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Abstract. In this paper, kinematic relationships for a 3-PRR planar parallel robot are first presented. 
The robot dynamics equations are formulated using Lagrange equations of first kind. The derived 
equations are a mixed set of differential and algebraic constraint equations, DAE, which must be 
satisfied simultaneously. In order to solve the robot dynamic equations, a new method is presented 
in which the dynamics equation is first partitioned into two parts. The constraint equations and the 
dependent coordinates are next eliminated. This reduces the dynamic equations to a set of 
differential equations as a function of three independent coordinates. Finally, a trajectory for the 
robot end-effector is specified and PD controller which follows the desired trajectory is 
implemented. The proposed method significantly simplifies the solution of the dynamics equations. 

Introduction 
Among advantages of parallel robots over its serial counterparts are improved accuracy, higher 
stiffness and higher load to weight ratio. The main weakness of these robots is limited and more 
complex kinematics analysis which can lead to challenges in robot's path control. To control the 
robot, it is necessary to have an appropriate dynamic model. A number of researchers have 
controlled robot by using neural networks and without considering the robot dynamics [1]. The 
inverse dynamics method [2] is used to control the path of a parallel robot with translational motion. 
Numerical solution may also be used to solve the robot dynamics equations. Although numerical 
solutions may be sufficient to investigate robot dynamic behavior, it cannot be used directly to 
control the robot. Therefore attempts have been made to find an analytical solution. One of the 
problems in formulating parallel robots dynamic is that the number of generalized coordinates is 
larger than system’s degrees of freedom. This leads to differential algebraic equations (DAE) that is 
in fact a combination of differential equations and algebraic equations due to dependence between 
generalized coordinates. One way to solve these equations is to use numerical methods which may 
lead to instability [3]. Staicu [4] solved inverse dynamics problem of a 3-PRR parallel robot by 
using virtual work method. Kordjazi and Akbarzadeh [5] investigated inverse dynamics of a triangle 
3PRR parallel manipulator using natural orthogonal complement. Robot path control also requires 
the solution to its kinematics. Kamali and Akbarzadeh [6] presented a method for a general solution 
to the direct kinematics problem of parallel manipulators in trajectory following by introducing a 
new concept based on basic regions. Also, Enferadi and Akbarzadeh [7] presented a novel approach 
for forward position analysis of a double-triangle spherical parallel manipulator. 

Kinematics and Dynamics model of the 3-PRR Parallel Robot 
Kinematics Model. The 3-PRR robot is comprised of three closed kinematic chains. See Fig. 1. 
Each kinematic chain consists of one prismatic joint and two successive revolute joints. The 
direction of the three Prismatic joints are star-shaped with 120 degrees angle. Additionally, the end-
effector is in form of an equilateral triangle connected by three revolute joints. 
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Fig. 1: Schematic view of 3-PRR parallel robot   

The structural kinematics and dynamics parameters of the robot are supplied in Table 1. 

Table 1: kinematics and dynamics parameters of 3-PRR parallel robot 
Triangle Platform 100 mm Mass of Sliders 0.2 Kg 
Mass of Platform 0.2 Kg Mass of Middle Link 0.02 Kg 
Size of Angles iα 120º, 270º, 30º Dimention of Middle Link 200×25×1.5 mm

The origin of the fixed base reference coordinate system XYZ is located at intersection of sliders 
axis. Generalized coordinates for the robot ( ρ , β , pX ) are shown in Fig. 1. The matrix ρ  is 

comprised of distance from points iA  to sliders position, [ ]1 2 3
Tρ ρ ρ=ρ . The matrix 

[ ]1 2 3
Tβ β β=β  represent angles between X axis of the base frame and i iB C . Finally, position and 

orientation of platform’s center of mass expressed in base frame is T

p px y ϕ⎡ ⎤= ⎣ ⎦pX . The goal of 
the inverse kinematics is to obtain ρ  using platform’s position and orientation, pX . Therefore [8], 
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where l  is length of the middle links, i iB C . Additionally, iα  represents angles between X axis 
of the base frame with i iA B . In order to solve the robot dynamic equations, it is necessary to 
calculate velocity and acceleration values of the generalized coordinates system. We can then write 
[8], 
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where ier  is the positional vector from P  to iC , iar  is unit vector along axis of ith slider and ib
r

 is 
the positional vector from iB to iC . 
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Dynamics of the 3-PRR Parallel Robot. Robot kinematic relationships are expressed according 
to matrix 9T

R⎡ ⎤= ∈⎣ ⎦pX Xρ β . This matrix has nine components. However, since the robot has 
three degrees of freedom, there are six constraint equations among the proposed general coordinates. 
Constraint equations regarding geometry of robot are expressed as, 
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Where '
iCx  and '

iCy  represent x  and y  coordinates of points iC , respectively, and are measured 
from the mass center of the platform, P , when ϕ  is zero. Next, to obtain the robot dynamics 
equations, Lagrange equations of first kind [8] are used as, 

( )
1

m
k

i k
ki i i

T Vd T Q
dt q q q

λ
=

∂ −⎛ ⎞ ∂Γ∂ − = +⎜ ⎟∂ ∂ ∂⎝ ⎠
∑&                                                                                           (7) 

Where T  is kinetic energy, V  is potential energy, iq  are generalized coordinates, m  is the 
number of constraint equations, kλ  is constraint equations coefficients and kΓ  is  kth constraint 
equation. 

Upon obtaining the kinetics and potential energy of the system and placing them in Lagrange 
equation, Eq. 7, the final robot dynamic equation can be written as [8], 
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Where ρF  is force on sliders and extF  is external force on the platform. Additionally, matrix V  
includes non-linear terms due to centrifugal and Coriolis accelerations. The dynamic equations 
obtained in this section are differential algebraic equations (DAE) as they are a mixed set of 
differential and algebraic constraint equations. 

Solution of Dynamic Equations 
As stated before, the 3-PRR robot has 3 degrees of freedom. Dynamic equations of the robot are 
derived using the nine generalized coordinates which are related through 6 algebraic constraint 
equations. To solve system of differential equations, first matrix of Lagrange multipliers, λ , is 
eliminated. To do this, Eq. 8 is separated into two smaller equations using matrix partitioning as, 
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By evaluating the matrix of Lagrange multipliers, λ , from Eq. 9 and substituting it in Eq. 10 we 
eliminated the Lagrange multipliers and obtain a single equation, 
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Eq. 11 can be written in a more compact form as, 
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In Eq. 12, ˆ
11M  through ˆ

13M  are 3×3 square matrices and can be written in expanded form as, 

ˆˆ ˆ ˆ
11 12 13 p extM ρ+ M β + M X + G = F&& &&&&                                                                                                  (13) 

The next goal is to express &&ρ  and &&β  in terms of pX&& . This replacement will result in an equation 
written as a function of the independent coordinates pX  which, describes motion of the moving 
platform. To do this, we note that the dependent variables (ρ , β ) and their derivatives are related to 

pX  through solution of inverse kinematics of the robot, Eq. 4 and Eq. 5. Therefore,  

 ρ p ρ β p βρ = J X + K , β = J X + K&&&& &&&&                                                                                                 (14) 

By substituting Eq. 14 in Eq. 13, dynamic equation of robot as function of independent 
coordinates is obtained. Next, dynamic equations of system are transformed into state space 
representation. Considering 

T

p p p px y x yϕ ϕ⎡ ⎤= ⎣ ⎦Y && &  as state space of the system, we have, 
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Control and simulation of robot 
In this section, motion of the robot following a specified path is discussed. A proportional 

derivative, PD, controller is designed which uses dynamic model of the robot to simulate it's motion 
in each simulation loop.  The PD control law is, 

( ) ( )ρ p dis v disF = -k ρ -ρ - k ρ -ρ& &                                                                                                     (16) 

Where, pk  and vk  are controller gains and ρ , desρ are actual and desired positions of the sliders, 
respectively. Next, a desired path for the end-effector, position and orientation of platform’s center 
of mass, is specified. To do this, px , py  coordinates and ϕ  orientation are selected as, 
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Where 2fx mm= , 10ft ms=  are final position and duration of motion, respectively. Fig. 2 
shows the block diagram of the controller. 
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Fig 2. Block diagram of controller   

The desired and actual, controlled, position of px  during motion after implementing the designed 
controller is shown in Fig. 3. The controller gains are 4000pk = , 40vk = . 
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Fig 3. Actual and desired position   

Summary 
In this paper, a method is presented where dynamics equations of a 3-PRR parallel robot are solved. 
First kinematics and dynamics modeling of the 3-PRR parallel robot is briefly presented. Using 
Lagrange equations of first kind, dynamic equations of robot are derived leading into a mixed set of 
differential and algebraic equations. By separating and eliminating the constraint equations, 
dynamic equations of robot reduce to a set of differential equations as a function of 3 independent 
coordinates. Next, the dynamics equations are coded in Matlab software. A PD controller along 
with the dynamics model is both used in a trajectory following example. It is shown that the robot 
successfully follows the desired trajectory. The presented solution method significantly simplifies 
the solution of the dynamics equations. 
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