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Abstract The structural changes of the porosity in three
wood species in a pyrolysis system at several temperature
ranging and time periods were investigated to study the
wood carbonization characteristics. Rectangular cuboid
wood samples were dried and then carbonized in an inert
atmosphere furnace and their mass and dimensional changes
were recorded before and after process. SEM observation
indicated that anatomical feature of final porous carbon re-
mains unchanged with respect to the initial wood precursor.
This research also intends to develop an intelligence model
based on fuzzy logic theory. The model considers the final
density as the end result of the process and establishes
relations with carbonization process parameter (carboniza-
tion temperature, carbonization time period, initial density
of wood) on the basis of fuzzy linguistic rules. Besides, a
regression equation was established between above param-
eters and afterward, considering the constant of the derived
model, significance of each one was identified. The results
of the fuzzy model were found to be very close to the
experimental data and show the possibility of improving
rule-based modeling for such engineering challenges.
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1 Introduction

In the last decades, investigators have shown so many in-
terests in determining innovative natural resource of materials
for substitution of artificial synthesized products. Deficiency

of materials and outlay of conventional fabrication procedures
enhance the support for this new materials utilization and
application.

The use of carbonized wood as a matrix for the produc-
tion of cellulose-derived composites (CDC), including
carbon/polymer, carbon/carbon, carbon/ceramics, and
carbon/metal composites, is being considered in recent re-
searches [1–3]. This type of composites have several ther-
mal, mechanical, and also tribological applications such as
using in templates, chops, and husks form.

The chemical composition of a typical dried wood sam-
ple is approximately: 50 wt.% carbon, 44 wt.% oxygen, and
6 wt.% hydrogen. While carbonization, the anatomical fea-
tures of wood stay unchanged while a complete dissimilar
composition reached [4]. Wood includes with several natu-
ral polymers, which form a complex body of different
interconnected long cells which are parallel with central
horizontal axis of the plant trunk. Cellulose, hemicellulose,
and lignin are the three main polymers of wood material.
The most momentous is cellulose, hemicelluloses, and lig-
nin, depending on the sample place selection in the tree
trunk, are present in the net shape body of cellulose with
the different ratio. At heating rate of 5 °C min−1, hemi-
celluloses is decomposed at temperatures ranging from
170 °C to 240 °C, cellulose 240–310 °C, and lignin 320–
400 °C [5]. Aggregation of crystalline cellulose into larger
aligned parts in the cell wall of wood shapes elementary
fibrils known as microfibrils [6].

Porous carbon has numerous desired properties such as
stable coefficient of friction (μ), self-lubricity, relative high
strength, good electromagnetic shielding, high capacity of
damping, and low coefficient of thermal expansion (α) [2, 3].

Different studies have been done on thermophysical and
microstructural aspects of wood carbonizations .Microstruc-
tural change of disordered carbon after carbonization [7]
and cell-wall evolution during heating process [8] were
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investigated using X-ray diffraction and Raman spectrosco-
py. In the literature, considerable studies were carried out on
the effect of parameters like furnace flow rate [9], heating
rate [10], and also physical properties of net shape carbon
such as thermal conductivity and diffusivity on the final
density of the product [11]. Besides, the extent to which
the carbon stable isotopes of carbon during wood carboni-
zation for different wood species was reported [12].

However, there are just only a few researches which have
worked on numerical view of the process utilizing artificial
intelligence techniques [13, 14]. Rule-based fuzzy logic is a
very useful and outstanding computational tool in different
complex and nonlinear engineering problem [15]. Since any
logical system can be fuzzified [16] and a general logical
relationship exists between solid carbon density and above
carbonization factors, a fuzzy logic (FL) approach would
be very proficient and effectual for this problem. This
study also implements a useful fuzzy logic model for
evaluating the effects of process parameters namely, heat
treatment temperature, carbonization time, and initial den-
sity of wood on the bulk density variation of porous
carbon during heating.

Fuzzy sets and membership is the key approach in deci-
sion making when faced with uncertainty [17]. Fuzzy set
can be defined as a set of crisp values that can be group
together with an associated fuzzy term and contains objects
that satisfy imprecise properties of membership. So, a fuzzy
set is totally characterized by a membership function. In a
formal definition, a fuzzy set A in X is expressed as a set of
ordered pairs according to Eq. 1.

A ¼ x;μAðxÞð Þjx 2 Xf g ð1Þ

Where A is the fuzzy set, x and μA(x) are the member of
the universe and its related membership function, respec-
tively, and X is the universe of discourse [18]. There are
basically two types of fuzzy sets: normal and subnormal. A
normal fuzzy set is one whose membership function has at
least one element x in the universe whose membership is
unity, and on the other hand, a subnormal fuzzy set is one
whose membership function does not have an element x in
the universe whose membership is unity. All information
contained in a fuzzy set is described by its membership
function. For crisp sets an element x in the universe X is
either a member of some crisp set, say A on the universe or it
is not that means A is not in the universe (binary member-
ship); but in a fuzzy membership, the notion of binary
membership has been extended to accommodate various
“degrees of membership” on the real continuous interval
between zero and one, where the endpoints conform to no
membership and full membership, respectively. The sets on
the universe X that can accommodate “degrees of member-
ship” are referred as “fuzzy sets” [19].

2 Materials and experimental methods

2.1 Materials selection and preparation

Samples from oak (scientific name: Quercus), maple (scien-
tific name: Acer), and basswood (scientific name: Tilia)
trees, which have different bulk densities, were prepared in
similar shape using a particular cutting tool of wood. They
have length and width of 20 and 10 mm in height. Before
carbonization, in order to avoid fungus and spoiling during
the test in laboratory atmosphere, two steps of drying were
carried out for taking structural water of wood out; first, air
drying for 1 week in a warm location, and secondly, drying
for 48 h at 103 °C in an electric oven with air circulation.

2.2 Carbonization of wood samples

In various time sets, wood samples were heated to different
temperatures in order to produce a porous carbon. Among
the selected tree samples, maple has the denser structure
with bulk density of 0.75 g/cm3, oak posses the second rank
with density of 0.7 g/cm3, and at last, basswood has the
lowest density of all with about 0.5 g/cm3. By using an
argon atmosphere control electrical furnace, cubic wood
samples were carbonized at different temperatures (i.e.,
400 °C, 450 °C, and 500 °C) and three different durations:
1.5, 2, and 2.5 h. Table 1 designates the design of performed
experiments and the final measured density of each run.
Since the density change of product is the desired output
of the work, exact values of wood mass and dimensions
were measured before and after the test by precise balance
tools. Figure 1 indicates wood samples as starting materials
for this study.

2.3 Fuzzy logic (FL) model

The use and application of numerical methods in new fields
of manufacturing and engineering subjects are getting raised
day to day. Soft computation methodology based on the
knowledge of artificial intelligence has recently found its
place in advanced materials challenges and applications.
Artificial neural network (ANN) is the most well-known
tool in prediction and classification of complex and multi-
dimensional material characterization with its stupendous
ability of learning from sets of examples and generalizing
the knowledge to new circumstances [20]. However, the
above method has many drawbacks, which may get the
simulation process into difficulty, very slow convergence,
entrapment in the local minimum, and of course, require-
ment of a large number of data sets are some of occurring
problems. Therefore, fuzzy logic can be used as a superior
modeling approach [21]. Fuzzy logic theory was first intro-
duced by L. A. Zadeh in 1965 [17]. Fuzzy logic is a
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powerful problem-solving methodology with a lot of appli-
cations in embedded control and materials processing such
as prediction of roughness [22] and hardness [23] of com-
ponents, mechanical properties of FGM [24], and composite
materials [25, 26]. Fuzzy concepts provide a remarkably
simple way to draw definite conclusions from vague, am-
biguous, or imprecise information. In a sense, fuzzy logic
resembles human decision-making with its ability to work
from approximate data and find precise solutions. Unlike
classical logic which requires a deep understanding of a
system, exact equations, and precise numeric values, fuzzy
logic incorporates an alternative way of thinking, using a
higher level of abstraction compromised from our past ex-
periences so it simplifies design complexity and solution
implementation. In fuzzy logic, numbers replaced by lin-
guistic variables whose values are words and specific rules.
The conventional coding of a classical set (crisp set) has
only two values: one uses when a member is in the set; and
zero, when it is out of it but in fuzzy logic theory, everything
is a matter of degree. Membership function is used for
clarifying the value of each element in fuzziness. Consider-
ing the above concepts, deterministic uncertainty in fuzzi-
ness may be confused with nondeterministic probability.
Fuzziness describes event ambiguity but probability de-
scribes event occurrence. Whether an event occurs is ran-
dom, the degree to which it occurs is fuzzy.

The fuzzy logic-based modeling is much more in-line
with the human’s interpretation system, which implements
an “if–then” code. In the fuzzy theory texts, “if” is usually
named the premise and “then” is the subsequence. Basically,
fuzzy logic has three steps: fuzzification, rule evaluation,
and defuzzification process. Fuzzification is a process that
switches decimal values into fuzzy sets. The rule evaluation
step includes “if…then” phrases that form the linguistic
formation of rules. Finally, a defuzzification procedure
transforms the fuzzy outputs to crisp ones that can be
interpreted for later applications.

3 Results and discussion

3.1 Microstructure study of carbonized wood

Scanning electron microscope (SEM) images of dry wood
and carbonized wood are illustrated in Fig. 2. It can be seen
from the micrographs that the wood anatomical feature re-
mains without any substantial transform and the shape of
porosities in initial wood templates is similar to heated wood
in the form of the carbon and this leads to the different
separated pores in carbon surface. In wood-based carbon
matrix composites, by using a vacuum infiltration method,
metals, ceramics, or even polymers can play the role of
reinforcement component and fill these cylindrical porosities.Fig. 1 Selected wood samples of a oak, b Tilia, and c maple

Table 1 Carbonization test’s experimental design and corresponding
density

Test run Carbonization
temperature (°C)

Time
period (h)

Initial density
(g/cm3)

Carbon density
(g/cm3)

2 600 1.5 0.7 0.257

3 600 1.5 0.75 0.271

1 600 1.5 0.5 0.186

4 600 2 0.5 0.255

5 600 2 0.7 0.313

6 600 2 0.75 0.351

7 600 2.5 0.5 0.279

8 600 2.5 0.7 0.372

9 600 2.5 0.75 0.355

10 650 1.5 0.5 0.219

11 650 1.5 0.7 0.303

12 650 1.5 0.75 0.344

13 650 2 0.5 0.311

14 650 2 0.7 0.351

15 650 2 0.75 0.372

16 650 2.5 0.5 0.403

17 650 2.5 0.7 0.425

18 650 2.5 0.75 0.447

19 700 1.5 0.5 0.383

20 700 1.5 0.7 0.391

21 700 1.5 0.75 0.392

22 700 2 0.5 0.382

23 700 2 0.7 0.396

24 700 2 0.75 0.478

25 700 2.5 0.5 0.513

26 700 2.5 0.7 0.553

27 700 2.5 0.75 0.639
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Basically, density change in wood structure with temper-
ature increasing during carbonization in an inert gas atmo-
sphere condition depends upon two thermophysical factors,
which act just in an opposite way with each other: (a) weight
loss due to degradation of some wood component while
heating and also evaporation of volatile chemicals in wood.
This phenomenon causes a decrease in the density of solid
carbon. (b) Wood cell-wall expansion and shrinkage of
wood samples leads to reduce the pore diameter and in-
crease density in fabricated product [27]. In the temperature
range of 400 °C to 1,000 °C, the second effect is the leading
mechanism of density variation and the first effect is more
active in upper temperatures. In the current study, selected
temperatures were between 600 °C and 700 °C in which
density increases as temperature increases. At a constant
temperature, higher carbonization time gets more opportu-
nities to organic wood components to rearrange during
heating. This longer time period leads to more complete
reshape of survived organic chain. Consequently, cell wall
expansion process improvement takes place in a better
mode. In addition, it was proven that the density of fabri-
cated solid carbon and dry wood has a linear relation, and
many in use conditions affect the linear equation slope and
this slope is a function of parameters like pressure and
atmosphere of heating media [4].

3.2 Regression analysis for input parameters of wood
carbonization

In this research, a number of experiments are carried out for
calculation and quantification the final product density in
carbonization of wood considering the related parameters
including temperature and time of heating and also initial
wood strain. In order to obtain this purpose, carbon density
expresses as a linear function of its process parameters like
the following Eq. 2.

CD ¼ F0þ F1�WDð Þ þ F2� TPð Þ þ F3� HTTð Þ ð2Þ

Where CD is the final carbon density in g/cm3 and F1 to
F4 are equation constants. HTT is the heat treatment tem-
perature (°C), TP is the time period of heating (h), and WD
is the approximate wood initial density (g/cm3). Neglecting

the interaction between above parameters, the constants are
identified using an appropriate regression analysis with a
correlation coefficient (R2) of 0.872.

CD ¼ �1:1þ 0:257�WDð Þ þ 0:136� TPð Þ
þ 0:00157� HTTð Þ ð3Þ

3.3 Prediction of solid carbon density using fuzzy logic
approach

Implementation of the Mamdani-type fuzzy model applied
to density prediction followed the steps listed below:

Fuzzification: choosing the most appropriate member-
ship functions for the three input variables. Fuzzification
is the process of making a crisp quantity fuzzy and
converts definite data in the input of controller to the
format of linguistic variables. This is achieved by simply
evaluating all the input membership function with respect
to the current set of input values in order to establish the
degree of participation of each membership function.
Rule evaluation and inference system: design of the
related rule which link up the three input variables to
the single output variable and also assigning member-
ship functions to them. Inference unit is a unit that
performs fuzzy inference on fuzzy rules. This unit
performs the operation resembling the way that people
think.
Defuzzification: after computing the fuzzy rules and
evaluating the fuzzy variables, we will need to translate
these results back to the real world and make a fuzzy
quantity crisp with the goal of obtaining a real number
for next numerical interpretation. In the most conven-
tional method, the so-called center of area, the weighted
strengths of each output member function are multi-
plied by their respective output membership function
center points and summed. Finally, this area is divided
by the sum of the weighted member function strengths
and the result is taken as the crisp output.

The first phase in the fuzzy system design is assigning a
membership function to each variable. Depending on the
problem conditions and user’s experience, different shapes

Fig. 2 Micrographs of a oak
wood and b carbon derived
from initial precursor
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of membership functions can be used. Membership function
can have a symmetrical or asymmetrical shape. In the pres-
ent work, fuzzy triangular membership function was chosen
sets because they are commonly applied because of their
simplicity and ability for coding non-linearity. Fuzzy mem-
bership converts the notion of binary membership to various
degrees of membership value on a two-dimensional dia-
gram. Figure 3 introduces different parts of a typical trian-
gular membership function and Fig. 4 illustrates fuzzy
diagram for carbon density analysis

Fuzzy membership extends the concept of binary mem-
bership to accommodate a range of “degrees of member-
ship” on the real continuous interval between zero and one,
where the endpoints conform to no and full membership, in
that order. The sets on the universe X that can accommodate
“degrees of membership” are referred as “fuzzy sets.” Any
kind of membership functions had different parts in its
graphs which assign membership values to the correspond-
ing variable considering function’s configuration like type,
number, shape, etc.

The core of a membership function is defined as the
region (a single point in triangular membership factions)
that is identified by complete and full membership in the
set. The core consists of elements with unit membership
value (μ(x)=1). Boundary is called to the region that is
characterized by positive membership in the set. The com-
bination of all boundary regions is called support zone
(0≤μ(x)≤1) which supposed to be the same in triangular

membership function. Figures 5 and 6 illustrate the shape
and range of each membership function for inputs and
output variables, respectively.

The heat treatment temperature is input 1and has three
member functions i.e. low, medium and high. It is ranged
from 550 °C to 750 °C. Carbonization time period is input 2,
has three membership functions, i.e., short, medium, and
long. It ranged from 1 to 3 h and finally initial wood density
as third input has three membership functions, that is to say
low, medium, and high. It ranged from 0.4 to 0.8 g/cm3. The
only output, net shape carbon density, has ten fuzzy terms. It
ranged from 0.1 to 0.7 g/cm3 and includes extreme low
(EL), very low (VL), low (L), medium low (ML), medium
(M), medium high (MH), high (H), very high (VH), extreme
high (EH), and super high (SH). Rule evaluation is the
second step in constructing a fuzzy system. The goal is to
establish a connection among multiple inputs and final
density of carbon. Table 2 shows 17 accomplishing “if–
then” rules. Deffuzification is the ending process in the
fuzzy logic analysis. Many defuzzification methods can be
utilized including centre-of-area, weighted average, max-

Fig. 3 Different parts of a triangular membership function

Fig. 4 Fuzzy diagram for carbon density analysis

Fig. 5 Membership functions for three inputs

Fig. 6 Membership function for single output
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membership or height method, and center of sums. We
choose the first one of the above as one of the most common
defuzzification method named center-of-area or centroid.
Fuzzy model results and real carbon density values obtained
from experimental tests were compared in Fig. 7 for verify-
ing the accuracy of the model in prediction of density
changes. The comparison of the actual and fuzzy model
value with R2=0.9781 shows the trustable ability of pro-
posed approach for evaluating the porous structure of car-
bon product. Figure 7 presents a regression graph which
shows the fuzzy and actual results compression and Fig. 8
shows the fuzzy surfaces and rule viewer. Since all 27
possible combination of affecting parameters had been used
in fuzzy model, interaction between inputs seems to be
taken into account in analysis and improves prediction

accuracy. There is no considerable difference between the
predicted and the actual data. However, for having an effec-
tive and efficient modeling with fuzzy logic, it would be
more acceptable to use the least number of rules which can
get a good results instead of using all possible rules that can
be implemented. (All rules that can be written for three
inputs with three memberships for each). In conclusion,
the fuzzy model showed better performance and accuracy
rather than the regression model with the higher R2.

As real word evaluation, the final density of some car-
bonized wood from same species was measured with the
same instruments, and of course, the same conditions and
achieved information with corresponding data were
implemented to fuzzy inference model. Table 3 presents a
comparison between the experimental values and the FIS
predicted results for the final density of net-shape porous
carbon body.

The percentage errors associated in each test run with
respect to the experimental results are also given in the table.
It is observed that the error in FIS prediction lies approxi-
mately in the range of 0–11 % which establishes the validity
of the fuzzy rule-based prediction.

4 Conclusions

In this study, an attempt is made to apply the fuzzy logic
approach in predicting of variation in porous carbon density
in an atmosphere control carbonization. Manipulating of
fuzzy rule-based technique, a real reduction in mathematics
and graphs happens in modeling through fuzzy subsets of

Table 2 Rules for the fuzzy inference system

Rule definition No.

If (temperature is low) and (time is short) and (initial density is low) then (final density is EL) 1

If (temperature is low) and (time is medium) and (initial density is low) then (final density is VL) 2

If (temperature is low) and (time is medium) and (initial density is high) then (final density is ML) 3

If (temperature is low) and (time is medium) and (initial density is medium) then (final density is L) 4

If (temperature is medium) and (time is short) and (initial density is medium) then (final density is L) 5

If (temperature is medium) and (time is long) and (initial density is low) then (final density is M) 6

If (temperature is medium) and (time is medium) and (initial density is medium) then (final density is ML) 7

If (temperature is medium) and (time is long) and (initial density is high) then (final density is MH) 8

If (temperature is medium) and (time is long) and (initial density is medium) then (final density is MH) 9

If (temperature is high) and (time is medium) and (initial density is low) then (final density is M) 10

If (temperature is high) and (time is short) and (initial density is high) then (final density is ML) 11

If (temperature is high) and (time is long) and (initial density is high) then (final density is SH) 12

If (temperature is high) and (time is short) and (initial density is medium) then (final density is M) 13

If (temperature is high) and (time is medium) and (initial density is high) then (final density is H) 14

If (temperature is high) and (time is long) and (initial density is high) then (final density is SH) 15

If (temperature is high) and (time is long) and (initial density is medium) then (final density is EH) 16

If (temperature is high) and (time is long) and (initial density is low) then (final density is VH) 17

Fig. 7 Regression plot of fuzzy system prediction
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linguistic pyrolysis parameters. The effects of heat treatment
temperature, carbonization time and initial density of wood,
as three input parameters, have been modeled by
implementing both regression and fuzzy inference system.
The results show that the fuzzy logic is a useful tool for
prediction the microstructure change in porous carbon and

indicates acceptable agreement with tests data. In addition,
linguistic concepts in the form of fuzzy logic are proven to
be simpler, more efficient, and effective in modeling multi-
dimensional complex problems without using lengthy for-
mulations which needs a large number of experiments.
Regression model shows that, the initial density of selected

Fig. 8 Fuzzy surfaces for three inputs parameters and rule viewer of carbonization system model

Table 3 Comparison of experi-
mental results and FIS results Test Carbonization

temperature (°C)
Time period
(h:min)

Initial density
(g/cm3)

Carbon density
(g/cm3)—experiment

Carbon density
(g/cm3)—FIS

Error (%)

1 630 1:15 0.5 0.228 0.254 −10.23

2 630 1:15 0.7 0.266 0.255 4.31

3 630 1:15 0.75 0.321 0.311 6.43

4 660 1:45 0.5 0.303 0.295 2.71

5 660 1:45 0.7 0.336 0.354 −7.90

6 660 1:45 0.75 0.369 0.385 −4.15

7 690 2:15 0.5 0.385 0.364 5.76

8 690 2:15 0.7 0.402 0.416 −8.17

9 690 2:15 0.75 0.464 0.466 3.86
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wood is the most significant factor among carbonization
parameters. This model could simply be employed to ar-
range carbonization stage and for testing the correctness of
influence of heating process.
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