0.445

Connection weights wi j 4 4

Positive constant ai 10 10

Phase bias, between paired oscillators φi j Π Π

Phase bias, between neighboring oscillators Δφ1, Δφ3 0.284 −0.284

Phase bias, between neighboring oscillators Δφ2 0.284 0

Fig. 9 Oscillatory angles ϕ1 (t) ∼ ϕ4(t) of snake robot while robot
transits from serpentine gait to spinning gait and vice versa

will demonstrate this experimentally using constructed snake
robot.

In Sect. 3.2, we introduced spinning gait. We also defined
a set of CPG network parameters that generate spinning
as well as serpentine gaits. We now show by changing
CPG network parameters from serpentine to spinning and
vise versa, smooth transition will be obtained. To demon-
strate this capability by simulation, we will first move in
a straight line serpentine locomotion, next use spinning
gait to change direction and follow with another straight
line serpentine locomotion. We will show that our selected
CPG model along with obtained CPG network parameters
allows continuous and rather smooth transition between these
gaits.

For serpentine gait, we set CPG network parameters as
those listed in the third column of Table 2. Spinning gait
parameters are those obtained in the previous section (4th
column of Table 2). Serpentine gait parameters switch to
spinning gait parameters at t =10 s and then switch back
to serpentine at t = 16 s. Figure 9 shows relative joint
angles ϕ1 to ϕ4 generated by CPG-based controller, while

Fig. 10 Up view of area a and b shown in Fig. 9

snake robot changes its locomotion modes. Close up views
of joint relative angles at the 10 and 16 s are shown in
Fig. 10.

As shown in these figures, relative joint angles change
without any discontinuity at the transition times. Further-
more, the transitions occur in a rather smooth manner. Our
conclusion for “smooth” transition is simply by close inspec-
tion of the slopes of the relative joint angles at the transi-
tion times, 10 and 16 s. It is clear that slopes of all four
curves are very similar. For these reasons, we can assume
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Fig. 11 Path followed by tail of robot while snake moves with multi-
modal locomotion

Fig. 12 Path followed by center of mass of the robot during multimodal
locomotion

that the relative joint angles change in a rather smooth way.
Therefore, we can conclude that, due to continuous and rather
smooth transition, the robot does not need to be stopped or
reset between iterations and generated trajectories does not
lead to jerky movement.

In addition to continuous transition of the relative joint
angle trajectories, snake robot also successfully realizes tran-
sition between serpentine and spinning gaits. To demonstrate
this, simulation is carried out, where dynamic Eqs. 18–19
along with CPG Eq. 20 are solved. Figure 11 shows path fol-
lowed by tail of the robot during multi-modal locomotion.
As illustrated robot can switch from straight-line serpentine
gait to straight-line serpentine gait with different direction
using spinning gait.

5 Application: locomotion and obstacle avoidance

As an application, consider a goal of guiding a snake robot
to its final destination while passing through obstacles. Our
snake robot is equipped with proximity sensors mounted in
its head link for detecting obstacles. When an obstacle is

Fig. 13 Experimental model of snake robot

sensed, locomotion gait changes from serpentine to spin-
ning. The CPG maintains the spinning gait until obstacle
is no longer sensed and will smoothly transit to serpentine
gait. The proposed multi-modal locomotion, demonstrated
in Fig. 12, is an example where snake robot maneuverability
is increased.

6 Experimental results

In order to experimentally evaluate the multi-modal loco-
motion presented in previous sections, an undulatory robotic
prototype has been developed, using off-the-shelf compo-
nents and conventional fabrication techniques. The prototype
used in the present study, shown in Fig. 13, is composed of
5 Plexiglas links (weight 80g, length 110mm, width 40mm
and height 30mm), with the rotary joints actuated by high-
torque servo-motors. Each link of the robot is equipped
with four wheels which provide differential friction in the
tangential and normal directions of motion. The system is
powered by on-board batteries or alternatively an external
power supply during extended testing sessions. Equation 20
is solved in the microcontroller using Euler method, and
results, relative joints angle, are provided as input to each
motor.

6.1 Experimental verification of dynamic model

All simulation results obtained thus far have used the derived
dynamic equations. In this section, we validate our dynamic
model by making our snake robot move in serpentine gait.
In order to validate dynamic equation of the robot, Eq. 19,
we adjust geometrical parameters (length, mass, link iner-
tia) of the simulated model to represent the physical model.
The CPG network parameters of the experimental model are
selected the same as those used for simulated model and are
shown in the third column of Table 2.
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Fig. 14 Snake robot moving with serpentine gait

Fig. 15 Comparison of motion predicted by simulation and experi-
mental model

The coefficients of tangential and normal frictions for the
actual surface are physically measured and are found to be
μt =0.05 and μn=0.56. Position of center of the mid link is
measured by analyzing pictures taken during robot motion.
To do this, a digital camera is held fixed overlooking a fixed
area. Every 2 s an image is taken. The images are next ana-
lyzed off line, and the position of center of the mid link is
manually recorded (see Fig. 14).

We compare path followed by center of the mid link of the
experimental model (dash line in Fig. 15) with the same path
for simulated robot (full line in Fig. 15). Differences between
these paths are mainly due to inaccurate friction coefficients
and incomplete dynamic equations for ignoring effects, such
as joint friction, gearbox and small differences between links.
Additionally, the controller used on the physical model is
open loop. Therefore, there may be missed encoder counts.
Another source of discrepancy between the two results may
be due to difficulty in recording the actual path followed by
the experimental model. Considering limitations discussed
above, it can be concluded that using the dynamic equation
a good approximation of the actual motion of the robot can
be obtained.

Fig. 16 Snake robot moving with spinning gait

To experimentally generate spinning gait, we adjust CPG
parameters as those listed in the 4th column of Table 2. As
shown in Fig. 16, robot realizes spinning motion with average
speed of 15deg/s.

6.2 Experimental realization of multi-modal locomotion

In this section, we experimentally show that smooth tran-
sition between serpentine and spinning gait can be realized
using CPG-based controller. Results are shown in Fig. 17.
First, CPG network parameters are adjusted to produce ser-
pentine gait (Fig. 17, No. 1–No. 3). Next, we abruptly change
to spinning gait parameters settings of Sect. 3.2 (Fig. 17, No.
3–No. 4). Lastly, after a set time, we abruptly change CPG
parameters back to serpentine gait (Fig. 17, No. 4–No. 6).
Parameters used are listed in Table 2. The resultant motion
is a smooth and elegant transition between these two gaits
(without any observed stalling or any jerky movement of
joints).

The serpentine-to-spinning-to-serpentine locomotion is
repeated for different spinning gait times. Path followed by
the tail end of the robot is drawn in Fig. 18. Clearly, robot
can change its motion to any desirable direction by changing
the spinning gait duration time.

7 Conclusion

Ability to moves with different modes of motion offers
significant advantage for snake-like robot locomotion and
improves its maneuverability. In this paper, we first derived
dynamic equation of n-link snake robot using Lagrange’s
method. We presented a simplified form for the final dynamic
equation in matrix format. Next, we introduced spinning gait
which allowed the robot to rotate around itself while its cen-
ter of mass followed a small circle. To do this, CPG net-
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Fig. 17 Snake robot transition
between serpentine and spinning
gait

Fig. 18 Robot transition between serpentine and spinning gait for dif-
ferent spinning gait times

work parameters were optimized using genetic algorithm.
Using the derived dynamic equations, we illustrated that
CPGs allowed the robot to change its gaits naturally like
a real snake. Therefore, robot locomotion is closer to its nat-
ural counterpart both in terms of motion generation, because
of using CPGs as motion generator, and locomotion. An
application was presented where CPG controller was used
to guide the snake robot from an initial to final position
while avoiding obstacles by utilizing serpentine and spin-
ning gaits. We constructed an experimental bed to validate
our theoretical results. We verified the dynamics equations
by comparing the path of the simulated and physical model.
Results showed good agreement indicating correctness of
our dynamic model. We experimentally illustrated that CPGs
allowed the robot to smoothly change its mode of motion,
although a complete gait change requires changing a whole

set of CPG parameters. Results presented in this paper can
be applied to other robots with undulatory behaviors, such
as walking, swimming in which smooth transitions between
different trajectories are required. More research needs to be
done to draw a general conclusion about capability of CPGs
to produce smooth transition between different undulatory
behaviors in different robots.

The main contributions of this paper are the introduction
of a novel gait called spinning gait, presenting a framework
where other gaits may be generated for any robot with undu-
latory behavior, demonstrating that CPG-based motion gen-
erator allows smooth transition between complete gaits and
applying it to multimodal locomotion of snake robot.
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Appendix

The detailed forms of M, H, B and F in Eq. 11 are presented
as

Mi j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[m j d j li +(
n∑

k= j+1
mk)li l j ] cos(θi −θ j ) i < j, 1≤ j ≤n

Ii +mi d2
i +l2

i (
n∑

j=i+1
m j ) i = j, 1≤ j ≤n

M ji i > j, 1≤ j ≤n

Mn+1, j=−sin θ j

⎡

⎣m j d j +
⎛

⎝
n∑

k= j+1

mk

⎞

⎠ l j

⎤

⎦ ( j =1, . . . , n)

Mn+2, j =cos θ j

⎡

⎣m j d j +
⎛

⎝
n∑

k= j+1

mk

⎞

⎠ l j

⎤

⎦ ( j=1,. . . ,n)

Mn+1,n+1 = Mn+2,n+2 =
n∑

i=1

mi (25)

Mn+1,n+2 = Mn+2,n+1 = 0
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Hi = li

n∑

j=i
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⎨

⎩

⎡

⎣m j d j + l j

⎛
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n∑

k= j+1

mk

⎞

⎠

⎤

⎦ sin(θi − θ j )θ̇
2
j

⎫
⎬

⎭

+
i−1∑

j=1

⎧
⎨

⎩

⎡

⎣mi di +li

⎛

⎝
n∑

k= j+1

mk

⎞

⎠

⎤

⎦ l j sin(θi − θ j )θ̇
2
j

⎫
⎬

⎭

×(i = 1, . . . , n) (26)

Hn+1 = −
n∑

i=1

cos θi

[
mi di +

(
n∑

k=i+1

mk

)
li

]
θ̇2

i

Hn+2 = −
n∑

i=1

sin θi

[
mi di +

(
n∑

k=i+1

mk

)
li

]
θ̇i

B =
[

Dn×n−1

0

]
, where Di j =

⎧
⎨

⎩

−1 i = j
1 i = j + 1
0 others

(27)

F =
[ p f n×1

q f 2×1

]
where

p f j = d j ( fx j sin θ j − fy j cos θ j )

+l j

⎡

⎣sin θ j

n∑

i= j+1

( fxi ) − cos θ j

n∑

i= j+1

( fyi )

⎤

⎦ (28)

q f =

⎡

⎢⎢⎣
−

n∑
i=1

( fxi )

−
n∑

i=1
( fyi )

⎤

⎥⎥⎦

The detailed final dynamic equation, Eq. 11, has a simplified
matrix format and can easily be expanded for any number of
links.
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