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Abstract
In this paper we restrict our attention to worm-like, vertical traveling wave locomotion and present detailed
kinematics and dynamics of a planar multi-link snake robot. Lagrange’s method is used to obtain the robot
dynamics. Webots software is used for simulation and to experimentally investigate the effects of link shape
on motor torques. Using the dynamics model and Webots simulation, a nine-link snake robot is designed
and constructed. Physical experiments are carried out to validate the mathematical model. Webots software
is also used to perform simulation and further validate theoretical results. Finally, stability of the snake robot
is experimentally investigated.
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1. Introduction

Snake robots offer potential in assisting in areas such as fire-fighting, rescue mis-
sions and maintenance due to their high maneuverability and ability to move
through tight spaces. These robots are able to bend and adapt to the form of the
terrain on which they move. Their cross-section is significantly smaller than their
overall length, which enables them to enter small tubes or orifices and get to places
inaccessible to other robots. Snakes usually travel in the horizontal plane. On the
contrary, worms are thought of to usually move in the vertical plane orthogonal to
the supporting plane. The most famous gaits used by snakes are lateral undulatory
(serpentine), concertina, sidewinding and rectilinear locomotion [1–19]. Depend-
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ing on the environment, snakes may also combine the basic gaits and create new
locomotion modes. Non-snake-like gaits do not exist in nature, but are applicable
in snake robot locomotion. However, these gaits are less addressed in the literature.
The spinning, flapping and traveling wave gaits are some examples of such gaits.

Serpentine locomotion, also known as lateral undulation, is the most frequently
used form of snake locomotion used by real snakes. Hirose showed that the key
property of snakes in mimicking serpentine locomotion is the difference in the fric-
tion coefficients for the tangential and the normal directions with respect to the
body [1]. Therefore, the snake-like robot usually needs wheels to realize directional
friction. This requirement limits snake robot adaptability to the environment. One
of the original studies of snake-like robots was conducted by Hirose [1]. He formu-
lated the serpenoid curve and proved that a snake-like mechanism is able to generate
a net forward thrust by applying the appropriate torque along the length of its body.
Chen et al. [2] presented a model for traveling wave locomotion, and considered
its kinematics and dynamics. They considered the effects of the initial winding an-
gle and friction coefficient on the joint torques during traveling wave locomotion.
Chen et al. [3] also showed that one period of traveling wave locomotion can be di-
vided in four phases. These phases are based on the number of joints contacting the
ground and the resultant of the friction forces on contacting joints. Saito et al. [4]
constructed a snake robot without wheels. This robot has great potential to adapt to
various environments at the cost of increased power consumption. They obtained
total equations of motion for a multi-link snake robot traveling with serpentine loco-
motion. Ma et al. [5] also considered formulation of the kinematics and dynamics
of three-dimensional (3-D) snake robot and analyzed creeping locomotion. They
investigated the motion efficiency of a sinus-lifting motion in comparison with nor-
mal creeping locomotion. Dowling [6] presented a novel and practical design for a
limbless snake robot and investigated the effects of many materials for use as the
ground contact interface and protective sheath. Ma et al. [7] used Newton–Euler
equations to derive the dynamic equation for an n-link robot creeping on a slope.
They considered both symmetrical and unsymmetrical body shapes. They showed
that the unsymmetrical body curve increases the robot’s performance. Chirikjian
and Burdick [8, 9] presented a framework for kinematics and motion planning of
snake robots. They modeled the snake-inspired robot as a continuous backbone
curve, and analyzed the kinematics of gaits that used both ‘stationary’, similar to
inchworm locomotion, and ‘traveling’ waves, similar to rectilinear snake locomo-
tion. The model does not consider the dynamics of the system.

Hasanzadeh and Akbarzadeh [11] presented a novel gait — forward head ser-
pentine (FHS) — for a two-dimensional (2-D) snake robot. They used a genetic
algorithm (GA) to find FHS gait parameters and performed experiments to validate
their results. Kalani et al. [12] considered kinematics and dynamics of traveling
wave locomotion of a snake robot along a symmetrical and unsymmetrical body
curve. They investigated the effects of friction coefficient, initial winding angle and
the unsymmetrical factor on the joint torques. They also [13] proposed a novel
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kinematics modeling method for traveling wave gait. Next, they used Webots soft-
ware for validating their new method. Bayraktaroglu [14] presented an experimental
study on a wheel-less snake-like robot with lateral undulation as well as worm-like
motion. The mechanical design, trajectory generation and control method are bi-
ologically inspired. To derive the dynamics of the snake robots, three modeling
techniques — Lagrangian formulation, Newton–Euler formulation and geometric
mechanics — are considered, [15, 16]. In his thesis, Transeth [15] presented a novel
non-smooth (hybrid) mathematical model for 2-D planar limbless snake robots.
Aside from the ground, this model allows a snake robot to push against obstacles.
The 2-D model is extended to a non-smooth 3-D mathematical model of a snake
robot. He also used the Euler–Lagrange equations and formulated the dynamics of a
planar robot in a standard matrix form. Vossoughi et al. [17] presented a novel struc-
ture of a snake-like robot. This structure enables passive locomotion in snake-like
robots. He used the Gibbs–Appell method to derive dynamic equations for motion
in a horizontal plane. Spranklin [20] considered kinematic and dynamic models
for snake robots with a rectilinear gait. The mechanism topology changes over the
course of the gait. Ma et al. formulated the kinematics and the dynamics of a 2-D
snake-like robot in closed form. The robot dynamics were used to analyzed the 2-D
creeping locomotion [7, 10, 21–23]. A mathematical model of a snake robot with
2-d.o.f. revolute joints using the Newton–Euler algorithm is presented by Liljebäck
et al. [24]. Wang et al. [23] presented a unified dynamic model for locomotion and
manipulation of a snake-like robot, and used differential geometry for its analysis.
This approach allows comparison between the dynamics of the snake-like robot and
those of redundant manipulators. Their approach also provides a novel geometric
point of view to better understand the dynamics of snake-like robots. Ye et al. [25]
introduced a 3-D snake-like robot called Perambulator-II with high torque, high
mobility and fast progression speed. They offered a detailed mechanical design and
experimentally demonstrated the serpentine locomotion.

This paper is organized as follows. In Section 2, the curvature function of the
serpenoid curve is used to derive the body shape of the robot. In Section 3, the
kinematics of the snake robot is developed, and the displacement, velocity and ac-
celeration of the gravity center for each link, as well as that of the snake body, are
calculated. In Section 4, the dynamics of the robot using Lagrange’s method is ob-
tained. In Section 5, dynamic equations are coded in MATLAB and joint torques
are obtained. This section also presents Webots simulation results. In Section 6, the
FUM Snake-3 robot design is introduced and the effect of link shape is experimen-
tally evaluated. Furthermore, stability of the robot is also experimentally evaluated.
Finally, Section 7 presents some concluding remarks.

2. Analysis of Worm-Like Locomotion

The most common type of snake-inspired locomotion is known as the serpentine
gait. However, this locomotion requires wheels or treads. However, there exists a
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snake-inspired locomotion — rectilinear motion — that requires pure undulation.
There are two forms of rectilinear motions — rectilinear motion that uses vertical
waves and rectilinear motion that uses expanding/contracting segments. The second
type of locomotion used by the inchworm may be described as creeping motion.
In this type of locomotion, parts of the worm body advance forward while other
parts of the body are anchored to the terrain. The first type of locomotion — the
vertical traveling wave — is also used by both snakes and worms. However, people
associate this locomotion mostly with worms and thereby we refer to it as worm-
like locomotion.

To make the robot move, we need to change the joint angles in a certain manner.
Hirose [1] showed that by changing the joint angles sinusoidally with a common
frequency and a phase lag between consecutive joints, the snake locomotion is gen-
erated.

The body shape of a snake is described by a series of S-shaped, sinusoidal-like
curves that the body forms while in execution. In most robots, this body shape is
usually mimicked by utilization of the serpenoid curve, introduced by Hirose [1].
For convenience, we use the serpenoid curve [2, 3, 7] as the basic body shape of
the snake robot traveling with worm-like locomotion. The curvature function of
serpenoid curve is defined as:

ρ(s) = −2Knπα

L
sin

(
2Knπs

L

)
, (1)

where L is the whole length of snake body, Kn is the number of the wave shapes,
α is the initial winding angle of the curve and s is the body length along the body
curve. See Fig. 1.

Figure 1. Snake robot along the serpenoid curve.
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Since ϕ = sρ, we can write,

dϕ = ρ ds → ϕ =
∫ s+il

s+(i−1)l

ρ(u)du =
∫ s+il

s+(i−1)l

−2Knπα

L
sin

(
2Knπu

L

)
du.

(2)

After simplifying, relative angles are given by,

ϕi(s) = −2α sin

(
Knπ

L

)
× sin

(
2Knπs

L
+ 2Knπi

n
− Knπ

n

)
. (3)

The relative angle velocities and accelerations can be derived by differentiating (3)
with respect to time. Then:

ϕ̇i(s) = −4αKnπ

L
sin

(
Knπ

L

)
× sin

(
2Knπs

L
+ 2Knπi

n
− Knπ

n

)
ṡ (4)

ϕ̈i(s) = −4αKnπ

L
sin

(
Knπ

L

)
× sin

(
2Knπs

L
+ 2Knπi

n
− Knπ

n

)
s̈

− 8αK2
nπ2

L2
sin

(
Knπ

L

)
× sin

(
2Knπs

L
+ 2Knπi

n
− Knπ

n

)
ṡ2. (5)

Using the relation between absolute and relative joint angle values, we obtain:

θi = θ1 +
i−1∑
k=1

ϕk, (6)

where θ1 is the absolute angle for the head link, the first link, and θi are absolute
angles of subsequent links. The absolute velocities and accelerations can be derived
by differentiating (6) with respect to time. Therefore:

θ̇i = θ̇1 +
i−1∑
k=1

ϕ̇k (7)

θ̈i = θ̈1 +
i−1∑
k=1

ϕ̈k, (8)

where θi , θ̇i and θ̈i are the absolute value of joint angle, angular velocity and angular
acceleration of the ith link with respect to the x-axis, respectively.

3. Kinematics of the Snake Robot

A planar snake robot consisting of n links, connected through n − 1, joints is de-
picted in Fig. 2. Each link is rigid with uniformly distributed mass and is equipped
with a torque actuator (motor). Each link is of mass mi , length li and moment of
inertia Ii . Let (xci , zci ) and θi define the center of gravity and the angle between
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Figure 2. n-link snake robot.

Figure 3. Coordinate frames for each link.

the link and the x-axis, respectively. Values of di represent the location of the mass
center of the ith link. (xb, zb) is the coordinate of the head link.

To define a kinematics model for the robot, we attach a coordinate system to each
link of the robot. See Fig. 3. The linear position, velocity and acceleration of the ith
joint can be written as:

xi = xb +
i−1∑
j=1

lj cos θj (9)

zi = zb +
i−1∑
j=1

lj sin θj (10)

ẋi = ẋb −
i−1∑
j=1

lj θ̇j sin θj (11)

żi = żb +
i−1∑
j=1

lj θ̇j cos θj (12)
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ẍi = ẍb −
i−1∑
j=1

lj θ̈j sin θj −
i−1∑
j=1

lj θ̇
2
j cos θ

j
(13)

z̈i = z̈b +
i−1∑
j=1

lj θ̈j cos θj −
i−1∑
j=1

lj θ̇
2
j sin θj , (14)

where i = 1,2, . . . , n. Similarly, the position, velocity and acceleration of the grav-
ity centers of the ith link can be obtained as:

xci = xb +
i−1∑
j=1

lj cos θj + di cos θi (15)

zci = zb +
i−1∑
j=1

lj sin θj + di sin θi (16)

ẋci = ẋb −
i−1∑
j=1

lj θ̇j sin θj − di θ̇i sin θi (17)

żci = żb +
i−1∑
j=1

lj θ̇j cos θj + di θ̇i cos θi (18)

ẍci = ẍb −
i−1∑
j=1

lj θ̇j θ̈j sin θj −
i−1∑
j=1

lj θ̇
2
j cos θj − di θ̈i sin θi − diθ

2
i cos θi (19)

z̈ci = z̈b +
i−1∑
j=1

lj θ̇j θ̈j cos θj −
i−1∑
j=1

lj θ̇
2
j sin θj + di θ̈i cos θi + diθ

2
i sin θi. (20)

The snake robot is constructed with n links and, therefore, the gravity center of
the entire snake robot’s body is obtained as:

MXC =
n∑
i

mxci , MZC =
n∑
i

mzci , (21)

where M and (XC,ZC) represent the total mass and position of the mass center
for the snake robot, respectively. The displacement, velocity and acceleration of the
gravity center of the snake body are obtained by:

XC =
∑n

i=1 mxci

M
= 1

n

n∑
i=1

xi (22)

ẊC =
∑n

i=1 mẋci

M
= 1

n

n∑
i=1

ẋi (23)
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ẌC =
∑n

i=1 mẍci

M
= 1

n

n∑
i=1

ẍi (24)

ZC =
∑n

i=1 mzci

M
= 1

n

n∑
i=1

zi (25)

ŻC =
∑n

i=1 mżci

M
= 1

n

n∑
i=1

żi (26)

Z̈C =
∑n

i=1 mz̈ci

M
= 1

n

n∑
i=1

z̈i , (27)

where XC and ZC, ẊC and ŻC, and ẌC and Z̈C represent the displacement, velocity
and acceleration of the gravity center of the snake body, respectively.

4. Dynamics Modeling

The formulation of dynamics of the snake robot traveling in worm-like locomotion
is presented in this section. A dynamics model is necessary in order to determine
the amount of torque required to actuate the robot. Furthermore, a dynamics model
can be used in simulation, which better enables performance optimization. One of
the challenges of the snake robot is deriving its dynamic equation and generalizing
it to a snake robot with n links. In the present paper, Lagrange’s method is used and
the dynamics model of the robot is obtained.

4.1. Interaction of the Robot with the Enviroment

A snapshot of a snake robot traveling in a wave locomotion mode is shown in Fig. 4.
During worm-like locomotion, as links travel through the body curve, there are
instances when the full length of each link comes in contact with the ground. This
time is assumed to be significantly low and, thus, negligible. Further, in this paper,
we assume Kn = 2 and, therefore, there are at least two contact points with the
ground and subsequently at least two friction forces. To generate locomotion, the

Figure 4. Actual worm and its schematic equivalent external forces on the worm body.
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resultant of these two friction forces should be high enough to transmit the traveling
wave. The velocity of this locomotion dependent on the transmitting velocity of the
wave along the body. The values of friction forces dependent on the body shape,
which subsequently decides the amount of pressure on the supporting plane. To
model the friction forces, we consider a simple Coulomb friction model as:

Fi = −μ · sign(v) · Ni, (28)

where μ is the friction coefficient between the contacting joint and the supporting
plane. The signum function is denoted by sign(v). In other words, the value of this
function will be 1 if v > 0, 0 if v = 0 and −1 if v < 0. Further, neglecting the
state where the links are in the horizontal state allows simplification of the dynamic
analysis. It should be noted that while in motion, both contact points are in motion
and never stationary. However, one contact point is relatively static with respect to
the supporting plane, while the other contact point slides on the supporting plane.
The resultant force is the difference of the two friction forces, which should be high
enough to meet the need for transmitting the traveling wave to generate locomotion.

Consider Fig. 4. Newton’s second principle is applied to the free-body diagram
of the snake robot. Therefore:

Ncp2 = 1

d
[(W + MZ̈C)(xc − xcp1) − MẌCzc] (29)

Ncp2 − W + Ncp1 = MZ̈C, (30)

where d is the distance between the two supporting points, W is overall weight of
the snake, N represents the supporting force, MẌC and MZ̈C are the inertial forces
of the snake robot body along the X- and Z-axis, respectively. Finally, cp1 and cp2
represents the two contact points. Equations (28)–(30) can be used to determine the
values of the two supporting forces, Nc1 and Nc2, as well as the driving force, which
is the difference between the two frictional forces.

4.2. Lagrange Method

The instantaneous system configuration will be known upon having (xb, zb) and θi

(1 � i � n). Therefore, the generalized coordinates are selected as:

q = [θ1, θ2, θ3, . . . , θn, xb, zb]. (31)

The equations of motion can be written as,

d

dt

(
∂T

∂qi

)
− ∂K

∂qi

+ ∂V

∂qi

= Qnc
i (i = 1,2,3, . . . , n + 2), (32)

where K is kinetic energy and V is potential energy. Non-conservative forces, Qnc
i ,

that do work when generalized coordinates are given virtual displacements are ac-
tuators torques, friction forces and supporting forces. Therefore, generalized forces
may be defined as:

Qθj = −lj

[
sin θj

n∑
i=j+1

fxi

]
+ lj

[
cos θj

n∑
i=j+1

Nzi

]
+ τj−1 − τj (33)
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Qxb =
n∑

i=j+1

fxi (34)

Qzb =
n∑

i=j+1

Nzi, (35)

where fxi is friction force, Nzi is supporting force and Qθj are generalized forces
related to the generalized coordinate θj . Qxb and Qzb are generalized forces re-
lated to xb and zb, respectively. The kinetic energy of the n-link snake robot can be
defined as:

K =
n∑

i=1

[
1

2
Ii θ̇

2
i + 1

2
mi

(
ẋ2
i + ż2

i

)]
. (36)

Substituting (17) and (18) into (36), we conclude:

K =
n∑

i=1

[
1

2

(
Ii + mid

2
i

)
θ̇2
i + 1

2
mi

(
ẋ2
i + ż2

i

)]

+
{

n∑
i=1

midi θ̇i

i−1∑
j=1

[lj θj cos(θi − θj )]
}

+
n∑

i=1

[midi θ̇i(żb cos θi − ẋb sin θi)]

+
n∑

i=1

{
mi

i−1∑
j=1

[lj θ̇j (żb cos θj − ẋb sin θj )]
}

+
n∑

i=1

{
1

2
mi

(
i−1∑
j=1

[lj θ̇j sin θj ]
)2

+ 1

2
mi

(
i−1∑
j=1

[lj θ̇j cos θj ]
)2}

. (37)

Next, consider potential energy defined as:

V =
n∑

i=1

migzci . (38)

By replacing (16) into (38), we have:

V =
n∑

i=1

migzci =
n∑

i=1

{
mig

[
zb +

i−1∑
j=1

lj sin θj + di sin θi

]}
. (39)

Equations (33)–(39) can be placed into the Lagrangian formulation, (32) and the
dynamic model for the n-link snake robot can be derived as:

BT = M(θ)q̈ + H(θ, θ̇) + F(θ) + G(θ) + S(θ), (40)
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where M(n+2)×(n+2) is a positive definite and symmetric inertia matrix, H(n+2)×1
matrix represents centrifugal and Coriolis terms, F(n+2)×1 matrix represents friction
forces, B(n+2)×(n−1) is a constant matrix, G(n+2)×1 matrix represents the potential
energy, S(n+2)×1 matrix represents supporting forces, T(n−1)×1 matrix represents
input torques, and q, q̇, q̈ are the (n + 2) × 1 matrix of generalized coordinates and
their derivatives. Finally, θ , θ̇ , θ̈ are the n × 1 matrix of links absolute angles and
their derivatives. The detailed forms of M, H, B, G, F and S in (40) are presented
in the Appendix.

4.2.1. Forward Dynamics
In forward dynamics, input joint torques are supplied and the motion of the snake
robot is determined. To do this, (40) is solved using the Euler method. Equation (40)
is a (n + 2)-dimensional linear equation of (n + 2) unknown variables (q̈ ∈ Rn+2).
Upon solving this equation, angular acceleration for all links (θ̈ ∈ Rn) as well as
the acceleration of a point at the head link (ẍb, z̈b) can be obtained. Next, angu-
lar position and velocities of the first link, as well as linear position and velocity,
(xb, zb, ẋb, żb), of a point at the head link, can all be obtained through integration.
Therefore, snake robot motion is derived for when input torques for all joints are
supplied.

4.2.2. Inverse Dynamics
In inverse dynamics, desired time histories of relative angles of the adjacent links
are supplied and required motor torques are obtained. In other words, given instan-
taneous relative angles and their derivatives (ϕ, ϕ̇, ϕ̈), along with initial conditions,
(40) can be solved in order to find the required torques and coordinates of the head
of the robot. The relation between absolute and relative values of joint angles is:

ϕi = θi+1 − θi, i = 1,2, . . . , n − 1. (41)

Equation (41) can be written in matrix form as:

θ = Eϕ + eθ1, (42)

where ϕ is an n-dimensional vector of [ϕ1, ϕ2, . . . , ϕn−1], θ1 is the absolute angle
of the head, Eij and e are defined as:

e = [1,1, . . . ,1]T and Eij =
{

1 i > j

0 others.
(43)

The dynamic equation (40) is decoupled into two parts:

pM(θ)θ̈ + pN(θ)r̈b + pH(θ, θ̇) + pf (θ) + pG(θ) + pS(θ) = Dτ (44)
qM(θ)θ̈ + qN(θ)r̈b + pH(θ, θ̇) + qf (θ) + qG(θ) + qS(θ) = 0, (45)

where:

M =
[

pMn×n
pNn×2

qM2×n
qN2×2

]
, H =

[
pHn×1
qH 2×1

]
, rb =

[
xb

zb

]
. (46)
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By substituting the second derivative of (42) into (45), we obtain:

r̈b = −qN−1(qMθ̈ + qH + qf + qG + qS)

= −qN−1qM(Eϕ̈ + eθ̈1) − qN−1(qH + qf + qG + qS). (47)

Substituting (47) into (44), we have:

Dτ + (pNqN−1qM − pM)eθ̈1

= (pM − pNqN−1qM)Eϕ̈ − pNqN−1(qH + qf + qG + qS)

+ pH + pf + pG + pS. (48)

Equation (48) is an n-dimensional linear equation of n unknown variables θ̈1 ∈ R

and τ ∈ Rn−1. Finally, by solving (48), the joint torques, τi , and the head link an-
gular acceleration, θ̈1, can be obtained. Substituting these values back into (47),
acceleration of the head link, r̈b, will be obtained. Subsequently, the head link an-
gular velocity and position (θ̇1, θ1) as well as head link linear velocity and position
(ṙb, rb), can all be obtained through integration. The complete parameters defining
robot motion are now derived for the case when changes in body shape are known.
Therefore, upon specifying changes in body shape, the necessary joint torques to
generate the desired robot motion can be obtained.

5. Computer Simulation

In this section, worm-like locomotion is simulated. The robot model used in the
simulation is assumed to have 16 links and 15 joints. Each joint has 1 rotational
d.o.f. around axis êyi with angle θyi . Each link is estimated by a uniform slender
rod. To define the body shape, serpenoid curve parameters are used. Table 1 shows
the parameters used in the simulation.

The body curve is changed with regard to s, ṡ and s̈. The acceleration s̈ is given
by:

s̈ =
⎧⎨
⎩

a 0 � t < T/10
0 T/ � t < 9T/10
−a 9T/10 � t < T ,

(49)

Table 1.
Simulation conditions

Robot parameters Serpenoid curve parameters

Link length, l (m) 0.1 initial winding angle (rad) π/6
Number of links, n 16 total length of snake (m) 1.6
Mass of a each link, m (kg) 0.1 number of S-shape, Kn 2.0
Coefficient of dynamic friction, μ 0.3
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Figure 5. Joint torques when α = π/6 and μ = 0.3.

where T is the simulation time, assumed to be 20 s, and a = 0.0625 m/s2. Further,
the initial winding angle is assumed to be θ1 = α. The initial position and velocity of
a point on the tip of the head link are selected as x1 = z1 = 0 and ẋ1 = ż1 = θ̇1 = 0,
respectively. MATLAB software is used for simulation. Dynamic equation (40) is
used, and outputs such as joint angles, joint torques and trace of the head link with
respect to time are determined.

5.1. Joint Torques

The values of joint torques for joints 7, 9 and 13 during simulation time are shown
in Fig. 5. As can be seen, joint torques are periodic, and amount of maximum joint
torques for joints 7 and 9 are in increasing order except joint 13, which shows
lower torque. This is because joint 9 is the nearest joint to the gravity center of the
snake robot. In other words, as joints get closer to the gravity center, the required
maximum torque increases. This finding is similar to what is reported in the earlier
literature [2] and the authors’ earlier work [12].

5.2. Simulation of the Snake Robot in Webots™ Software

Webots software is used for simulation. Webots is a popular commercial software
used for mobile robotics simulation, and provides a rapid prototyping environment
for modeling, programming and simulation. The same simulation conditions as
before are used except for the difference in definition of the link shape. For the
theoretical method — the Lagrangian method — snake links were assumed to be
slender rods. In Webots, the links are assumed to be rather a rectangular shape with
the leading side having a round edge. A snapshot of the 16-link snake robot is shown
in Fig. 6.

Joint 9 is selected for the comparison as this joint experiences the maximum
amount of joint torque. The torque values for joint 9 obtained from Webots simula-
tion and the Lagrangian method are both shown in Fig. 7.

As can be seen, both results have a similar magnitude and similar frequency.
Therefore, one may conclude that the established kinematics and dynamics of the
snake robot are reasonable.



550 A. Akbarzadeh, H. Kalani / Advanced Robotics 26 (2012) 537–560

Figure 6. Simulation of the snake robot in Webots.

Figure 7. Comparison of Webots and the Lagrangian method for the torque of joint 9.

6. FUM Snake-3 Robot Design

FUM Snake-3, shown in Fig. 8, is the third-generation snake robot designed in the
FUM Robotics Research Center. The first two robots were designed for serpentine
locomotion. FUM Snake-3 is designed to move in the vertical plane. It is made of
nine links. Each link is made of two curvilinear shaped Plexiglas sidewalls with 0.25
inch thickness. All nine links have equal length and are designed to avoid collision
between the two links as they rotate. This design allows a maximum angle of 125°
rotation between any two adjacent links. The robot in its fully flat configuration has
width 75 mm, height 60 mm and length 670 mm. The overall weight of the snake
robot, including all motors and all other components is 1.4 kg. FUM Snake-3 is
designed to be able to lift its head or some sections of its body. This will enable the
head link or other parts of the snake to cross a gap. This is accomplished by using
Dynamixel-AX12 servomotors that could provide a maximum of 1.5 Nm torque.
The maximum joint speed is 360°/s. The designed modules are shown in Fig. 9.

The control components are shown in Fig. 10. The locomotion algorithms are
implemented in a micro-controller, with the Windows Embedded CE 6.0 operat-
ing system. The positions of each servo are sent by RS232 serial communication
to the micro controller Friendly ARM board, ARM9 (Mini 2440). The ARM9 is
connected by means of a cable to the motors and generates the pulse-width modu-
lated signals for positioning the servos. Distributed control is used. Each motor is
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Figure 8. FUM Snake-3.

Figure 9. Two link modules assembled and exploded.

Figure 10. Control scheme of the modular robot.
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equipped with a PD controller. The position and speed is controlled with a resolu-
tion of 1024 steps.

6.1. Link Shape

A critical parameter affecting the quality of the locomotion is shape of the Plexiglas
sidewalls. This shape ultimately determines the link shape for the robot. Therefore,
once the robot was designed in Solidworks, it was quickly simulated in Webots soft-
ware. The Plexiglas sidewalls were initially designed to have a rectangular shape.
Obtaining as smooth motion as possible is the goal. However, the simulation of
the rectangular-shaped Plexiglas links showed the existence of undesirable impact
forces as the result of sharp edges of the rectangular Plexiglas hitting the ground.
We propose changing the shape of this edge to curvilinear, which results in a sig-
nificant lowering of the impact forces experienced by the robot. Therefore, a novel
shape for the Plexiglas sidewalls is utilized. Webots software was used as simula-
tion. As expected, the impact continued to decrease as we got away from the sharp
edge. The final shape of the Plexiglas sidewalls is shown in Fig. 8. The effect of
this shape and the original flat link on the torque of joint 9 are shown in Fig. 11. As
Fig. 11 demonstrates, the undesirable high peaks are significantly reduced.

The progression of the snake robot and its corresponding Webots simulation is
shown in Fig. 12.

Hopkins [19] investigated the relationship between snake-inspired robot dimen-
sions, performance and velocity. He found that snake robots share many common
characteristics that allow them to be easily grouped under a general classification
(Table 2).

Similar to Ref. [19], the performance of the FUM Snake-3 robot is graphically
compared with the other robot designs as given in Table 2. The maximum velocity
versus (a) total robot length (b) robot cross-section and (c) total robot weight are
plotted and shown in Fig. 13.

From Table 2, we note that snake robots using rectilinear-based locomotion are
generally slower than the other robots. Considering that FUM Snake-3 uses worm-

Figure 11. The effect of this shape and the original flat link on the torque of joint 9.
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Figure 12. Progression of the snake robot in real and virtual environments.

Table 2.
Snake-inspired robot dimensions and performance [19]

Robot Category Overall Cross- Overall Velocity Number of
length section weight (mm/s) links or
(mm) (m2) (kg) modulesa

ACM III I 2000 0.023 28 400 20
AmphiBot I (AB I) I 490 0.002 — 35 8
AmphiBot II (AB II) I 770 0.002 — 400 8
KR-II II 3300 0.497 370 500 7
KR-I III 1390 0.081 27.8 266 6
OmniTread (OT-8) III 1270 0.034 13.6 100 5
OmniTread (OT-4) III 940 0.007 3.6 150 7
JL-I III 1050 0.038 21 180 3

Kotay’s Inchworm I (KIR-1) IV 250 — 0.455 4 —
Kotay’s Inchworm II (KIR-2) IV 330 — 0.566 13 —
CMU (M1) IV 840 0.003 1.26 102 —

FUM Snake-3a IV 670 0.0045 1.4 105 9
Planar Inchworm (PI) V 710 — 6 1 2
Slim Slime Robot (SSR) V 730 0.013 12 60 6

a New entry to original table.
I, robots with passive wheels; II, robots with active wheels; III, robots with active treads; IV, robots

based on undulation using vertical waves; V, robots based on undulation using linear expansion.

like locomotion, we can conclude that it has a reasonable cross-section, length,
weight and forward velocity.
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Figure 13. Maximum velocity versus (a) total length, (b) cross-sectional area and (c) total weight.
2, FUM Snake-3.
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6.2. Stability

The stability of snake robots is generally not a big concern. This is because snake
robots traveling in the horizontal plane are inherently stable. However, a 2-D snake
robot in vertical traveling wave locomotion may not be able to maintain its stability
during its full locomotion. In general, when the gravity center of the snake robot
falls between two supporting points with the ground, the robot is in a static stable
state. It was shown in Ref. [18] that when the number of undulations is equal or
greater than 2, there will be at least two supporting points with the ground. If we
further add the assumption of equal weight for all robot links, we can then con-
clude that the center of mass will always be between the two supporting points and,
therefore, robot stability is ensured. The stability of FUM Snake-3 is experimentally
evaluated. To do this, Displacement of the X- and Z-components for the center of
mass for undulation numbers 1, 1.5 and 2 are shown in Fig. 14.

As expected, with Kn < 2, the height of the mass center will oscillate as the wave
propagates. The motion of the X-component of the mass center also shows similar
undesirable performance when Kn < 2. It is interesting to note that when Kn is
equal to 1 versus 2, the distance travelled is almost cut in half which demonstrates
motion deficiency. The effect of Kn on the torque of joint 9 is also investigated in
Fig. 14c, which shows that when Kn < 2 the motor experiences several high peaks
of sudden torque changes that increase as Kn decrease. These undesirable impacts
are the result of the snake structure physically hitting the ground as it progresses for-
ward. It should be noted that even with Kn = 2 the robot experiences some amount
of impact. However, as discussed before, one factor which contributes to this is the
shape of the link. Therefore, FUM Snake-3 is designed with Kn = 2 and curvilinear
shaped links. Figure 15 shows snapshots of the simulation and the real snake robot
as a function of Kn.

7. Conclusions

In this paper, the kinematics, dynamics, simulation and physical experimentation
of worm-like locomotion, also known as a vertical traveling wave, are fully stud-
ied. We first present the kinematics of the snake robot. Next, the dynamic model
of the snake robot is developed using the Lagrangian method. The derived dynam-
ics formulations are coded in MATLAB software. As joints get closer to the center
of gravity, the required maximum torque increases. It was shown that joint 9, the
middle link, exhibits the most amount of torque. Therefore, throughout the paper
joint 9 is selected and its torque output is reported. Simulation of the snake robot in
Webots software is next performed. It is shown that forward vertical traveling wave
motion is manifested. Furthermore, the motor torques obtained with Webots and
theoretical formulations are compared. Results indicate that the established kine-
matics and dynamics of the snake robot are reasonable. The details of the FUM
Snake-3 robot design are discussed and a novel shaped link is proposed that signif-
icantly minimizes the impact forces sensed by the robot. The FUM Snake-3 robot
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Figure 14. (a) Mass center X-component displacement versus Kn. (b) Mass center Z-component
displacement versus Kn. (c) Torque of joint 9 versus Kn using flat links.

is also compared with more well-known snake robots, in particular those having
worm-like locomotion. It is shown that FUM Snake-3 has reasonable geometry and
travel speed. Finally, the stability of the FUM Snake-3 robot is experimentally in-
vestigated. It was shown that highest level of stability occurs at Kn = 2.
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Figure 15. Snapshots of the simulation and the real snake robot as a function of Kn.

The main contributions of this paper are detailed development of snake kine-
matics and dynamical equations of worm-like locomotion based on Lagrangian
formulations, verification of the dynamic simulation using Webots software, ex-
perimental investigation of stability, identifying the effect of link shape, and design
details of FUM Snake-3 and its general comparison with other existing snake-like
robots.

For our future work, a 3-D version of this robot will be considered. In general,
compared with 2-D models, only a few 3-D models have been presented in the
published literature [15, 16]. Clearly the increased number d.o.f. as well as the
generalized coordinates of the worm-like robot would increase the complexity of
a mathematical model, particularly the dynamics model. Furthermore, the stability
analysis of the robot presents additional challenges as the number of contact points
is limited.
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Appendix

The detailed final dynamic equation, (40) has a simplified matrix format and can
easily be used for any number of links:

M =
[pMn×n

pNn×2
qM2×n

qN2×2

]

qN =
[∑n

i=1 mi 0

0
∑n

i=1 mi

]

pN = pMT

pMij =
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