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a b s t r a c t

This paper investigates the problems of kinematics, Jacobian, singularity and workspace analysis of a

spatial type of 3-PSP parallel manipulator. First, structure and motion variables of the robot are

addressed. Two operational modes, non-pure translational and coupled mixed-type are considered.

Two inverse kinematics solutions, an analytical and a numerical, for the two operational modes are

presented. The direct kinematics of the robot is also solved utilizing a new geometrical approach. It is

shown, unlike most parallel robots, the direct kinematics problem of this robot has a unique solution.

Next, analytical expressions for the velocity and acceleration relations are derived in invariant form.

Auxiliary vectors are introduced to eliminate passive velocity and acceleration vectors. The three types

of conventional singularities are analyzed. The notion of non-pure rotational and non-pure translational

Jacobian matrices is introduced. The non-pure rotational and non-pure translational Jacobian matrices

are combined to form the Jacobian of constraint matrix which is then used to obtain the constraint

singularity. Finally, two methods, a discretization method and one based on direct kinematics are

presented and robot non-pure translation and coupled mixed-type reachable workspaces are obtained.

The influence of tool length on workspace is also studied.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Parallel kinematic machines (PKMs) have shown to offer many
advantages such as, high positioning accuracy, high static/
dynamic inherent rigidity, low inertia, high nominal load-to-
weight ratio and good dynamic performance. However, the
principal drawbacks of the PKMs are small and complex work-
space, commonly coupled position and orientation of moving
platform as well as difficult forward position kinematics [1–3].

Earlier PKMs were designed mostly with 6 degrees of freedom
(DOFs). However, there are many practical applications where
6-DOFs are not all required [4]. The PKMs with the lower DOFs
have most of the inherent capabilities of the parallel robots and
can be made with lower manufacturing cost [3,5]. However, some
spatial PKMs with lower DOFs present application complications
due to the commonly coupled position and orientation of the
moving platform. The 3-DOF PKMs can be classified into three
categories with respect to the type of DOF used by their moving
platform. These categories are: (a) translational, (b) rotational and

(c) coupled mixed-types motion (two translational and one rota-
tional, T2R1-type, or two rotational and one translational, R2T1-
type). The motions in each of these categories may be pure or non-
pure. Many literatures have studied the famous pure translational
robots such as the 3-UPU [6], the CUR [7] and the 3-PRC [8]. There is
extensive research work focused on the famous DELTA robot with
three translational DOFs [9]. Also, many studies are completed on
pure rotational PKMs such as spherical robots [10,11] and the Agile
Eye mechanism [12]. The PKMs with coupled mixed-types of
motions are also studied, for example, the 3-PRS [1] and the
CaPaMan [13]. In addition Li and Herve� [14] studies a number of
pure R2T1 type parallel robots.

In this paper, a specific architecture of the 3-PSP fully parallel
robot is selected and its position, Jacobian and workspace analysis
are investigated. The 3-PSP robot is a spatial 3-DOF parallel robot
with symmetric geometry and three identical PSP legs (Prismatic–
Spherical–Prismatic). The 3-PSP robot offers the advantage of
allowing the user to select its desired DOFs. The user may select
to run the robot either in non-pure translational or coupled
mixed-type modes. This feature potentially allows use of different
applications for the 3-PSP robot.

Unlike their serial counterparts, the inverse kinematics pro-
blem of PKMs is often simpler to solve than its direct kinematics
problem. However, obtaining analytical solution to direct and
inverse kinematics of 3-PSP are both difficult. The difficulty in
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solving the inverse kinematics of the 3-PSP robot depends on the
DOFs selected for the moving platform [15–17]. The direct
kinematics of PKMs commonly involve the solution for a system
of nonlinear coupled algebraic equations in the variables describ-
ing pose parameters of the moving platform [6]. To solve direct
kinematics problem, either numerical or analytical approaches
are used. However, usually, finding the exact analytical solutions
is difficult [6]. Kamali and Akbarzadeh [18] presented a method
for a general solution to the direct kinematics problem of non-
cuspidal parallel manipulators in trajectory following by introdu-
cing a new concept based on basic regions. In a thesis presented
by Bonev [19], the effectiveness of geometric methods to design
and analyze parallel mechanisms is presented. He presented a
brief discussion on the 3-PSP and obtained its kinematics con-
straint equations leading to motion equations for the center of the
platform. Di Gregorio solved the position analysis of a general 3-
PSP parallel robot in analytical form [16]. To solve the direct
position analysis, an algebraic system which has a Sylvester
eliminant that is a polynomial equation of the 8th degree in one
of the unknowns is obtained. In the present paper, the direct
kinematics of the 3-PSP robot is solved utilizing a new geome-
trical approach. We also show that the direct kinematics problem
of this robot, unlike most parallel robots, has only one unique real
answer.

To define and evaluate the performances of a manipulator,
Jacobian and singularity analyses are commonly used [20,21].
These analyses have been studied by many literatures [21–23].
Firmani and Podhorodeski [24] described singularity of planar
parallel manipulators based on forward kinematic solutions. Also,
Enferadi and Akbarzadeh [10] studied singularity of a novel
spherical parallel manipulator using obtained Jacobian matrices
from position equations. The workspace of the PKMs has also
been extensively studied using different methods [25–27]. Exam-
ples of common 3-DOF workspaces include reachable, maximal
and dexterous workspace [20]. To the best of authors’ knowledge,
the Jacobian, singularity and workspace analysis are not pre-
viously reported for the 3-PSP robot.

This paper is organized as follows. In Sections 2 and 3,
structure and motion variables of the robot are addressed and
two separate operational modes, coupled mixed-type and non-
pure translational, are presented, respectively. In Section 4,
inverse kinematics is discussed. A numerical method for the
coupled mixed-type mode and an analytical method for the
non-pure translational mode are presented. In Section 5, the
direct kinematics of the robot is solved utilizing a new

geometrical approach. In Section 6, using vector analysis, analy-
tical expressions for velocity and acceleration relations are
derived in invariant form. Additionally, we introduce the non-
pure rotational and non-pure translational Jacobian matrices and
use them to derive the relationship between angular and transla-
tional velocities of the moving platform and the actuated joint
rates. Using non-pure rotational and non-pure translational
Jacobian matrices, Jacobian of constraint is defined. In Section 7,
using Jacobian matrices, obtained in analytical form, the three
conventional types of singularities are analyzed. Furthermore,
using Jacobian of constraint matrix, the constraint singularity is
obtained for the 3-PSP robot. Finally, in Section 8, two numerical
methods are presented and used to calculate the robot non-pure
translation and coupled mixed-type reachable workspaces. Influ-
ence of the tool length on non-pure translation workspace is also
studied. Concluding remarks are made in last section of the paper.

2. Structural description of a spatial 3-PSP parallel robot

In this paper, a special type of a 3-PSP parallel robot with
specific architecture is investigated. The spatial 3-PSP robot is
fully parallel with three DOFs in space. The robot is composed of a
moving platform which is shaped like a symmetric tripetalous
star, called moving star (MS), and two fixed platforms. The MS is
formed by three branches, forming a planar star with each branch
making an angle of g¼1201 with the other. Various tools, end-
effectors, may be placed in the center of the MS. The MS and the
fixed platforms are connected together using three parallel legs
with identical serial kinematic chains. Each of the three legs,
consists of an active prismatic joint (P-joint) which is actuated by
a Linear rod (LR), a passive spherical joint (S-joint) and a passive
prismatic joint (P-joint). The MS is attached to the base by three
identical serial PSP linkages. The three closed kinematics loops
make the 3-PSP parallel manipulator. The actuation system for
each leg is made of a motor, a gear box and a ball screw assembly.
A kinematic chain of a general 3-PSP parallel robot is shown in
Fig. 1(a). A simplified equivalent form of the spatial 3-PSP parallel
manipulator investigated in this paper is shown in Fig. 1(b). Note
that for the spatial 3-PSP, parameters li, ci and di shown in
Fig. 1(a) are all set to zero which insures the axis of the passive
prismatic and spherical joints intersect.

The solid and physical models of a 3-PSP parallel manipulator
are also illustrated in Fig. 2.

Fig. 1. (a) A kinematic chain of a general 3-PSP parallel robot and (b) a simplified equivalent form of the spatial 3-PSP parallel manipulator

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173 159
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3. Description of vectors, reference frames, motion variables
and DOFs

Fig. 3 represents vectors and coordinate frames used for the
inverse kinematics problem of the 3-PSP. For this purpose, a fixed
coordinate frame B x,y,z

� �
is embedded in the top fixed platform,

at center point O of fixed triangle DA1A2A3. Likewise a moving
coordinate frame T{u,v,w} is attached to the tool, at point T. Point
P defines the position of the tool tip and is located along the z-axis
of frame {T}. In this paper, a leading superscript represents the
coordinate frame in which the vector is referenced. Additionally,
bold lower and upper case lettering designate vectors and
matrices, respectively. The three spherical joints are denoted
bySi (fori¼ 1, 2 and 3) and their positions with respect to point
O are denoted by Bsi . Three position vectors Bqi specify length of
each linear rod (LR) and connect corners of the fixed triangle, Ai,
to the center of the spherical joints, Si. Position of the end-effector,
point T, and tool tip, point P, with respect to {B} is given by vector
Bt¼[xT,yT,zT]T and Bp¼[xP,yP,zP]T, respectively. Three additional
position vectors, Bai locate corners of the fixed base, Ai, in {B}.
Further, the position vector T h, defined in {T}, is a vector which
connects point T to point P. The length of this vector, h, defines
the length of the tool. Finally, the position vector T bi , connects the
end-effector, point T, to the ith spherical joint, Si.

Assume the 3-PSP consists of ‘‘r’’ movable rigid bodies which
are connected together by ‘‘m’’ one-DOF joints. A multi-DOF joint
like a spherical joint can be considered as three one-DOF revolute
joints linked with two movable rigid bodies having zero mass and
dimension. Therefore, the DOF of the 3-PSP can be calculated
using the Chebyshev–Grübler–Kutzbach formula as

DOF¼ 6r�5m¼ 6� 13�5� 15¼ 3 ð1Þ

As shown in Eq. (1), the 3-PSP parallel robot has 3-DOFs in
space. We know that, the degrees of freedom for parallel robots are
equal to the number of independent motion variables for the
moving platform. Therefore, only three DOFs of the total six DOFs
considered for the MS are independent and are so-called control-
lable. The desired motion variables of the MS, may be selected as

Selection #1—Operational Mode yjZ : Two rotational DOFs
about x- and y-axis, y and j, and one translational DOF along
z-axis.
Selection #2—Operational Mode XYZ : Three non-pure transla-
tional DOFs along x, y and z-axis.

Therefore, when solving the inverse kinematics problem and
performing workspace analysis, depending on the selected DOFs,
two separate solution strategies are considered. These strategies

Fig. 2. The 3-PSP parallel manipulator: (a) solid model and (b) physical model and its controller.

Fig. 3. The vectors and coordinate frames for one typical kinematic chain of the 3-PSP parallel robot.

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173160
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will be explained in the next section. The following variables are
used.
� Variables used for MS

Rotational variables about the x-, y- and z-axis (Euler angles):
y, j, l
Translational variables of the MS center, point T, along the x-,
y- and z-axis: xT , yT , zT

Translational variables for the tool tip, point T, along the x, y

and z-axis: xP , yP , zP

� Variables used for linear motion of the linear rods

Translational variables for the linear rods, LRs: q1, q2,q3

� Variables used for linear motion of the MS branches

Translational variables for the MS branches: b1,b2,b3

Therefore, depending on the selected DOFs, three of the six MS
variables are chosen and the remaining nine variables are calculated
using inverse kinematics problem. The inverse kinematics solution
process for the two operational modes is illustrated in Fig. 4.

4. Inverse position analysis

To perform analyses such as Jacobian analysis, dynamics,
trajectory planning and stiffness analysis, we need to have the
robot kinematic variables [28,29]. Consider Fig. 3. The position
vectors used to describe the kinematic configuration of the 3-PSP
parallel manipulator can be expressed by

Ba1 ¼ a 0 0
� �T

, Ba2 ¼ ½�
1
2 a

ffiffi
3
p

2 a 0 �T ,

Ba3 ¼ ½�
1
2 a �

ffiffi
3
p

2 a 0 �T ð2Þ

T b1 ¼ ½ b1 0 0 �T , T b2 ¼ ½�
1
2 b2

ffiffi
3
p

2 b2 0 �T ,

T b3 ¼ ½�
1
2 b2 �

ffiffi
3
p

2 b2 0 �T ð3Þ

Bqi ¼ ½
0 0 qi �

T for i¼ 1,2,3 ð4Þ

Bt ¼ ½ xT yT zT �
T , Bp¼ ½ xP yP zP �

T , Bh¼ ½0 0 h �T ð5Þ

To transfer a vector defined in {T} to {B}, we can use a rotation
matrix, B

T R , which consists of three Euler angles y, f and l about x,
y and z-axis of the fixed reference frame {B}. For this purpose,

three unit vectors u, v and w along the u-, v- and w-axis of the
moving coordinate frame {T} are defined. Therefore, the rotation
matrix, B

T R , using these unit vectors is

B
T R ¼ Rz,lRy,jRx,y ¼

ux vx wx

uy vy wy

uz vz wz

264
375

¼

clcj �slcyþcl jsy slsyþclsjcy
slcj clcyþslsjsy �clsyþslsjcy
�sj cjsy cjcy

264
375 ð6Þ

where c and s stand for cosine and sine, respectively. Therefore,
the position vector Bbi , in {B}, which connects the end-effector,
point T, to the ith spherical joint, Si, can be expressed as

Bbi ¼
B
T RT bi for i¼ 1,2,3 ð7Þ

Considering Fig. 3, we can write

Bt ¼ Bp�Bh, Bh ¼ B
T RT h ð8Þ

For each kinematics chain, we can write a closed loop vector
equation as

Baiþ
Bqi ¼

Bbiþ
Bt for i¼ 1,2,3 ð9Þ

Substituting Eqs. (7) and (8) into Eq. (9), yields

Baiþ
Bqi ¼

B
T RðT bi�

T hÞþBp for i¼ 1,2,3 ð10Þ

The vector equations, Eq. (10), are called kinematics constraint
equations. These equations consist of three vector equations and
are equal to a set of nine non-linear scalar equations. In inverse
kinematics, InvKin, problem, three chosen independent variables
for the MS are given. Next, values for lengths of the LRs, qi, and
subsequently the corresponding values for rotational position of
motors, ymi, are determined. As shown in Fig. 5, we can represent
the relationship between the linear displacement of nuts and
corresponding rotational displacement of motors as

ymi ¼
Np
lb

� �
qi ð11Þ

where lb and N are the lead of the ball screws and gearbox
transmission ratio, respectively.

4.1. The first operational mode, coupled mixed-type mode yjZ

In this problem, the orientation of the MS about x- and y-axis
of the frame {B} and translation of the tool along z-axis are
considered as inputs of the InvKin problem. In this mode, the
three motion variables x, y and l are dependent on the remaining

Fig. 4. Inverse kinematics process diagram for the 3-PSP parallel manipulator.
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motion variables y, f and z. Typical applications of this mode
include orienting a laser device as well as simulator platforms. It
is also possible to install the 3-PSP robot on an XY table and
achieve a hybrid robot with 5 independent DOFs. In this case, the
hybrid robot may be used as a 5-axis CNC machine head.

4.1.1. Numerical solution for inverse kinematics problem

When variables (y,f,zP) are chosen as inputs, finding the
analytical solution for Eq. (10) is rather difficult. Therefore, a
numerical approach may be employed to find a local solution. In
this paper, a set of 9 nonlinear algebraic equations, shown in
Appendix A, are extracted from Eq. (10). These nine equations are
numerically solved using Newton iterative method as

Algorithm: Numerical solution for inverse kinematics problem

using Newton‘s method
1. Constant inputs: a and h
2. Inputs: Trajectory¼½zP , y, j�n�3, n¼number of discrete

data points on the trajectory
3. Error¼10�6 (m) An arbitrary small value (Tolerance)
4. Find an initial guess as a 9�1 vector x0¼[qi,bi,xP,yP,l]1�9 for

i¼1,2,3

For j¼1: n

While||c(xj)||4error

xj ¼ xj�1�ð
@wðxj�1Þ

@x Þ
�1wðxj�1Þ

End while
If 0rxj(1)¼q1r0.4 m and 0rxjð2Þ ¼ q2r0:4 m and

0rxj(3)¼q3r0.4 m
xj�1¼xj Update the initial guess for next level

and save xj1�9

else, xj is not a correct answer (is not within the bounds
of ball screw travel)

Next n

xj1�9 is the answer to the inverse kinematics problem for the jth point of the

trajectory.

The proposed Newton‘s method is not computationally efficient
and may not be used for real time control. Additionally, in most
robotics applications the inverse kinematics is solved offline.
Therefore, its efficiency is not that critical. Yet, various researchers
have presented methods to improve the computation time [6,30].

Next, two cases for the InvKin problem are considered and the
Newton‘s method is used to obtain the solutions. In the first case,
the length of the tool is assumed to be zero while the second case
assumes tool length of h¼8 cm. Results are depicted in Fig. 6 and

Table 1. To provide a better visual perspective, the tool position at
y¼ 0, j¼ 0 and zT ¼ 0:25 m are also shown in this figure.

4.2. The second operational mode, non-pure translational mode XYZ

In this problem, the Cartesian position of the tool tip with
respect to the x-, y- and z-axis of the frame {B} are used as inputs
and corresponding lengths of the LRs, qi, are considered as
outputs of the InvKin problem. In this mode, the three motion
variables y, f and l are dependent on the remaining motion
variables x, y and z. In author‘s opinion, this mode does not have
much practical applications. This is because in addition to having
non-pure motion, small motions in x, y and z may require large
changes in y, f and l. In our laboratory, we have mostly used this
mode for teaching applications as path traveled by tool tip can be
easily, physically, observed.

4.2.1. Analytical solution for inverse kinematics problem

Consider Fig. 7. Three constraint scalar equations are required
to express the relationship between inputs,ðxP ,yP ,zPÞ, and outputs
parameters,ðq1,q2,q3Þ. According to structure of the robot, we
know that the position of the three S-joints, Si, and center of the
MS, point T, are located on the MS plane. Then, for the first
constraint equation, we will use the position of the three S-joints
and center of the MS to obtain equation of the MS plane.

ðbsnormalÞUðsi�tÞ ¼ 0 ð12aÞ

The scalar representation of Eq. (12a) may be expressed by

Aðx�xT ÞþBðy�yT ÞþCðz�zT Þ ¼ 0 ð12bÞ

where scalar parameters A, B and C are components of the normal
unit vector to the MS plane called bsnormal. This unit vector can be
defined as

bsnormal ¼
s12 � s13

:s12 � s13:
¼ A B C
� �T

ð13Þ

where s12 and s13 are position vectors which connect the first
S-joint, S1, to the second and third S-joints (S2,S3), respectively.
These vectors are illustrated in Fig. 7 and are define as

sij ¼ sj�si for i¼ 1,2,3 and j¼ 2,3,1 ð14Þ

where

si ¼ qiþai ð15Þ

To obtain the second and third constraints, we note that the
angles between each two branches of the MS are equal to
g¼ 1201.

Fig. 5. The ith motor, ball screw and nut assembly.

A. Rezaei et al. / Robotics and Computer-Integrated Manufacturing 29 (2013) 158–173162
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Therefore, we can write

b1:b2 ¼ b1b2 cosð1201Þ, b2:b3 ¼ b2b3 cosð1201Þ ð16Þ

Additionally, vectors bi can be expressed using center of the
MS, point T, and position of the ith S-joint, point Si, as

bi ¼ si�t ð17Þ

The magnitude of the vectors, bi, can be expressed by

bi ¼ :si�t: ð18Þ

The three scalar constraint equations required for solving the
InvKin problem can be obtained by substituting Eqs. (17) and (18)
into Eq. (16), as well as using the MS plane Eq. (12b). These three
equations, express relationship between center of the MS
position,ðxT ,yT ,zT Þ, and lengths of the LRs, qi. To obtain the posi-
tion of the tool tip,ðxP ,yP ,zPÞ, we can use the vector loop Eq. (8).

The vector Bh may be expressed using bsnormal as

Bh ¼ h bsnormal ð19Þ

Therefore, we can rewrite the vector loop Eq. (8) as

xT

yT

zT

8><>:
9>=>;¼

xP

yP

zP

8><>:
9>=>;�h

A

B

C

8><>:
9>=>; ð20Þ

Substituting values of the MS center position, Eq. (20), into the
three constraint equations as well as substituting any of the
S-joints positions into Eq. (12b) will yield three scalar constraint
equations based on the position of the tool tip and length of the
LRs. Next, MAPLE software may be used to solve the three scalar
equations and obtain closed form solution for qi values as Eq. (21).
Note the solutions are values of qi with respect to the position of
the tool tip.

qi ¼
f 1ðxP ,yP ,zP ,a,hÞ

f 2ðxP ,yP ,zP ,a,hÞ

( )
for i¼ 1,2,3 ð21Þ

In this mode of operation, unlike the first, there are two different
answers for the InvKin problem of the robot (see Eq. (21)). Once the
values of qi are known, we can obtain corresponding position of the
MS center, point T. Therefore, using Eqs. (18) and (20), the values for
bi are obtained. The corresponding Euler angles, using qi, can be
obtained using the rotation matrix, Eq. (6). The rotation matrix, B

T R ,
is defined using three unit vectors u, v and w. These unit vectors
can be expressed as

u¼ ½ux uy uz �T ¼
b1

:b1:
ð22aÞ

w¼ ½wx wy wz �T ¼bsnormal ð22bÞ

Table 1

Inputs/outputs values of InvKin analysis for operational mode yfZ.

Inputs Outputs

y (deg.) f (deg.) zP (m) q1 (m) q2 (m) q3 (m) xP (m) yP (m) l (deg.) b1 (m) b2 (m) b3 (m)

Case #1 �35.01 0 0.25 0.25 0.14 0.36 0.02 0 0 0.161 0.221 0.221

Case #2 �35.01 0 0.25 0.2645 0.1547 0.3743 0.02 0.046 0 0.161 0.221 0.221

Case #1: a¼0.181 m, h¼0; Case #2: a¼0.181 m, h¼0.08 m.

Fig. 7. The MS plane and its related vectors.

Fig. 6. Inverse kinematics results for mode yjZ.
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v¼ ½vx vy vz �T ¼w� u ð22cÞ

Therefore, the Euler angles using Eqs. (6) and (22) are obtained
as

y¼ tan�1ð
vz

wz
Þ, j¼ sin�1

ð�uzÞ, l¼ tan�1 uy

ux

� �
ð23Þ

Based on structure of the robot, values greater than 90o are not
acceptable. One of the advantages of using the 3-PSP robot in its
first mode of operation is that its InvKin problem has a unique
solution. However, as will be shown in the workspace section, the
XYZ mode has a smaller space than the yfZ mode.

Next, two cases for the InvKin problem are considered. In the
first case, the length of the tool is assumed to be zero while the
second case assumes tool length of h¼8 cm. Furthermore, the
selected xyz input position, is the equal to the output of the yfZ

shown in Table 1—case#1. Results are depicted in Fig. 8 and
Table 2.

As expected, by comparing Tables 1 and 2 for the case #1, it
can be seen that all related variables are equal. See bold numbers
in Tables 1 and 2. Next, InvKin solutions for the case when tool
length is non-zero, for the two modes are considered. Results are

depicted in Fig. 9 and Table 3. As expected, by observing Table 3,
it can be seen that all related variables for one of the solutions are
equal (see bold numbers).

5. Direct position analysis

Unlike serial robots, the direct kinematics (DirKin) problem of
parallel robots is more involved and complicated. Typically, the
DirKin problem of parallel robots leads to solving a high degree
polynomial. By solving this equation, several answers are
obtained. Some of these answers are in imaginary form and some
are physically not reachable by the robot. However, some answers
are both real and consistent with physical limitations of the robot
structure. These answers are the correct answers. In this section, a
new approach for solving the DirKin problem of the 3-PSP is
presented. The approach uses the geometry of the robot. We will
show that unlike most parallel robots, using the proposed
approach, only one answer is obtained for the DirKin problem.

Consider Figs. 3 and 10. The position of three spherical joints,
Si, in the fixed base coordinate frame {B} can be determined using
ai and position of the three moving blocks qi. The MS plane can

Fig. 8. Inverse kinematics results for mode XYZ.

Table 2
Inputs/outputs values of InvKin analysis for operational mode XYZ.

Inputs Outputs

xp (m) yp (m) zp (m) q1 (m) q2 (m) q3 (m) y (deg.) j (deg.) l (deg.) b1 (m) b2 (m) b3 (m)

Case #1 0.02 0 0.25 0.25 0.36 0.14 35.01 0 0 0.161 0.221 0.221

0.25 0.14 0.36 �35.01 0 0 0.161 0.221 0.221

Case #2 0.02 0 0.25 0.115 0.201 0.201 0 17.65 0 0.194 0.181 0.181

�0.291 0.299 0.299 0 65.29 0 0.559 0.181 0.181

Case #1: a¼0.181 m, h¼0; Case #2: a¼0.181 m, h¼0.08 m.
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next be determined using the three points Si. Fig. 10 shows guide
planes and auxiliary coordinates frames required for solving the
DirKin problem of the 3-PSP parallel robot.

Consider two auxiliary coordinate frames {A} and {S} shown in
Fig. 10. Origin of the fixed coordinate frame {A} is attached to the
top fixed platform, at the point A1. Its x- and z-axis are along the
line connecting points A1 to A2 and z-axis of the fixed coordinate
frame {B}, respectively. Origin of the moving coordinate frame {S}
is attached to the point S1 on the MS plane. Its x- and z-axis are
along the line connecting points S1 to S2 and z-axis of the moving
coordinate frame {T}, respectively. To transform frame {S} to
frame {B}, two translations and three rotations are needed. To
do this, two axes, axis-a and axis-b are defined which both pass
through point S1 but their directions are parallel to y-axis of {B}
and x-axis of the frame {S}, respectively. Table 4 shows steps to
transform frame {S} to frame {B}.

Fig. 10. Coordinate frames and guide planes to solve DirKin problem.

Table 4
Transformation steps—{S} to {B}.

Translation/rotation Along/about Coordinate frame Value

Step #1 Translation x {B} a

Step #2 Rotation z {B} 5p/6

Step #3 Translation zA {A} q1

Step #4 Rotation axis-a or y-axis {B} a
Step #5 Rotation axis-b or xS-axis {S} b

mode θφZ mode XYZ

Fig. 9. Comparison between InvKin answers for modes yjZ and XYZ. (a) mode yjZ and (b) mode XYZ.

Table 3

Comparison between InvKin answers for modes yfZ and XYZ.

Inputs Outputs

Mode yfZ y (deg.) j (deg.) zP (m) q1 (m) q2 (m) q3 (m) xP (m) yP (m) l (deg.) b1 (m) b2 (m) b3 (m)

�17.53 13.54 0.25 0.132 0.152 0.251 0.02 0.03 �2.09 0.185 0.178 0.202

Mode XYZ xP (m) yP (m) zP (m) q1 (m) q2 (m) q3 (m) y (deg.) j (deg.) l (deg.) b1 (m) b2 (m) b3 (m)

0.02 0.03 0.25 0.132 0.152 0.251 �17.53 13.54 �2.09 0.185 0.178 0.202

�0.261 0.272 0.321 �9.5 63.88 �5.93 0.532 0.15 0.215

a¼0.181 m, h¼0.08 m.
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The transformation matrix, B
S T, which transfers frame {S} to

frame {B} is define as

B
S T ¼ B

ATA
S T ð24Þ

where A
S T and A

S T are the transformation matrix which transfer
frame {S} to frame {A} and frame {A} to frame {B}, respectively.
These matrices are defined as follow:

B
AT ¼

B
AR B

At

01�3 1

" #
, A

S T ¼
A
S R A

S t

01�3 1

" #
ð25Þ

where j
iR is a 3�3 rotation matrix which rotates frame {i} to

frame {j}, and j
it is a 3�1 vector that locates origin of {i} relative

to origin of {j}. These rotation matrices and vectors are expressed
as

B
AR ¼Rðz,

5p
6
Þ ¼

cosð5p=6Þ �sinð5p=6Þ 0

sinð5p=6Þ cosð5p=6Þ 0

0 0 1

264
375, B

At ¼

a

0

0

264
375 ð26Þ

A
S R ¼Rðy,bÞRðx,aÞ ¼

cb sbsa sbca
0 ca �sa
�sb cbsa cbca

264
375, A

S t ¼

0

0

q1

264
375 ð27Þ

The tool position and orientation is more conveniently defined
in {S} which is why the direct kinematics solutions are first

obtained in frame {S}. Using the transformation matrix, B
S T,

vectors obtained in {S} can be transferred to the fixed frame {B}.
Then, the corresponding values of the Euler angles can be
obtained using Eq. (6). Finally, by transferring the point T along
the z-axis of frame {T} by h, position of the tool tip, point P, which
is the answer of DirKin problem is obtained. Fig. 11 shows the
normal view, along zS, of the MS plane. The center of the MS, point
T, is situated on the MS plane. This plane, P3, contains the three
points, Si. The location of point T in frame {S}, also located in
xS�yS plane, can be obtained from intersection of two arcs S1TS3

and S2TS3. When a normal view of the MS, along zS, is considered,
the shape of the MS will always be in form of a symmetrical
tripetalous star with 1201 angles between any two branches.
Therefore, upon obtaining position of points Si and knowing that
angles +S1C1S2 and +S1C2S3 are equal to 1201, center of two
circles C1ðx

0
1,y01Þ and C2ðx

0
2,y02Þ with radiuses r1 and r2 can be

obtained.
The equations of these two circles are defined as

ðx0�x01Þ
2
þðy0�y01Þ

2
¼ r2

1 ð28aÞ

ðx0�x02Þ
2
þðy0�y02Þ

2
¼ r2

2 ð28bÞ

Next, the position vector of point T, St, can be obtained in the

local frame {S}. This point is result of intersecting the two above
circles. These two circles intersect each other at two points, S1 and
T. Therefore, there are two real answers for this set of equations.
We know that base of auxiliary coordinate frame {S} is always
attached to point S1. Therefore, one of the answers is zero
(position of the point S1 in local frame {S}, which is ð0,0,0Þ).
However, the second answer, the acceptable answer, is the

position of point T in local frame {S} as St ¼ ½ x0T y0T 0 �T . This

answer can be transferred to fixed coordinate frame {B} by using
of the transformation matrix, Eq. (24). Therefore, position of the
point T in frame {B} can be obtained

Bt ¼ B
S TSt ð29Þ

where Bt ¼ ½ xT yT zT �
T is position of the point T in frame {B}.

Having the position of point T in frame {B} and position of the
three S-joints, Si, we can obtain the length of each branch of

MS, bi, Eq. (18). Therefore, to obtain the position of the tool tip,
point P, position of the point T is transferred along unit vectorFig. 11. Perpendicular view to the MS plane.

Fig. 12. Direct kinematics results.
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bsnormal which is previously defined in Eq. (13). Therefore, the
position vector of the tool tip, ðxP ,yP ,zPÞ, can be determined by
rewriting Eq. (8) as

Bp ¼ Btþhbsnormal ð30Þ

Once bi and (xP,yP,zP) are calculated, the remaining output
variables, the corresponding Euler angles ðy,j,lÞ, can be calcu-
lated. To do this, similar to steps outlined for second mode of
InvKin problem, Eqs. (22) and (23) are used. Next, similar to the
InvKin section, two cases for the DirKin are considered. In the first
case, the length of the tool is assumed to be zero while the second
case assumes tool length of h¼8 cm. Results are depicted in
Fig. 12 and Table 5.

6. Jacobian analysis

In this section, Jacobian matrices describing relationship
between the end-effector and the LRs velocity vectors are
obtained. Using Jacobian matrices, singularity analysis and var-
ious kinds of singularities for the 3-PSP parallel robots are
investigated. The acceleration inversion is also presented.

6.1. Velocity inversion

The kinematics constraint equations, Eq. (10), are defined in
the base frame {B}. Therefore, for ith limb of the 3-PSP robot, both
sides of the Eq. (10) can be time differentiated to yield

_qi
bqi ¼

_b i
bbiþxs � bi�xs � hþvP for i¼ 1,2,3 ð31Þ

where bqi and bbi are unit vectors along ith LRs and ith branch of
the MS respectively. The values _qi and _bi represent the ith
actuated joint rate and ith passive prismatic translational joint
rate, respectively. Additionally, vectors os and vP denote angular
velocity vector of the MS and Cartesian velocity vector of the tool
tip, respectively. For brevity, in Eq. (10), the superscript ‘‘B’’
denoting the frame {B} in which vectors are defined in, is
eliminated.

To eliminate the translational velocity vectors of the passive P

joint, _bi
bbi, both sides of Eq. (31) are dot multiplied with a specific

vector which is perpendicular to the three vectors b1,b2 and b3.
Additionally, as shown in Fig. 13, three unit vectors bmi which are
all perpendicular to the MS plane can be defined as

bmi ¼
bi � bj

:bi � bj:
for i¼ 1, 2, 3 and j¼ 2,3,1 ð32Þ

The three unit vectors bmi are perpendicular to the MS plane
and therefore are also perpendicular to vectors bi. Then, by dot
multiplying both sides of Eq. (31) with bmi, the terms _bi

bbi can be
eliminated. Then

_qi
bmiUbqi ¼

_bi bmiU
bbiþ bmiUðxs � ðbi�hÞÞþ bmiUvP for i¼ 1,2,3 ð33Þ

where

bmi ?
bbi for i¼ 1, 2, 3 ð34Þ

Also, we know that

AUðB� CÞ ¼ ðC� AÞUB ð35Þ

Eq. (33) can be rewritten as follows:

_qi
bmiUbqi ¼ ððbi�hÞ � bmiÞUxsþ bmiUvP for i¼ 1, 2, 3 ð36Þ

Finally, three scalar equations shown in Eq. (36) can be written
in matrix form as follows:

Jinv
_q ¼ Jdir

_X ð37Þ

where _q ¼ ½ _q1 _q2 _q3 �
T and _X ¼ ½ vP xs �

T are vectors of the

linear actuated joint rates and the MS velocities, respectively.

Additionally, vP ¼ ½ _xP _yP _zP �
T and xs ¼ ½

_y _j _l �T , represent

translational and angular velocities of the MS, respectively.
Therefore,

Jinv ¼

cm1Ubq1 0 0

0 cm2Ubq2 0

0 0 m 3Ubq3

24 35
3�3

, Jdir ¼

bm1
T
ððb1�hÞ � bm1Þ

T

bm2
T
ððb2�hÞ � bm2Þ

T

bm3
T
ððb3�hÞ � bm3Þ

T

24 35
3�6

ð38Þ

where Jinv and Jdir are inverse and direct Jacobian matrices,
respectively. In view of Eq. (37), we can rewrite

_q ¼ J _X ð39Þ

where J¼ J�1
invJdir is a 3�6 matrix called overall Jacobian matrix of

the 3-PSP parallel manipulator. Eq. (39) has many practical
applications such as calculating the robot stiffness matrix [4,15]

and robot dynamics. As stated before, the vector _X, also known as
twist vector, has three translational and three rotational speeds.
Using Eq. (37) all 6 speed components of the MS are mapped to
3 speed components of LRs. However, the 3-PSP has only three
DOFs and therefore only three of the six speed components in the

twist vector, _X, are independent and can be specified as inputs for
the inverse velocity problem. Therefore, a new 3�3 Jacobian
matrix is defined which maps the three desirable independent MS
speed components to the three speed components of LRs. Then,
one must first define which speeds are specified and eliminate the
dependent speeds from Eq. (37).

Consider selecting _y, _j and _l as independent and _x, _y and _z as
dependent MS speed variables, respectively. Then Eq. (37) can be
re-written as

Jinv
_q ¼ Jdir XvPþ Jdir Yxs ð40Þ

where Jdir X and Jdir Y are

Jdir X ¼

cm1
T

cm2
T

cm3
T

24 35
3�3

, Jdir Y ¼
ððb1�hÞ �cm1Þ

T

ððb2�hÞ �cm2Þ
T

ððb3�hÞ �cm3Þ
T

24 35
3�3

ð41Þ

To find the relationship between the angular velocities of the
MS, os, and the translational tool tip velocities, vP, both sides of
Eq. (31) are dot multiplied with a specific unit vectors. These unit
vectors, called as bki, are perpendicular to both _qi

bqi and _bi
bbi

vectors and are shown in Fig. 14.
To define bki, three additional guide planes, called P4, P5 and P6

are introduced. These three planes pass from three points Ai, T

Table 5
Inputs/outputs values of DirKin analysis.

Inputs Outputs

q1 (m) q2 (m) q3 (m) xP (m) yP (m) zP (m) y (deg.) f (deg.) l (deg.) b1 (m) b2 (m) b3 (m)

Case #1 0.15 0.21 0.32 �0.003 0.012 0.224 �19.34 21.78 �3.75 0.198 0.169 0.213

Case #2 0.15 0.21 0.32 0.027 0.037 0.294 �19.34 21.78 �3.75 0.198 0.169 0.213

Case #1: a¼0.181 m, h¼0; Case #2: a¼0.181 m, h¼0.08 m.
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and Si, respectively. Therefore, we can write

bki ¼
ei � qi

:ei � qi:
for i¼ 1,2,3 ð42Þ

where vectors ei connect points Ai to T and are expressed as

ei ¼ T�ai for i¼ 1,2,3 ð43Þ

Unit vectors bki are then perpendicular to planes containing the

three vectors, qi, ei and bi, respectively. Next to eliminate _qi
bqi and

_bi
bbi terms, both sides of Eq. (31) are dot multiplied with bki, as

_qi
bkiUbqi ¼

_bi
bkiU
bbiþ

bkiUðxs � ðbi�hÞÞþbkiUvP for i¼ 1,2,3 ð44Þ

wherebki ?
bbi and bki ? bqi for i¼ 1,2,3 ð45Þ

Therefore, Eq. (44) is simplified as

bkiUvPþððbi�hÞ � bkiÞUxs ¼ 0 for i¼ 1,2,3 ð46Þ

Finally, three scalar equations shown in Eq. (46) are re-written
in matrix form as

JvpvPþJosxs ¼ 0 ð47aÞ

where

Jvp ¼

bkT

1bkT

2bkT

3

264
375

3�3

, Jos ¼

ððb1�hÞ � bk1Þ
T

ððb2�hÞ � bk2Þ
T

ððb3�hÞ � bk3Þ
T

24 35
3�3

ð47bÞ

Therefore, Eq. (47a) can be re-written as

Jc
_X ¼ 03�1 ð48aÞ

where Jc ¼ ½
Jvp Jos � is a 3�6 matrix called Jacobian of con-

straints for the 3-PSP parallel manipulator. The Jacobian of
constraints matrix, Jc, can be written as

Jc ¼

bkT

1 ððb1�hÞ � bk1Þ
T

bkT

2 ððb2�hÞ � bk2Þ
T

bkT

3 ððb3�hÞ � bk3Þ
T

264
375

3�6

ð48bÞ

Each row in the Jacobian of constraints matrix, represents a
unit wrench of constraints imposed by the joints of a limb. This
matrix will later, Section 7.4, be used to obtain related singula-
rities when the moving platform has constrained motion.

6.1.1. Non-pure rotational and translational Jacobian matrix

In direct velocity inversion, _qi are supplied and using Eq. (37),
the three translational and rotational velocities of the MS are
obtained. Conversely, in trajectory planning applications, the MS
velocities are specified and motor speeds are obtained. The 3-PSP
has three independent DOFs. Therefore, one must first decide
which three of the six DOFs, operational modes, are used. For this
purpose, non-pure rotational and non-pure translational modes of

operation, y f l and XYZ, are considered and the relationships
between independent velocities due to the MS in each mode and
actuated joint rates are obtained. From Eqs. (40) and (47a), the

relationship between the linear actuated joint rates, _q, and the
angular velocities of the MS, xs, can be calculated as

Jinv
_q ¼ Jrotxs ð49Þ

where Jrot ¼ ðJdir XJ�1
vp Josþ Jdir YÞ is a 3�3 matrix and is called non-

pure rotational Jacobian matrix. Additionally, the relationship

between the linear actuated joint rates, _q, and the translational
tool tip velocity, vP, can be expressed as

Jinv
_q ¼ JtransvP ð50Þ

where Jtrans ¼ ðJdir XþJdir YJ�1
os JvpÞ is also a 3�3 matrix and is called

non-pure translational Jacobian matrix. There are several advan-
tages in splitting the overall Jacobian of constraint matrix and
obtaining Eqs. (49) and (50). The resulting square, 3�3, non-pure
rotational and non-pure translational Jacobian matrices will now
better enable trajectory planning as well as obtaining the singu-
larities in non-pure rotational and non-pure translational modes,
respectively.

6.2. Acceleration inversion

In this subsection, the relationship between the translational
and angular acceleration of the MS and the LRs velocity vectors
are obtained. To do this, both sides of Eq. (31) are time differ-
entiated to yield:

€qi
bqi ¼ ð

€b i
bbiþxs �

_b i
bbiÞþð _xs � biþxs �

_bi
bbiþxsðxs � biÞÞ

�ð _xs � hþxs � ðxs � hÞÞþ _vP for i¼ 1,2,3 ð51Þ

The values €qi and €bi represent the ith actuated joint accelera-
tion and ith passive prismatic joint linear acceleration, respectively.

Fig. 13. Definition of the three unit vectors bmi.

Fig. 14. Definition of the three unit vectors bki .
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Additionally, vectors _xs and _vP denote angular acceleration vector
of the MS and Cartesian acceleration vector for the tool tip,
respectively. We know that

A� ðB� CÞ ¼ ðA:CÞB�ðA:BÞC and A� B¼�B� A ð52Þ

Using above relations, Eq. (51) can be rewritten as follows:

€qi
bqi ¼

€bi
bbiþ2xs �

_bi
bbiþ _xs � ðbi�hÞþðxs:ðbi�hÞÞxs

�ðxs:xsÞðbi�hÞþ _vP for i¼ 1,2,3 ð53Þ

By substituting vector _bi
bbi from Eq. (31) into above equation,

we will have

€qi
bqi ¼

€bi
bbiþ2xs � _qi

bqi�2xs � ðxs � ðbi�hÞÞ�2xs � vPþ _xs � ðbi�hÞ

þðxs:ðbi�hÞÞxs�ðxs:xsÞðbi�hÞþ _vP for i¼ 1,2,3 ð54Þ

Consider relationship (52), we can rewrite the above equation as

€qi
bqi ¼

€bi
bbiþ2xs � _qi

bqi�2xs � vPþ _xs � ðbi�hÞ�ððxs:ðbi�hÞÞxs

þðxs:xsÞðbi�hÞþ _vP for i¼ 1,2,3 ð55Þ

To eliminate the linear acceleration vectors of the passive
prismatic joint, €bi

bbi, both sides of Eq. (55) are dot multiplied with
unit vectors, bmi, defined in Eq. (32). We can write

€qi
bmi:bqi ¼ ððbi�hÞ � bmiÞ: _xsþ bmi: _vPþ2ðð _qi

bqi � bmiÞ�ðvP � bmiÞÞ:xs

þðxs:xsÞ bmi:ðbi�hÞ�ðxs:ðbi�hÞÞ bmi:xs for i¼ 1,2,3 ð56Þ

Finally, the three above scalar equations can be written in
matrix form as follows:

Jinv
€q ¼ Jdir

€XþNxsþM ð57Þ

where €q ¼ ½ €q1 €q2 €q3 �
T and €X ¼ ½ _vP xs �

T are the actuated

joints and MS acceleration vectors, respectively. Additionally,

_vP ¼ ½ €x €y €z �T and _xs ¼ ½
€y €j €l �T represent linear and angu-

lar accelerations of the MS, respectively. Finally, the matrices N
and M are defined as

N¼
2ðð _q1

bq1 � bm1Þ�ðvP � bm1ÞÞ
T

2ðð _q2bq2 � bm2Þ�ðvP � bm2ÞÞ
T

2ðð _q3
bq3 � bm3Þ�ðvP � bm3ÞÞ

T

24 35
3�3

,

M¼
ðxs:xsÞ bm1:ðb1�hÞ�ðxs:ðb1�hÞÞ bm1:xs

ðxs:xsÞ bm2:ðb2�hÞ�ðxs:ðb2�hÞÞ bm2:xs

ðxs:xsÞ bm3:ðb3�hÞ�ðxs:ðb3�hÞÞ bm3:xs

" #
3�1

ð58Þ

Upon completion of velocity inversion analysis, all speed compo-
nents of both MS and actuators are determined. Therefore, Eq. (57)
provides the relationship between angular and linear acceleration of
the MS with linear acceleration of the three actuators.

7. Singularity analysis

In singular configuration, the mobile platform may instanta-
neously gain one or more unconstrained degrees of freedom.
Therefore, in singular configurations, one or more DOFs of the
moving platform are not controllable. Singularities are undesir-
able situations in manipulator operation for both motion and
force control. For example, in some singular configurations; the
moving platform can have motion even if all actuated joints are
locked. Trajectory planning is another application where singu-
larity information is used. Clearly, trajectories that do not pass or
come close to singular points are desirable.

Singularity limits and separates the workspace of a mechan-
ism. Therefore, a usable robot workspace may be obtained by
eliminating all the singular configurations from the theoretical
workspace. The simplified velocity relation introduced in Eq. (39)
can be used in deriving the singularity equation of the parallel
manipulators. Algebraically, a singularity occurs when the overall
Jacobian matrix, J, Eq. (39), is not of full rank or when the
determinant of this matrix becomes zero. However, using the

overall Jacobian matrix to analytically determine the singularity
equations is difficult. To overcome this, the traditional form of
velocity relation, Eq. (37), is used which allows finding the
singularity conditions.

In this paper, the singularities of the 3-PSP are classified into three
categories which are defined by when Jinv, Jdir or both become
singular. Additionally, the constraint singularity using Eqs. (48a) and
(48b) is derived and singular configurations is investigated.

7.1. The first type of singularity—Inverse Kinematic Singularity (IKS)

This type of singularity, called IKS, occurs whenever Jinv

becomes singular but Jdir is invertible. As shown in Eq. (38),
matrix Jinv is a square matrix while matrix Jdir is not. The first type
of singularity occurs when

detðJinvÞ ¼ 0 , but RankðJdirÞ ¼ 3 ðfull rankÞ

From Eq. (38) this condition requiresbmiUbqi ¼ 0 for i¼ 1 or 2 or 3

There are three conditions that can fulfill the above relation.
These include, when either bmi, or bqi are zero or both bmi and bqi

are perpendicular to each other. The values of the unit vectors bmi

and bqi by definition are not zero. The only remaining condition is
when both unit vectors bmi and bqi are perpendicular to each other.
Theoretically, this condition can occur whenever one of the LR’s
lengths becomes infinite. In reality, because the motions of the
LRs are limited, this condition cannot occur. Therefore the first
type of singularity does not occur for the 3-PSP robot.

7.2. The second type of singularity—Direct Kinematic Singularity

(DKS)

This type of singularity, called DKS, occurs whenever Jdir

becomes singular but Jinv is invertible. The second type of
singularity occurs when

detðJinvÞa0, but RankðJdirÞo3

Note that Jdir is not a square matrix and if RankðJdirÞ ¼ 3 then
Jdir is a full rank. Therefore, the second type of singularity occurs
whenever rank of matrix Jdir is equal to 1 or 2. Theoretically, this
type of configuration is reached whenever two rows of Jdir are
linearly dependent. First, consider unit vector bmi in matrix Jdir . By
inspection of Eq. (32), we can see that the unit vectors bmi in
matrix Jdir are parallel. Therefore, these unit vectors are always
linearly dependent.

Next, consider vectors ðbi�hÞ � bmi in matrix Jdir . If two of three
vectors ðbi�hÞ � bmi are also parallel then two rows of the matrix
Jdir will be linearly dependent. Therefore, if the second condition
was to hold, then matrix Jdir will not be full rank. However, the
structure of the MS does not allow any two of three vectors
ðbi�hÞ � bmi to be parallel. Therefore the second type of singular-
ity also does not occur for the 3-PSP robot.

7.3. The third type of singularity—Combined Singularity (CS)

This type of singularity, called CS, occurs whenever both Jinv

and Jdir simultaneously become singular. For this purpose, the
third type of singularity occurs when:

detðJinvÞ ¼ 0 and RankðJdirÞo3

Generally, this type of singularity can occur only for manip-
ulator with special kinematic architecture and it has a slightly
different nature than the first two since it depends on the
configuration and the architecture of the manipulator [1].
We have this type of singularity whenever the two previously
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defined singularities occur simultaneously. Therefore, from Eq.
(38) this requirement implies,

detðJinvÞ ¼ 0) bmiUbqi ¼ 0 for i¼ 1 or 2 or 3

RankðJdirÞo3)

bmi ¼ 0, for i¼ 1 or 2 or 3

or,

ðith row of JdirÞ ¼ ðjth row of JdirÞ

8><>:
If the two above requirements occur simultaneously, the third

type of singularity will occur. For this purpose, one of the three
vectors bmi must have zero components. However, this condition
also does not occur as bmi is a unit vector and cannot be zero.

7.4. Constraint singularity

The constraint singularity occurs whenever Jc become singular
[31,32]. For this purpose, this type of singularity occurs when:

RankðJcÞo3

As shown in Eq. (48b), this type of singularity can occur
whenever any one of the two following conditions is met:

Condition #1: One of three unit vectors bki has zero components.
This cannot occur as bki are unit vectors and cannot be zero.
Condition #2: Two rows of matrix Jc are linearly dependent.
This can occur whenever two of three unit vectors bki are
linearly dependent and the corresponding two of the three
vectors ðbi�hÞ � bki are also linearly dependent. This can occur
when tool length is zero, h¼0, and all three guide planes P4, P5

and P6 are perpendicular to the top fixed platform DA1A2A3.
This implies the lengths of all three LRs are equal, (q1¼q2¼q3)
(see Fig. 15(a)). To better explain this singularity concept of
force is used. As shown in Fig. 15(b), forces in x-direction are
not experienced by the motors of the 2-link robot. Similarly, as
shown in Fig. 15(c), forces in x- and y-directions are not
experienced by motors of the 3-PSP.

Additionally, we can conclude that when the constraint singularity

occur, both Jrot ¼ ðJdir XJ�1
vp JosþJdir YÞ and Jtrans ¼ ðJdir X þ Jdir YJ�1

os JvpÞ

are not computable. These conditions occur whenever detðJvpÞ ¼ 0

and detðJosÞ ¼ 0.

8. Workspace analysis of 3-PSP parallel robot

The workspace of the 3-PSP can be determined based on
the required application. For example, one may choose the
non-pure translation, non-pure orientation, or the coupled
mixed-type workspace. In this section two modes of opera-
tion are selected, XYZ and yjZ, and the reachable workspaces
is obtained using a numerical approach based on discretiza-
tion of the MS variables. The robot parameters of ai and h are
considered to be 181 mm and 80 mm, respectively. Addition-
ally, the range of LRs motion is considered to be 0rqir40 cm.
The InvKin solution for each Cartesian node is calculated
and robot workspace is obtained. The following algorithm is
used:

Algorithm#1 for obtaining the workspace using InvKin
For zP ¼ 0 to 40 cm, step size¼2 cm (20 layers)

For xP¼�10 to 10 cm, step size¼0.1 cm

or y¼751 to �751, step size¼11

For yP ¼�10 to 10 cm, step size¼ 0:1 cm

or j¼ 751to�751, step size¼ 11

Solve Invkin of the 3-PSP parallel manipulator

(Calculate qi,bi,l and y,j or xP ,yP using inverse kinematics)
If 0rqir40 cm and errorr10�5 cm

xP , yP or y,j are on the workspace
Else, are not on the workspace;
End if

End
End

End

Note that, the range considered for values xP and yP as well as y
and f used by the algorithm are larger than, the limit allowed by

Fig. 15. The inverse non-pure translational singularity: (a) singular configuration, condition #2, (b) concept of non-pure translational singularity using force as

explanation, and (c) 2-link robot in singular configuration.
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the robot. The larger range insures all points are included in
available workspace for the robot.

A second method for obtaining workspace based on DirKin is
also presented. In Section 5, we showed that DirKin of this chain
has a unique solution. This important property of the 3-PSP is
used to obtain the workspaces. For this purpose another numer-
ical algorithm, is presented

Algorithm#2 for obtaining the workspace using DirKin
For q1¼0 to 40 cm, step size¼0.1 cm

For q2¼ 0 to 40 cm, step size¼0.1 cm
For q3¼0 to 40 cm, step size¼0.1 cm

Direct kinematics of the 3-PSP parallel manipulator

(Calculate xP ,yP ,zP and y, j using direct kinematics)
End

End
End

Using the second algorithm, there is no need to filter the
answers because all answers are within the workspace. The
reachable workspace related to rotational and translational para-
meters of MS, (y,f,zP), is shown in Fig. 16(a). Additionally, the
reachable workspace related to translational parameters of tool
tip, (xP,yP,zP), both with and without considering length of the
tool, h, is shown in Figs. 16(b) and (c).

Consider Figs. 16(a) and (b). A direct comparison between the
two workspaces cannot be made due to the different units
used for the axis. However, comparison between these two
graphs provides a perspective for the range of motion in its
corresponding workspace. Using this viewpoint, we may conclude
that the ranges of values (motion) for variables in the yfZ

workspace are significantly larger than the corresponding XYZ

workspace. Furthermore, as expected, there is no control on MS
orientation in the XYZ mode, therefore it is possible that
small changes in XYZ variables result in large changes in MS
orientation. Therefore, we can conclude that the 3-PSP is better

Fig. 16. Reachable workspace: (a) coupled mixed-type workspace (R2T1, y,f,zP), (b) non-pure translation workspace (xP,yP,zP) without tool, h¼0 and (c) non-pure

translation workspace (xP,yP,zP) with tool, h¼0.08 m.

Fig. 17. Reachable workspace related to translational parameters of tool tip (xP,yP,zP) in plane zP¼20 cm: (a) without tool, h¼0 and (b) with tool, h¼8 cm.
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suited to be operated in the y f Z mode. The effect of adding a tool
with specific height, h¼8 cm, on the XYZ workspace is also
investigated (see Figs. 16(b) and (c)). At the first glance, one
may conclude that the workspace is significantly enlarged.
However, consider the reachable workspace obtained in plane
zP¼20 cm (see Fig. 17(a) and (b)). As can be seen, even though the
overall workspace area is increased, from Figs. 17(a) and (b),
the effective area is only slightly increased. In Fig. 17(b), the
robot is restricted to pass through point E, F and G in order to
reach its full potential. Therefore, the internal triangle DEFG is its
effective workspace which is only slightly larger than triangle in
Fig. 17(a).

9. Conclusion

A spatial type of the 3-PSP parallel manipulator with specific
architecture is introduced. The robot has three degrees of freedom
which can be selected among the six, x,y,z,y,j and l, MS vari-
ables. Two modes of operations, yfZ and XYZ, are considered. For
these two modes, position and workspace analysis is thoroughly
presented. For the direct kinematics, a geometrical approach
yielding a unique solution is presented. For the inverse kine-
matics, a closed form solution for the XYZ mode yielding to two
answers is presented. Two examples for InvKin and one example
for DirKin problem are supplied. In each example, two states of
with and without tool height are studied and graphically illu-
strated. Next, velocity and acceleration inversions are presented
in invariant form and the non-pure rotational and non-pure
translational Jacobian matrices are defined to derive the relation-
ship between angular and translational velocities of the moving
platform and the actuated joint rates. Additionally, using non-
pure rotational and non-pure translational Jacobian matrices,
Jacobian of constraint is defined. The three types of conventional
singularities are analyzed. The analysis shows that, the 3-PSP
robot is free of the three conventional, architecture singularities.
Additionally, the constraint singularity analysis is presented for
the 3-PSP robot using Jacobian of constraint. It is shown that the
3-PSP parallel robot has a constraint singularity when the lengths
of all three LRs are equal.

Finally, the robot reachable workspaces are determined. It is
shown that the ranges of motion for variables in the yjZ work-
space are significantly larger than the corresponding XYZ work-
space. Furthermore, the yjZ mode is free of singularities. It is
therefore, concluded that the 3-PSP is better suited to be operated
in the yjZ mode.

The main contributions of this paper are, obtaining an analy-
tical solution for the Invkin in XYZ mode, obtaining a numerical
solution for the Invkin in yjZ mode, obtaining an analytical
solution for Dirkin with unique solution, presenting the velocity
and acceleration inversion, obtaining the direct and inverse
Jacobians, Jacobian of constraints as well as introducing non-
pure rotational and non-pure translational Jacobian matrices,
investigating the conventional types of singularities as well as
constraint singularity using the Jacobian of constraints matrix,
presenting two methods for obtaining robot workspaces in two
operational modes and finally investigating the effect of tool
length on the XYZ workspace.

Appendix A

Extracting Eq. (10) and substituting rotation matrix compo-
nents from Eq. (6), we can obtain a set of 9 nonlinear algebraic
equations called constraint equations as

cðqÞ ¼ 0 ðA:1Þ

where

c1 ¼ xPþb1ðcos jÞcos lð Þ
	 


�hðsin yÞsin lð Þþsin j
	 


cos yð Þcos lð Þ
	 


�a¼ 0

c2 ¼ yPþb1ðcos jÞsin lð Þ
	 


�hð�sin yÞcos lð Þþsin j
	 


cos yð Þsin lð Þ
	 


¼ 0

c3 ¼ zPþb1ð�sin jÞ
	 

�hðcos jÞcos yð Þ

	 

�q1 ¼ 0
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1

2
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þ
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3
p

2
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Glossary

B{x,y,z}: The fixed coordinate frame which is attached to point O in top fixed
platform;

T{u,v,w}: The moving coordinate frame which is attached to point T in the center
of MS;

a: Distance between the center point O of fixed triangle DA1A2A3, and point Ai;
h: Length of the tool;
Bai : The position vectors locate corners of the fixed base, Ai, in frame {B}.;

Bqi : The position vectors which are specified length of each linear rod (LR);
Bt: The position vector of the end-effector, point T, with respect to {B};
Bp: The position vector of the tool tip, point P, with respect to {B};
T h: The position vector which connects point T to point P;
Bsi : The position vectors of the three spherical joints in frame {B};
T bi : The position vectors connect the end-effector to the ith S-joint, Si in frame {T};
Bei : The position vectors connect points Ai to T in frame {B};
r: Number of movable rigid bodies (for the 3-PSP parallel robot is equal to 13);
m: Number of one-DOF joints (for the 3-PSP parallel robot is equal to 15);
y,j,l: Rotational variables about the x-, y- and z-axis (Euler angles);
xT , yT , zT : Translational variables of the MS center along the x-, y- and z-axis;
xP , yP , zP: Translational variables for the Tool tip along the x-, y- and z-axis;
q1 , q2 , q3: Translational variables for the linear rods, LRs;
b1 , b2 , b3: Translational variables for the MS branches;
B
T R: The rotation matrix to transfer a vector defined in {T} to {B};
u, v, w: Three unit vectors along the u-, v- and w-axis of the moving coordinate

frame {T};
ymi: The values for rotational position of motors;
N: Gearbox transmission ratio;
lb: The lead of the ball screw;
snormal: The normal vector to the MS plane;bsnormal: The unit vector along the normal vector to the MS plane, snormal;
sij: The position vectors which connect the S-joint Si to the S-joint Sj;
{A}: The auxiliary coordinate frame, attached to the top fixed platform, at the

point A1;
{S}: The auxiliary coordinate frame, attached to the moving platform, at the point

S1;
j
iT: The transformation matrix which transfers frame {i} to frame {j};
j
iR: A 3�3 rotation matrix which rotates frame {i} to frame {j};
j
it: A 3�1 vector that locates origin of {i} relative to origin of {j};
st: The position vector of point T in frame {S};
_q: Vector of the linear actuated joint rates, ½ _q1 _q2 _q3 �

T ;
_X: Vector of the MS velocities, ½ vP xs �

T ;
_qi: The values of ith actuated joint rate;
_bi: The values of ith passive prismatic translational joint rate;

vP: The Cartesian velocity vector for the tool tip, ½ _x _y _z �T ;

xs: The angular velocity vector of the MS, ½ _y _j _l �T ;bqi: The unit vectors along ith LRs;bbi: The unit vectors along ith branch of the MS;bmi: The three unit vectors which are all perpendicular to the MS plane;bki: Unit vectors are perpendicular to planes containing the three vectors, qi ,
ei and bi;

Jinv, Jdir: The inverse and direct Jacobian matrices;
J: The overall Jacobian matrix;
Jc: The Jacobian of constraints;
Jrot, Jtrans: The non-pure rotational and the non-pure translational Jacobian

matrices;
_q: Vector of the actuated joint linear acceleration, ½ _q1 _q2 _q3 �

T ;
_X: Vector of the MS acceleration, ½ _vP _os �

T ;
_qi: The values of ith actuated joint acceleration;
_bi: The values of ith passive prismatic joint linear acceleration;
_vP: The Cartesian acceleration vector for the tool tip, ½ _x _y _z �T ;

_xs: The angular acceleration vector of the MS, ½ _y _j _l �T .
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