
This article was downloaded by: [95.211.165.66]
On: 08 April 2013, At: 03:09
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Advanced Robotics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tadr20

Position and stiffness analysis of a new asymmetric
2PRR–PPR parallel CNC machine
Amir Rezaei a & Alireza Akbarzadeh a
a Center of Excellence on Soft Computing and Intelligent Information Processing, SCIIP,
Mechanical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
Version of record first published: 03 Jan 2013.

To cite this article: Amir Rezaei & Alireza Akbarzadeh (2013): Position and stiffness analysis of a new asymmetric 2PRR–PPR
parallel CNC machine, Advanced Robotics, 27:2, 133-145

To link to this article:  http://dx.doi.org/10.1080/01691864.2013.751154

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tadr20
http://dx.doi.org/10.1080/01691864.2013.751154
http://www.tandfonline.com/page/terms-and-conditions


FULL PAPER

Position and stiffness analysis of a new asymmetric 2PRR–PPR parallel CNC machine

Amir Rezaei and Alireza Akbarzadeh*

Center of Excellence on Soft Computing and Intelligent Information Processing, SCIIP, Mechanical Engineering Department,
Ferdowsi University of Mashhad, Mashhad, Iran

(Received 13 December 2011; accepted 9 February 2012)

In this paper, structural stiffness analysis of a new 3-axis asymmetric planar parallel manipulator, a 2PRR–PPR structural
kinematic chain, is investigated. The manipulator is proposed as a tool holder for a 5-axis hybrid computer numerical
control (CNC) machine. First, the structure of the robot is introduced and inverse kinematics solution is presented. Sec-
ondly, stiffness matrix of the robot is determined using a continuous method based on Castigliano’s theorem and calcula-
tion of strain energy of the robot components. This method removes the need for commonly used simplifying
assumptions and, therefore, results in good accuracy. For this purpose, force and strain energy for each segment of the
robot are analyzed. Finally, to verify the analytical results, commercial FEM software is used to simulate the physical
structure of the manipulator. A numerical example is presented which confirms the correctness of the analytical formula-
tions.

Keywords: asymmetric parallel robot; inverse kinematic; stiffness matrix; distributed model; FEA

1. Introduction

Nowadays, the application of parallel robots is
developing. Examples include implementation in many
engineering fields such as simulations, aerospace, cutting,
welding, surgical, and computer numerical control (CNC)
machines [1,2]. Most machine tools use serial kinematic
chains as their spindle [1,3,4]. The serial structures of
these mechanisms usually have low payloads and are sen-
sitive to vibrations [5,6]. On the other hand, parallel robots
usually offer high precision, high stiffness, and high load
carrying capacity as well as good dynamic efficiency over
their serial counterparts [7,8,9]. These advantages are the
reasons why parallel robots are being considered for CNC
machine tools [6,9,10]. The principal disadvantage of par-
allel robots is that they have smaller workspace than serial
counterparts [11,9]. Generally, a parallel manipulator is
composed of a moving platform which is connected to a
fixed base by several parallel legs. The heavy actuators are
commonly placed at the fixed base. Therefore, these
manipulators are inherently stiffer and more accurate and
can offer higher speed than their serial counterparts
[10,12,13]. Robot accuracy, in general, has a direct rela-
tionship with its structural stiffness. When parallel robots
are used as a CNC machine tool, structural stiffness is
considered one of the most important and fundamental
design parameters [3,14–16]. High structural stiffness can
increase precision of the machining process [17]. To study
robot stiffness, its related stiffness matrix must be deter-

mined [5,18]. Stiffness matrix indicates a relationship
between vector of a small displacement of the end-effector
and vector of static force/moment (wrench) applied at that
point [18–20].

In recent years, many studies have been presented on
structural stiffness of parallel manipulators. Rezaei and
Akbarzadeh [1,18] presented stiffness analysis of a spa-
tial 3-PSP parallel robot with flexible moving platform
using a continuous method based on Castigliano’s theo-
rem. Also, Enferadi and Akbarzadeh [5] investigated the
stiffness of a spherical parallel robot using calculation of
strain energy of each component of the robot. Li and Xu
derived instinctively the stiffness matrix of a 3-PUU par-
allel kinematic machine based on an alternative approach
considering actuations and constraints [11]. Kim investi-
gated the stiffness analysis of a 3-DOF parallel robot
with one constraining leg while considering elastic defor-
mations of joints and links. They obtained the overall
stiffness matrix using Jacobian matrix and principle of
virtual work [6].

In the present investigation, a new 3-axis asymmetric
planar parallel robot with a 2PRR–PPR structural kine-
matic chain as a tool holder in a CNC machine tool is
presented. To obtain stiffness, a method based on
Castigliano’s theorem and calculation of strain energy for
the robot components is presented. Using this method,
robot components are modeled as distributed. Traditional
methods for obtaining stiffness use many assumptions
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for simplification of the model, such as assuming lumped
models for the robot components. On the other hand,
when a robot is modeled as distributed, there is no need
for many of the simplifying assumptions. Furthermore,
the proposed method allows considering bending in all
robot components. This approach increases model accu-
racy. In the present investigation, a FEM model is also
generated to verify the derived theoretical model and
demonstrate its accuracy.

2. Structure of a new asymmetric planar parallel
robot

In this paper, a new asymmetric planar parallel manipu-
lator with a 2PRR–PPR structural kinematic chain is
introduced. This manipulator is suggested as a 3-DOFs
planar spindle holder for a 5-axis hybrid CNC milling
machine. The asymmetric manipulator plus an additional
two axis work table construct the hybrid CNC machine.
The solid model of this robot is illustrated in Figures 1
and 2. The three DOFs of the robot consist of two trans-
lational along y and z-axes and one rotational DOF about

x-axis. This robot is composed of a moving platform
which is shaped like a symmetrical triangle. The moving
platform is connected to a fixed base with two double
parallel bars, AR1 and BR2, and one horizontal double
guide rods, N31N32 (see Figure 3). These components
are connected to the fixed base by four moving blocks,
Ni. Thus, this robot consists of two PRR and one PPR
serial kinematic chains. The first prismatic joint in PRR
and the second prismatic joint in PPR are the actuated
joints. Therefore, the structural kinematic chain of this
robot may be expressed by 2PRR�PPR.

3. Inverse kinematic solution

For a given manipulator, stiffness changes with the varia-
tion of the manipulator configurations within its work-
space [1,18]. Therefore, it is necessary to investigate the
kinematic behavior of a manipulator in its different con-
figurations. For this purpose, we will obtain the inverse
kinematics solution of the presented parallel manipulator.
Figure 3 shows geometry for a typical kinematic chain
of the robot. Vectors and reference frames used are

Figure 1. The solid model of the asymmetric parallel CNC machine.

Figure 2. Details of ball screw-nut assembly and DOFs.
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described in this figure. A nonmoving base coordinate
frame {B} is attached at point O. As shown in Figure 3,
positions of nuts are denoted by three position vectors
qi. Position of the end-effector, point P, is given by vec-
tor P ¼ ½yP zP�T. Also, the angle u represents the orienta-
tion angle of the moving platform about the x-axis.

The inverse kinematics obtains the actuated variables,
qi, from a given position, point P, and orientation, u, of
the moving platform. To solve the inverse kinematic
problem, a close vector-loop is written for each kine-
matic chain as

T ¼ ai þ qi þ di þ bi þ hi þ h i ¼ 1; 2; 3 (1)

T ¼ Pþ h (2)

Therefore, the three kinematics closed loops are:

i ¼ 1 loop#1:OW1N1R1APT (2a)

i ¼ 2 loop#3:OW2N2R2BPT (2b)

i ¼ 3 loop#2:OW1N31CPT (2c)

As shown in Figure 3, we can write, a1 = a2 = a3 = a.
For the inverse kinematic solution, position of the end-
effector and orientation of the moving platform are spec-
ified. In other words, the vector P and value of u are
defined. Subsequently, the values of yp and zp are
known. Thus, the position values of points A, B, and C
(corner position of the moving platform) can be written
as

zA ¼ zP þ h1 sinu; yA ¼ yP þ h1 cosu (3a)

zB ¼ zP � h2 sinu; yB ¼ yP � h1 cosu (3b)

zC ¼ zP þ h3 cosu; yC ¼ yP � h3 sinu (3c)

By substituting Equations (3) and values for the kinemat-
ics constants a, b1, and d1, d2 and d3 into Equations (1)
and (2), the position of each nut is obtained as follows

q1 ¼ zA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � (a1 � d1 � yA)

2
q

(4a)

q2 ¼ zB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � (a2 � d2 � yB)

2
q

(4b)

q3 ¼ a3 � d3 � yC (4c)

Upon solving these equations, Equations (4), four
solutions for a given position and orientation of the robot
are obtained. These four solutions correspond to four
configurations of the robot. However, considering
Figure 3, only one of these answers is correct and can
be used in the machining process.

4. Stiffness analysis

In this section, the development of the robot stiffness
matrix is presented. Stiffness analysis measures small
deflection of robot’s end-effector when external wrench
is applied to this point [1,5]. This relationship is
expressed by stiffness matrix which requires finding the

Figure 3. Close vector loops for the PPR and the PRR kinematic chains and the four inverse kinematics solutions.
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relationship between the applied external wrench on the
end-effector and the resultant forces in each component
of the robot. Various methods are suggested for obtain-
ing the stiffness matrix [6,10–15]. These methods are
mostly based on modeling the robot components as
lumped and use the principle of virtual work to obtain
the stiffness matrix. The simplifying assumptions used in
the process of modeling the robot stiffness, such as
lumped model, results in loss of accuracy in stiffness cal-
culation [18]. In this paper, a continuous method is used
for obtaining the manipulator stiffness matrix which is
based on Castigliano’s theorem and calculation of strain
energy due to flexibility of the robot components. To do
this first, inverse kinematic and force analysis are per-
formed. Next, using Castigliano’s theorem, stiffness
matrix is obtained. The following assumptions are used:

• The moving platform is assumed to be rigid.
• Weights and friction of joints are negligible.
• Weights of all robot components are assumed
negligible.

4.1. Force analysis

In this subsection, the relationship between the applied
external wrench on the end-effector, point P, as well as
the resultant joints forces are developed. From force
analysis, several analytical expressions will be obtained
that will allow calculation of reaction forces. Consider
Figure 4. The external wrench W can be defined in the
fixed base {B} as follow

W ¼ ½f ext Mext�T; f ext ¼ ½fy fz�T; Mext ¼ MX (5)

Where, fext denotes a force vector and Mext denotes a
moment about x-axis.

As shown in Figure 4, the reaction forces are
obtained asX

F ¼ FAêb1 þ FBêb2 þ FCyêy þ f ext ¼ 0 (6a)

X
MP ¼ FAh1(êh1 � êb1)þ FBh2(êh2 � êb2)

þ FCh3(êh3 � êy)þMext

¼ 0 (6b)

In Equations 6(a) and (b), the unit vectors along the
reaction forces may be represented as follows

êb1 ¼ b1
jb1j ; b1 ¼ ½(yA � a1 þ d1) (zA � q1)�T (7a)

êb2 ¼ b2
jb2j ; b2 ¼ ½(yB � a2 � d2) (zB � q2)�T (7b)

êh1 ¼ h1
jh1j ; h1 ¼ ½(yP � yA) (zP � ZA)�T (7c)

êh2 ¼ h2
jh2j ; h2 ¼ ½(yP � yB) (zP � ZB)�T (7d)

êh3 ¼ h3
jh3j ; h3 ¼ ½(yP � yC) (zP � ZC)�T (7e)

êy ¼ ½1 0�T (7f )

Directions of these unit vectors change due to config-
uration of the robot. Therefore, directions of the unit
vectors are determined by inverse kinematics problem.
By simplifying the above equations, relation between
external wrench and reaction forces in matrix form are
obtained as

W ¼ A3�3Freaction;Freaction ¼ ½FA FB FCy�T (8)

where,

A3�3 ¼ � l½êb1 êb2 êy�2�3

h1(êh1 � êb1)h2(êh2 � êb2)h3(êh3 � êy)�
� �

(9)

To obtain the reaction forces given the applied exter-
nal wrench, Equation (8) can be written as follow

Freaction ¼ B3�3W; B3�3 ¼ A�1
3�3; B3�3 ¼ Bij (10)

Figure 4. Free body diagram (FBD) of the moving platform.
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4.2. Stiffness matrix determination

In this subsection, strain energy of each component of
the robot is calculated. To do this, force analysis and
inverse position analysis are used. The total strain energy
of the 2PRR�PPR manipulator can be written as

U ¼ Ulink(AR1) þ Ulink(BR2) þ Umotors (11)

where, U is total strain energy of robot which is equal to
sum of strain energies due to all links and the three
motors. The overall stiffness matrix, K which is the
mapping between applied external wrench and infinitesi-
mal rotational and translational displacement of the end-
effector, can be written as

W ¼ KdSP (12)

where, W represents overall vector of the external
wrench applied to the end-effector, CNC tool. Addition-
ally, dSP represents overall infinitesimal twist of the tool
which is made up virtual translations, dSy, dSz and vir-
tual rotation dSu, along y, z, and about x-axis, respec-
tively. By the Castigliano’s theorem, we can write

dSP ¼ ½dSy dSz dSu�T ¼ @U

@fy

@U

@fz

@U

@Mx

� �
¼ CW (13)

where, C is overall compliance matrix of the asymmetric
parallel manipulator. Comparing Equations (12) and (13),
we can obtain

K ¼ C�1 (14)

According to Equation (14), to obtain the overall stiff-
ness matrix, K, the related compliance of all robot compo-
nents must first be determined. Next, using Equation (13),
infinitesimal twist of the tool corresponding to the applied
external wrench at this point can be calculated.

4.3. Obtaining the overall compliance matrix of the
manipulator

As shown in Figure 5, the two double parallel bars, AR1

and BR2 experience reaction forces as axial forces.
Therefore, to calculate the strain energy of these compo-
nents due to applied external wrench, we can write

Ulinks(AR1) ¼
Z b1

0

F2
A

4A1(x)E
dx; 0 � x � b1 (15a)

Ulinks(BR2) ¼
Z b2

0

F2
B

4A2(x)E
dx; 0 � x � b2 (15b)

Where, FA and FB are the axial reaction forces in
joints A and B due to applied external wrench, respec-
tively. These forces are determined from solving the force
analysis and inverse kinematics problem, simultaneously.
To maintain generality, the cross-section areas, A1(x) and
A2(x) are defined by a function A1 =A2(x) =A2(x). Refer-
ring to Figure 6, the function representing the cross-sec-
tional area for each of the double parallel bar is defined as

A(x) ¼ A(x¼0) � A(x¼0) � A(x¼b)

b

� �
x (16)

where, b1 = b2 = b= 0.8m and A(x = 0) = 0.00356m
2 and

A(x = b) = 0.00163m
2. Therefore, the function for the

cross-sectional area, A(x), is calculated as

A(x) ¼ 0:00356� 0:00241x (17)

To calculate the strain energy due to flexibility of the
motors, the relationship between axial forces acting at
the end of each rod and its resulting motor torque
should be found. The motor and ball screw assembly
of each axis are shown in Figure 7. It should be noted
that the present investigation does not consider the
influence of friction and body weight. Therefore, FCz

and Ffriction = 0.

Figure 5. The FBDs for the two double parallel bars and the clamped–clamped double beam.
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The relationship between the resistant torque in
the motor and the corresponding axial force, fNi, can be
written as

smi ¼ Nlb
2p

fNi (18)

where, smi is the resistant torque in the ith motor due to
axial force, fNi, acting on the ith axis of the robot. The
gearbox transmission ratio for the robot is selected to be
N = 2 and lb represents the lead of the ball screw. Strain
energy of the three motors can be written as

Umotors ¼ Umotors(N1) þ Umotors(N2) þ Umotors(N3) (19)

where,

Umotors(Ni) ¼
X3
i¼1

smi2

2ktor;i

� �
¼ N 2lb2

8p2

X3
i¼1

(fNi)
2

ktor;i
(20)

where, ktor,i is equivalent torsional stiffness of the ith
motor. The axial forces, fNi are determined as

fN1 ¼ FA
q1 � zA

b1

� �
¼ q1 � zA

b1

� �
B1j W (21a)

fN2 ¼ FB
q2 � zB

b2

� �
¼ q2 � zB

b2

� �
B2j W (21b)

fN3 ¼ FCy ¼ B3j W (21c)

Therefore, the overall strain energy, U, is calculated
using Equation (11). Considering Equation (13) and
Castigliano’s theorem, the infinitesimal displacement
vector components of point P can be obtained as

dSy ¼ @U

@fy

¼
Z b1

0

FA

2A(x)E

@FA

@fy
dxþ

Z b2

0

FB

2A(x)E

@FB

@fy
dx

þ N 2lb2

4p2

X3
i¼1

fNi
ktor;i

@fNi
@fy

(22a)

dSz ¼ @U

@fz

¼
Z b1

0

FA

2A(x)E

@FA

@fz
dxþ

Z b2

0

FB

2A(x)E

@FB

@fz
dx

þ N 2l2b
4p2

X3
i¼1

fNi
ktor;i

@fNi
@fz

(22b)

dSu ¼ @U

@Mx

¼
Z b1

0

FA

2A(x)E

@FA

@Mx
dxþ

Z b2

0

FB

2A(x)E

@FB

@Mx
dx

þ N 2l2b
4p2

X3
i¼1

fNi
ktor;i

@fNi
@Mx

(22c)

By substituting the components of matrix B from
Equation (10), integrating and factoring the applied

Figure 6. Isometric view of the double parallel bar-determination of the function for cross-sectional area.

Figure 7. Free body diagrams for the motor and ball screw
assembly #2 and #3.
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external wrench, W, the overall compliance matrix of the
robot can be expressed as

Using Equation (13) and Equations (23a)–(23c), the
overall compliance matrix C can be written as

C3�3 ¼
C1j

C2j

C3j

2
4

3
5 (24)

where, C1j, C2j, and C3j represent the first, second, and
third rows of matrix C. The elements of the matrix B are
also determined using inverse kinematics and force analy-
sis. Then, the overall stiffness matrix, K, is obtained
using Equation (14). Finally, using Equation (13) and the
external wrench on point P, the values of infinitesimal
displacement of point P are obtained.

5. Finite element analysis

A finite element commercial software is used to evaluate
the correctness of the analytical method. In the present
study, element type, BEAM3 is used to develop Finite
element analysis (FEA) model for the compliant compo-
nents. Furthermore, the revolute and prismatic joints are
assumed rigid and are modeled using MPC184 element
type. For finite element modeling of the robot, stiffness

of the ith motor, Kmi, is approximated with a linear
spring with deformation along their ball screw’s axis

(see Figure 8). Consider the reaction forces on revolute
joints A, B, and C. The axial forces will result in a
moment on the motor (see Figure 7). The moment will
further result in a rotational deformation on motor shaft.
Subsequently, the rotational deformation in motor will
result in a linear displacement of the moving block along
the ball screw’s direction.

According to the Hook’s law, the relation between
rotational deformation of the ith motor, Dhm, and applied
moment on the ith motor, sm, can be written as,

smi ¼ Ktor;iDhmi (25)

where, the equivalent torsional stiffness of motor is
denoted by Ktor. Also, the relationship between linear
displacement of the moving blocks, Dq, and rotational
deformation of motor is represented by,

Dq ¼ Nlb
2p

� �
Dhm (26)

where, lb is the lead of the ball screw and N represents
the gearbox transmission ratio. Using Equations (18),
(25), and (26), equivalent linear spring which models the

dSy ¼ 161:816

E
(B11B1j þ B21B2j)þ N 2l2b

4p2ktor

q1 � zA
b1

� �2

B11B1j þ q2 � zB
b2

� �
B21B2j þ B33B3j

 ! !
W ¼ C1jW (23a)

dSz ¼ 161:816

E
(B12B1j þ B22B2j)þ N 2l2b

4p2ktor

q1 � zA
b1

� �2

B12B1j þ q2 � zB
b2

� �
B22B2j þ B33B3j

 ! !
W ¼ C3jW (23b)

dSu ¼ 161:816

E
(B13B1j þ B23B2j)þ N 2l2b

4p2ktor

q1 � zA
b1

� �2

B11B1j þ q2 � zB
b2

� �
B23B2j þ B33B3j

 ! !
W ¼ C3jW (23c)

Figure 8. Lumped stiffness model of the motors.
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stiffness of the ith motor can be determined. Since all
three motors are assumed to be equal, we can write,

Kmi ¼ fNi
Dq

¼ 2p
Nlb

� �2

Ktor (27)

Equivalent stiffness for this linear spring, Km, deter-
mined from Equation (27), is modeled by COMBIN14
element type. Once the FEA model is developed, it can
be used to obtain deflection of the end-effector anywhere
within its workspace.

6. Numerical examples

6.1. Example 1: comparing the theoretical and FEA
models

As stated earlier, in addition to other parameters, robot
stiffness is a function of its configurations. Therefore, it
is necessary to first solve inverse kinematics problem
before performing stiffness analysis [1,5]. In this paper, a
numerical example for verifying the theoretical stiffness
model of the parallel manipulator is presented. First, a
unique position and orientation for the end-effector is
considered. Inverse kinematic of the robot is solved and
essential kinematics values for stiffness are obtained. The
structural and physical parameters of the robot are shown
in Table 1. Assume that the following external wrench is
applied to the end-effector at point P. For the external
wrench expressed in {B} coordinate, we can write

W ¼ ½500N 500N 0N :m�T (28)

The given inputs result in four solutions as given in
Table 2 and graphically shown in Figure 3. The accept-
able solution, solution #1, is depicted in Figure 9.

Results of the stiffness analysis are shown in Table 3
which includes results of the FEA model, and the analyt-
ical model as well as their difference.

As indicated in Table 3, the theoretical results closely
follow the FEA results which verify the correctness of

Table 1. Physical and structural parameters of the robot.

Parameters Description Values

a OW (see Figure 3) 0.5 (m)
h1 = h2 AP (see Figure 3) 0.1 (m)
b1 = b2 Lengths of the two double bars 0.8 (m)
h3 CP (see Figure 3) 0.1732 (m)
d1 = d2 N1R1 and N2R2 (see Figure 3) 0.15 (m)
d3 (see Figure 3) 0.1 (m)
lb Lead of the ball screw 0.01 (m)
N Gearbox transmission ratio 2
E Elastic modulus of each double bar (ASTM-A242) 200 (Gpa)
ktor Equivalent torsional stiffness of ith motor [5,18] 3� 104 Nm/rad

Table 2. Inputs/outputs values of inverse kinematic.

Inputs

Outputs (m)

Solution #1 Solution #2 Solution #3 Solution #4

yP 0.15 (m) q1 1.1271 �0.4587 1.1271 �0.4587
zP 0.30 (m) q2 0.9551 �0.4235 �0.4235 0.9551
u 20 (deg) q3 0.3092 0.3092 0.3092 0.3092

Figure 9. Result of inverse kinematic analysis-solution #1.

140 A. Rezaei and A. Akbarzadeh

D
ow

nl
oa

de
d 

by
 [

${
in

di
vi

du
al

U
se

r.
di

sp
la

yN
am

e}
] 

at
 0

3:
09

 0
8 

A
pr

il 
20

13
 



the theoretical stiffness model. The distributed model
using energy method is clearly advantageous as it elimi-
nates many of the simplifying assumptions and provides
excellent agreement between the theoretical and the FEA
models. The FEA simulation model, with both deformed
and un-deformed shapes of the 3-axis robot, is shown in
Figure 10.

6.2. Example 2: stiffness in the z-direction

The previous example considered a single configuration
of the robot. In a CNC application, the robot is required
to follow a trajectory and, therefore, deformation study
throughout a trajectory is of importance. To study this, a
circular and symmetrical trajectory, about z-axis, for the
robot is considered and is divided into small segments.
The orientation ψ is assumed to remain zero during the
trajectory. The selected trajectory is shown in Figure 11.

At each point on this segment, a fixed external
wrench, W ¼ ½500N 500N 0N :m�T , is applied to the
end-effector at point P. Using Equation (13), deforma-
tions at that point are calculated. Results are shown in
Figure 12 which shows both desired and deformed
end-effector trajectories while spindle of the robot

Table 3. Results of stiffness analysis.

Inputs
Theoretical
� 10�6

FEA
� 10�6

||d|| diff.
� 10�6

Translation (m) δSy 0.740 0.658 0.082
δSz 0.672 0.596 0.076

Orientation (deg) δSu 216.05 192.28 23.77

Figure 10. Deformed and un-deformed shape of the robot-FEA result.

Figure 11. The circular and symmetrical trajectory.
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follows the trajectory and experiences the fixed wrench.
A trajectory with zero deflection is referred to as a
desired trajectory where the robot is assumed to be
fully rigid.

The better highlight the deflection through trajectory,
difference between desired and deformed end-effector
trajectories is calculated and shown in Figure 13. The
maximum deflections for y, z, and ψ directions are

0.3� 10�7m, 5.157� 10�7m, and 7.332� 10�6 deg,
respectively. Note that the difference between the
deformed and desired trajectories is very small. There-
fore, to better graphically present this difference,
Figure 12 uses a multiplication factor of 103.8 for the dif-
ference between deformed and desired trajectories.

It should be noted that, as shown in Figure 13, the
deflection is symmetrical. This result was intuitively
expected as both the applied wrench and the selected
trajectory result in a symmetrical deflection for the
end-effector along its trajectory. The selected symmetri-
cal trajectory plus the y direction external wrench can
provide a sense of the robot stiffness in the y direction.

6.3. Example 3: Stiffness in the y-direction

To get a sense of stiffness in the y-direction, the same tra-
jectory as in example 2 is selected. An external wrench is
applied in the y-direction as W ¼ ½500N 0N 0:N :m�.
Deflection throughout this trajectory is calculated and
shown in Figure 14. The maximum deflections for y, z,
and u directions are 6.9223� 10�7m, 0.3� 10�7m, and
�1.9336� 10�4 deg, respectively

By inspecting Figures 13 and 15, we can conclude
that stiffness in both y and z directions are roughly
equal. Such information can be used by a designer to
better design the CNC machine.

Figure 12. Desired and deformed trajectory of the end-effector,
using constant values for u= 0, Includes a multiplication
factor of 103.8.

Figure 13. Deflection of point P along the circular trajectory with Fy=Mx= 0 and Fz= 500.
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6.4. Example 4: Stiffness in yz directions

Next, a similar circular trajectory, as before, but with
its center shifted by 0.2m in the y direction and a non-
zero value for phi, u = π/20, is selected. An external
wrench of W= [500N, 500N 0.N.m]T is applied.
Results are shown in Figure 16 which also shows both
desired and deformed end-effector trajectories. The
difference between desired and deformed end-effector
trajectory for all points on the circular trajectory is
shown in Figure 17.

As shown Figure 17, the maximum deflection for y
and z directions are 7.90210�7m and 7.598� 10�7m and
u direction is �2.13� 10�4 deg, respectively. As before,
we may also conclude that displacements in both y and z
directions are roughly equal. It should also be noted that
the deflection of the end-effector is asymmetrical. This
was expected as the trajectory is nonsymmetrical with
respect to the center of the workspace and includes a non-
zero value for u.

The calculated stiffness thus far refers to the 3-axis
asymmetric robot and does not include the X–h table. To
calculate the overall stiffness of the hybrid CNC machine,
the stiffness of the X–h table should also be included.

7. Conclusion

In this paper, structural stiffness analysis of a new asym-
metric planar parallel manipulator with a 2PRR�PPR
kinematic chain is presented. First, structure of this robot
as a tool holder for a 5axis hybrid CNC is introduced.
Closed form inverse kinematics solution using closed-loop
vector equations are derived. Upon solving these equa-
tions, essential kinematics values for stiffness analysis are
obtained. Next, Stiffness analysis is presented. A method
based on distributed model, calculation of strain energy of
robot components, and Castigliano’s theorem is used for
the stiffness analysis. The method does not require any
simplifying assumptions such as lumped model and ignor-
ing bending effects in robot components. To verify results

Figure 14. Desired and deformed trajectory of the end-effector,
using constant values for u= 0, Includes a multiplication
factor of 103.8.

Figure 15. Deflection of point P along the circular trajectory with Fz=Mx= 0 and Fy= 500.

Advanced Robotics 143

D
ow

nl
oa

de
d 

by
 [

${
in

di
vi

du
al

U
se

r.
di

sp
la

yN
am

e}
] 

at
 0

3:
09

 0
8 

A
pr

il 
20

13
 



of the analytical model, commercial FEA software is used
to model the robot and several numerical examples are
presented. It is shown that the robot stiffness varies with
configuration and is roughly equal in the z and y direc-
tions. The close agreements between results indicate the
correctness of the derived theoretical and FEM models.

This paper contributes by suggesting a new structure
for a hybrid 5-axis CNC machine using a 3-axis asym-
metric parallel manipulator and by obtaining a theoretical
stiffness model using a method that eliminates many of
the simplifying assumptions commonly used when calcu-
lating structural stiffness. The paper concludes with veri-
fication of the theoretical results.
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Figure 16. Desired and deformed trajectory of the end-effector, using constant values for u ¼ p
20, Includes a multiplication factor

of 103.8 for y–z graph and 101.5 for u diagram.

Figure 17. Deflection of point P along the circular trajectory with Fy= 500, Fz= 500 and Mx = 0.
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