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Abstract 

It is well known that one of the advantages of He’s variational iteration method is the free 
choice of initial approximation. From this advantage, in this paper, we construct a finite series 
solution with unknown parameters. Some types of the Fredholm integral equations are used to 
illustrate effectiveness and convenience of the method. A comparison is made between the He’s 
original VIM and the presented one. The results reveal that the proposed method is very effective 
and simple and gives the exact solution. 

1. Introduction 

In 1999, the variational iteration method (VIM) [1-9] was proposed by He. 



JAFAR SABERI-NADJAFI and ASGHAR GHORBANI 

Applied Mathematical and Computational Sciences, Volume 4, Issue 2, November 2012 

118

This method is now widely used by many researchers to study linear and 
nonlinear problems. The method introduces a reliable and efficient process 
for a wide variety of scientific and engineering applications. It is based on 
Lagrange multiplier and it has the merits of simplicity and easy execution. 
Unlike the traditional numerical methods, the VIM needs no discretization, 
linearization, transformation or perturbation. The method gives rapidly 
convergent successive approximations of the exact solution if such a solution 
exists; otherwise a few approximations can be used for numerical purposes. 
The VIM was successfully applied to autonomous ordinary and partial 
differential equations [1-28]. He [14] was the first to apply the variational 
iteration method to fractional differential equations. Application of the 
variational iteration method to various integral equations has become a hot 
topic [29, 30]. For a relatively comprehensive survey on the method and new 
interpretation and development, the reader is referred to the review articles 
[15, 31]. To illustrate its basic idea of the method, He [15, 31] considered the 
following general nonlinear equation 

( ) ( ) ( ),tftNutLu =+  (1) 

where L is a linear operator, N is a nonlinear operator and ( )tf  is a given 

continuous function. The basic character of the method is to construct a 
correction functional for the system, which reads 

( ) ( ) ( ){ ( ) ( )}∫ −+λ+=+
x

nnnn dssfuNsLustutu
0

1 ,~  (2) 

where λ is a Lagrange multiplier which can be identified optimally via 
variational theory [9], nu  is the n-th approximate solution, and nu~  denotes a 

restricted variation, i.e., .0=δ nu  It has been shown that this method is very 

effective and easy for linear problems. Its exact solution can be obtained by 
only one iteration, because λ can be exactly identified. But for nonlinear 
problems, there are secular terms, which should be considered [5]. Therefore, 
we first determine the Lagrange multiplier λ that will be identified optimally 
via integration by parts. The successive approximation ( ) 0, ≥ntun  of the 

solution ( )tu  will be readily obtained upon using the obtained Lagrange 
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multiplier and by using any selective function .0u  The zeroth approximation 

0u  may be selected by function that just satisfies at least the initial and 

boundary conditions. With λ determined, then several approximations ( )tun  

follow immediately. Consequently, the exact solution may be obtained by 
using 

( ) ( ).lim tutu nn ∞→
=  

He’s VIM has been shown to solve effectively, easily and accurately a 
large class of nonlinear and linear problems with approximations that 
converge rapidly to accurate solutions. Now consider the Fredholm integral 
equation (FIE) of the second kind, which read 

( ) ( ) ( ) ( ) ,,, dxcdttutxkxfxu
b

a
≤≤+= ∫  (3) 

where ( )txk ,  is the kernel of the integral equation. According to Reference 
[30], the variational iteration formula for equation (3) can be constructed in 
the form: 

( ) ( ) ( ) ( ) .,1 ∫+=+
b

a
nn dttutxkxfxu  (4) 

If we start with the initial approximation ( ) ( )xfxu =0  then the first few 
approximations are given by 

( ) ( ),0 xfxu =  

( ) ( ) ( ) ( ) ,,1 ∫+=
b

a
dttftxkxfxu  

( ) ( ) ( ) ( ) ( ) ( ) ,,,2 ∫ ∫ ⎥
⎦

⎤
⎢
⎣

⎡
++=

b

a

b

a
dtdssfstktftxkxfxu  (5) 

and so on. 

In most cases the integrations of equation (5) is not easily evaluated or it 
requires tedious computing. Therefore, in the following section, we introduce 
He’s VIM combined with finite series based on the advantage of He’s VIM, 
which reduces the size of calculations and causes a rapid convergence and 
gives the exact solution. 
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2. He’s VIM Combined with Finite Series 

In this section we propose a scheme to accelerate the rate of convergence 
of VIM applied to linear Fredholm integral equations with kernels of the 

form ( ) ( ).1∑ =
N
i ii tbxa  According to He’s variational iteration method; the 

initial guess can involve some unknown parameters. We, therefore, define a 
new variational iteration as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+=

∑
∫

=

+

,

,,

10

1

N

j jj

b

a
nn

xacxfxu

dttutxkxfxu
 (6) 

where Njcj ,,2,1, …=  are called the accelerating parameters, and for 

,,,1,0 Njcj …==  we have 

( ) ( ) ( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

=

+= ∫+

.

,,

0

1

xfxu

dttutxkxfxu
b

a
nn  

This is the original VIM. 

2.1. Application to FIE of the second kind 

We first assume that ( ) ( ) ( ),, tbxatxk =  thus for the following equation 

( ) ( ) ( ) ( ) .,, dxcdttutxkxfxu
b

a
≤≤+= ∫  

We consider (6) as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )⎪⎩

⎪
⎨
⎧

+=

+= ∫+

.

,,

0

1

xcaxfxu

dttutxkxfxu
b

a
nn  (7) 

Therefore, we have the first-order approximation 

( ) ( ) ( ),0 xcaxfxu +=  

( ) ( ) ( ) ( ) ,, 01 ∫+=
b

a
dttutxkxfxu  

( ) ( ) ( ) ( ),1 xcqaxpaxfxu ++=⇒  



EXACT SOLUTIONS OF SOME TYPES OF FREDHOLM … 

Applied Mathematical and Computational Sciences, Volume 4, Issue 2, November 2012 

121

where 

( ) ( )∫=
b

a
dttftbp  and ( ) ( ) .∫=

b

a
dttbtaq  

Now, we find c so that ( ) ( ),10 xuxu =  since 10 uu =  then we will have 

10 uu =  ,2 …== u  and the exact solution will be obtained as ( ) ( ).0 xuxu =  
Therefore, for all values of x we should have 

( ) ,1 pcq =−  

or 

( ) ( )

( ) ( ) ( )
( ) ( ) ,

,1

1

1
1 ∫

∫∫
∫

−
=

−
=

−
=

b

ab

a

b

a

b

a dttftb
dtttkdttbta

dttftb

q
pc  (8) 

provided that 

( ) .1,∫ ≠
b

a
dtttk  

Let us now consider the general case: 

( ) ( ).
1
∑
=

N

i
ii tbxa  

Now, choosing the variational iteration formula as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+=

∑
∫

=

+

N

j jj

b

a
nn

xacxfxu

dttutxkxfxu

10

1

.

,,
 

By doing similar manipulations, we obtain 

( ) ( ) ( )∑
=

+=
N

j
jj xacxfxu

1
0 ,  

( ) ( ) ( ) ( ) ,, 01 ∫+=
b

a
dttutxkxfxu  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
1 1

1 ∑ ∫ ∑ ∫
= =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++=⇒

N

i

b

a

N

j

b

a
jijii dtxatbcdttftbxaxfxu  (9) 

#  

As before, we try to find the parameters Njcj ,,1, …=  so that ,10 uu =  

therefore, in view of (9) we should have 

( ) ( ) ( ) ( ) [ ].,,
1

dcxdtxatbcdttftbc
b

a

N

j

b

a
jijij ∈∀+= ∫ ∑ ∫

=

 (10) 

Let 

( ) ( )∫=
b

a
ii dttftbd ,  and ( ) ( ) .∫=

b

a
jiji dtxatbe  

Then 

( ) .,,1,,
1

Nicecdxc i

N

j
ijjii …=+= ∑

=

 (11) 

Under certain conditions, the values of Nici ,,1, …=  can be obtained 
from the system of linear equations in (11). Let the matrix E and the vectors 
C and D be defined as follows: 

[ ] [ ] [ ],,, iiij dDcCeE ===  

from (11), therefore, we can write 

( ) D,CEI =−  

and if ( )EI −  is nonsingular then 

( ) .1DEIC −−=  (12) 

Remark 2.1.1. In the case of non-degenerate kernels, by using Taylor 
expansion for functions of two variables, we can write ( )txk ,  (if possible) as 
follows: 

( ) ( ) ( )∑
=

=
N

i
ii tbxatxk

1
,,  
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and by applying the presented method we can approximate the solution of the 
given integral equation. 

2.2. Application to FIE of the first kind 

Consider the following integral equation: 

( ) ( ) ( ) .,,∫
β

α
µ≤≤γ= xdttutxkxf  (13) 

Let ( ) ( ) ( )tbxatxk =,  and ( ) ( ).xapxf =  Using (6) we can write 

( ) ( ) ( ) ( ) ( )

( ) ( )⎪⎩

⎪
⎨
⎧

=

−+= ∫
β

α
+

.

,,

0

1

xcaxu

dttutxkxfxuxu nnn  

By similar operations in Subsection 2.1 we obtain 

( ) ( ),0 xcaxu =  

( ) ( ) ( ) ( ) ( )∫
β

α
−+= ,, 001 dttutxkxfxuxu  

( ) ( ) ( ) ( ),1 xcqaxpaxcaxu −+=⇒  where ( ) ( ) ( )∫ ∫
β

α

β

α
== ,, dtttkdttbtaq  (14) 

#  

For ,10 uu =  as stated above, from (14) we should have 

[ ].,,0 qxcqp µγ∈∀=−  

Consequently, 

( ).0, ≠= qq
pc  

If we assume ( ) ( ) ( ),, 1∑ =
=

N
i ii tbxatxk  then it is easy to verify that 

( ) ( ).
1
∑
=

=
N

i
ii xadxf  

In this case as in Subsection 2.1, we choose the following variational iteration 
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( ) ( ) ( ) ( ) ( )

( ) ( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

λ−+=

∑
∫

=

β

α
+

N

i
ii

nnn

xacxu

dttutxkxfxuxu

1
0

1 ,,
 (15) 

By simple operations we obtain the following approximations 

( ) ( )∑
=

=
N

i
ii xacxu

1
0 ,  

( ) ( )∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+=

N

i
i

N

i
jijii xaacdcxu

1 1
1  where ( ) ( ) ,∫

β

α
= dttatbe jiji  (16) 

#  

Proceeding as before, for ,10 uu =  the parameters ,,,1, Nici …=  should 

satisfy the following linear system of equations 

∑
=

==−
N

i
jiii Niecd

1
,,1,0 …  (17) 

Or in matrix form we have 

,DCE =  

where [ ] [ ]ii dDcC == ,  and [ ]jieE =  for ,,,1, Nji …=  or 

.1DEC −=  (18) 

Provided the matrix E is not singular. 

Remark 2.2.1. For non-degenerate kernels, using Taylor expansion, we 
can write 

( ) ( ) ( ) ( ) ( )∑ ∑
= =

==
N

i

N

i
iiii xadxftbxatxk

1 1
,,,  

and then by applying the presented method, we can approximate the solution 
of the given problem. 
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3. Applications 

Example 3.1. Consider the following integral equation 

( ) ( )∫
π

+=
2

0
.sin2

1cos dttuxxxu  (19) 

We apply the original and the presented methods to approximate the 
solution as follows: 

The original method. We, according to the original VIM, have 

( ) ,cos0 xxu =  

( ) ,sin2
1cos1 xxxu +=  

( ) ,sin
2

12cos 2

2
2 xxxu −+=  

( ) ,sin
2

12cos 3

3
3 xxxu −+=  

#  

By continuing this procedure, we finally obtain 

( ) .sincossin
2

12limcos xxxxxu n

n

n
+→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −+=
∞→

 

The modified method. In this case we have: 

( ) ( ) ( ),0 xcaxfxu +=  

( )
( ) ( )∫

∫
π

π
=

−
=

2

02

0

,
.,

1
1 dttftb

dtttk
q

pc  

and 

( ) ( ) ( ) ( ).0 xcaxfxuxu +==  

For this example ( ) xxa sin=  and ( ) ,21=xb  thus we obtain 

∫
∫

π

π
=⇒

−
=

2

02

0

.1cos2
1

sin2
11

1 cdtt
dtt

c  
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We, therefore, obtain 

( ) xxxu sincos +=  

which is the exact solution.  As it can be seen, after one term the exact solution 
is obtained. 

Example 3.2. Approximate the solution of 

( ) ( ) ( )∫ ++=
1

0
22 .2

1 dttutxxtxxu  (20) 

The original method. We can obtain the following according to the 
original VIM: 

( ) ,0 xxu =  

( ) ,3
1

4
5 2

1 xxxu +=  

( ) ,2
1

240
331 2

2 xxxu +=  

( ) ,720
421

960
1387 2

3 xxxu +=  

#  

When n tends to infinity, the obtained solution inclines to the exact 

solution [30], which is ( ) ( ).49119
20 2xxxu +=  

The modified method. Using the presented method we have 

( ) ( ) ( ) ( ) ( ) ,,,,, 2
2

1
2

21 xxftxbtxbxxaxxa =====  

( ) ( ) .2
210 xcxcxxuxu ++==  (21) 

By applying (12) and the information of the problem, we obtain 

,
31
41

4131
5141

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡= D,E  

and 

.
31
41

4131
5141

2

1
⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

c
c
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Hence the values of 1c  and 2c  are obtained as follows: 

.119
80,119

61
21 == cc  

Putting the values of 1c  and 2c  in equation (21), we get 

( ) ( ),49119
20 2xxxu +=  

This is the same as the exact solution. 

4. Application of the Presented Method to Nonlinear FIE 

In this section, to show the effectiveness and convenience of the presented 
method to solve nonlinear Fredholm integral equations, some examples are 
given. 

Example 4.1. We consider the following nonlinear Fredholm integral 
equation of the second kind 

( ) ( ) .10,
1

0
2∫ ≤λ≤λ+= dtttuxxxu  (24) 

The original VIM. According to the original VIM, we have 

( ) ,0 xxu =  

( ) ,4
111 xxu ⎟

⎠
⎞⎜

⎝
⎛ λ+=  

( ) ,64
1

8
1

4
11 32

2 xxu ⎟
⎠
⎞⎜

⎝
⎛ λ+λ+λ+=  

( ) ,16384
1

1024
1

512
3

128
3

64
5

8
1

4
11 765432

3 xxu ⎟
⎠
⎞⎜

⎝
⎛ λ+λ+λ+λ+λ+λ+λ+=  

#  

As n tends to infinity, the obtained solution inclines to the exact solution 

[30], which is ( ) ( ) .112 xxu λ−−
λ

=  

The modified method. According to the procedure presented above, we 
consider the following variational iteration formula 
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( ) ( )

( )⎪⎩

⎪
⎨
⎧

+=

λ+= ∫+

.

,

0

1

0
2

1

cxxxu

dttuxtxxu nn  (25) 

We have the first-order approximation 

( ) ( ) ,14
2

1 xcxxu +λ+=  (26) 

for ,10 uu =  we should have 

( ).1221 λ−±λ−
λ

=c  (27) 

We, therefore, obtain 

( ) ( ) ( ) .112
0 xxuxu λ−±

λ
==  (28) 

These obtained solutions are the same as exact solutions. That is, the 
new procedure also is suitable for nonlinear FIE. 

Example 4.2. Now we consider the following nonlinear Fredholm integral 
equation of the first kind 

[ ( ) ( )]∫ =+
1

0
2 .12

7 xdttututx  (29) 

We apply the presented method to solve (29). After following the same 
previous steps, we have the following variational iteration formula for 
equation (29): 

( ) ( ) [ ( ) ( )]

( )⎪⎩

⎪
⎨
⎧

=

+−+= ∫+

.

,12
7

0

1

0
2

1

cxxu

dttututxxxuxu nnnn  (30) 

By simple operations, we can obtain the first-order approximation as 
follows 

( ) .412
7

3
2 2

1 xccxu ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=  (31) 
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By setting ,10 uu =  this implies that 

,0743 2 =−+ cc  (32) 

This gives the values 1 and 37−  for c. Substituting these values of c in 
( ),0 xu  we obtain the solutions as follows 

( ) xxu =  and ( ) xxu 3
7−=  (33) 

which are the same as exact solutions. 

5. Conclusion 

In this paper, we have utilized He’s variational iteration method combined 
with finite series to study some types of nonlinear and linear Fredholm integral 
equations. As a result, exact solutions of the Fredholm integral equations have 
been obtained. We also found that the method is of remarkable effectiveness 
and convenience, and the solution procedure is of complete simplicity as well. 
Moreover, the method can be easily extended to the other integral equations 
of the Fredholm type such as Hammerstein integral equations. 
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