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Abstract: In this paper we study general solutions and Hyers-Ulam-Rassias stability of the following function
equation

(4− 𝑘)𝑓(

𝑘∑
𝑖=1

𝑥𝑖) +

𝑘∑
𝑗=1

𝑓((

𝑘∑
𝑖=1,𝑖 ∕=𝑗

𝑥𝑖)− 𝑥𝑗)) = 4

𝑘∑
𝑖=1

𝑓(𝑥𝑖), 𝑘 ≥ 3 (1)

on Banach spaces. It will be shown that this equation is equivalent to the so-called quadratic functional equa-
tion.
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1 introduction
A classical question in the theory of functional equations is the following: ”When is it true that a function which approxi-
mately satisfies a functional equation 𝜖 must be close to an exact solution of 𝜖?”

If the problem accepts a solution, we say that equation 𝜖 is stable. The first stability problem concerning group
homomorphisms was raised by Ulam [31] in 1940.

We are given a group 𝐺 and a metric group 𝐺′ whit metric 𝑑(., .). Given 𝜖 > 0, dose there exist a 𝛿 > 0 such that
if 𝑓 : 𝐺 → 𝐺′ satisfies 𝑑(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) < 𝛿 for all 𝑥, 𝑦 ∈ 𝐺, then a homomorphism ℎ : 𝐺 → 𝐺′ exists with
𝑑(𝑓(𝑥), ℎ(𝑥)) < 𝜖, for all 𝑥 ∈ 𝐺?

Ulam’s problem was partially solved by Hyers [11] in 1941. Let 𝐸1 be a normed space, 𝐸2 a Banach space and
suppose that the mapping 𝑓 : 𝐸1 → 𝐸2 satisfies the inequality

∥𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 𝑓(𝑦)∥ ≤ 𝜖, 𝑥, 𝑦 ∈ 𝐸1,

where 𝜖 > 0 is a constant. Then the limit 𝑇 (𝑥) = lim𝑛→∞ 2−𝑛𝑓(2𝑛𝑥) exists for each 𝑥 ∈ 𝐸1 and 𝑇 is the unique additive
mapping satisfying

∥𝑓(𝑥)− 𝑇 (𝑥)∥ ≤ 𝜖, (2)

for all 𝑥 ∈ 𝐸1. Also if for each 𝑥 the function 𝑡 → 𝑓(𝑡𝑥) from ℝ to 𝐸2 is continuous on ℝ, then 𝑇 is linear. If 𝑓 is
continuous at a single point of 𝐸1, then 𝑇 is continuous everywhere in 𝐸1. Moreover (2) is sharp.

In 1987, Th.M. Rassias [26], formulated and proved the following theorem, which implies Hyers’theorem as a special
case. Suppose that 𝐸 and 𝐹 are real normed spaces with 𝐹 a complete normed space, 𝑓 : 𝐸 → 𝐹 is a mapping such that
for each fixed 𝑥 ∈ 𝐸 the mapping 𝑡→ 𝑓(𝑡𝑥) is continuous on ℝ, and let there exist 𝜖 > 0 and 𝑝 ∈ [0, 1) such that

∥𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 𝑓(𝑦)∥ ≤ 𝜖(∥𝑥∥𝑝 + ∥𝑦∥𝑝), (3)

for all 𝑥, 𝑦 ∈ 𝐸. Then there exists a unique linear mapping 𝑇 : 𝐸 → 𝐹 such that

∥𝑓(𝑥)− 𝑇 (𝑥)∥ ≤ 𝜖∥𝑥∥𝑝
(1− 2𝑝−1)

,
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for all 𝑥 ∈ 𝐸. The case of the existence of a unique additive mapping had been obtained by 𝑇 . The terminology
Hyers-Ulam stability originates from these historical backgrounds. The terminology can also be applied to the case of
other functional equations. For more detailed definitions of such terminologies, we can refer to [7], [9], [11] and [16].
In 1994, 𝑃.𝐺�̆�𝑣𝑟𝑢𝑡𝑎, [8], provided a further generalization of Th. M. Rassias’theorem in which he replaced the bound
𝜖(∥𝑥∥𝑝 + ∥𝑦∥𝑝) in (3) by a general control function 𝜑(𝑥, 𝑦) for the existence of a unique linear mapping .

The functional equation 𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦) = 2𝑓(𝑥)+2𝑓(𝑦) is called the quadratic functional equation. In particular
every solution of the quadratic functional equation is said to be a quadratic mapping, see [25, 27]. It is well know that a
function 𝑓 between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function 𝐵
such that 𝑓(𝑥) = 𝐵(𝑥, 𝑥), for all 𝑥 (see [1, 11, 17]).

A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [29] for map-
pings 𝑓 : 𝑋 → 𝑌 where 𝑋 is a normed space and 𝑌 is a Banach space. Cholewa [4] noticed that the theorem of Skof is
still true if the relevant domain 𝑋 is replaced by an Abelian group. In [6], Czerwik proved the generalized Hyers-Ulam
stability of the quadratic functional equation. Borelli and Forti [3] generalized the stability result as follows (cf.[23, 24]):
Let 𝐺 be an Abelian group, and 𝑋 a Banach space. Assume that a mapping 𝑓 : 𝐺→ 𝑋 satisfies the functional inequality

∥𝑓(𝑥+ 𝑦) + 𝑓(𝑥− 𝑦)− 2𝑓(𝑥)− 2𝑓(𝑦)∥ ≤ 𝜑(𝑥, 𝑦),

for all 𝑥, 𝑦 ∈ 𝐺, and 𝜑 : 𝐺×𝐺→ [0,∞) is a function such that

𝜙(𝑥, 𝑦) :=
∞∑
𝑖=0

𝜑(2𝑖𝑥, 2𝑖𝑦)

4𝑖+1
<∞,

for all 𝑥, 𝑦 ∈ 𝐺. Then there exists a unique quadratic mapping 𝑄 : 𝐺→ 𝑋 with the property ∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 𝜙(𝑥, 𝑥),
for all 𝑥 ∈ 𝐺.
Stability of the quadratic functional also studied by many other authors in various cases (see for example [5], [13–15],
[18–22], [28] and [32]).

Let 𝑋 and 𝑌 be some given vector spaces, and let 𝑓 : 𝑋 → 𝑌 be a given function. For any 𝐾 ≥ 3, define

𝐷𝑓(𝑥1, ..., 𝑥𝑘) := (4− 𝑘)𝑓(

𝑘∑
𝑖=1

𝑥𝑖) +

𝑘∑
𝑗=1

𝑓((

𝑘∑
𝑖=1,𝑖 ∕=𝑗

𝑥𝑖)− 𝑥𝑗))− 4

𝑘∑
𝑖=1

𝑓(𝑥𝑖), (4)

where 𝑥𝑖 ∈ 𝑋, 𝑖 = 0, ..., 𝑘. One can see that the quadratic function 𝑓 : ℝ → ℝ defined by 𝑓(𝑥) = 𝑥2 satisfies not only
the following functional equation

𝑓(𝑥+ 𝑦) + 𝑓(𝑥− 𝑦) = 2𝑓(𝑥) + 2𝑓(𝑦) (5)

but also
𝐷𝑓(𝑥1, ..., 𝑥𝑘) := 0 (6)

for all 𝑥𝑖 ∈ ℝ. So it is natural that these functional equations are called quadratic.
In [2], solutions and Hyers-Ulam-Rassias stability of the functional equation (6) has been studied for 𝑘 = 3.
In Section 2 of this paper, we shall prove that the functional equation (6) is equivalent to the equation (5). The

Hyers-Ulam-Rassias stability problem of the functional equation (6) will be also investigated in section 3.

2 Solution of equation (6)
Throughout this section, 𝑋 and 𝑌 will be some vector spaces. The following theorem prove that the functional equation
(6) is equivalent to the equation (5). That is every solution of the equation (6) is a quadratic function.

Theorem 1 Let 𝑋 and 𝑌 be common domain and range of the 𝑓 ’s in the equations (5) and (6). Then the equation (6) is
equivalent to (5).

Proof. If we put 𝑥𝑖 = 0, 𝑖 = 1, 2, ..., 𝑛, in the equation (6), we get 𝑓(0) = 0. By putting 𝑥1 = 𝑥2 = 𝑥 and 𝑥𝑖 = 0,
𝑖 = 3, 4, ..., 𝑛, in the equation (6), we see that every solution of the equation (6) is even, i.e. 𝑓(𝑥) = 𝑓(−𝑥). By putting
𝑥1 = 𝑥, 𝑥2 = 𝑦 and 𝑥𝑖 = 0, for 𝑖 = 3, ..., 𝑛, and using evenness of 𝑓 and 𝑓(0) = 0 we can transform the equation (6)
into the equation (5).
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Now, suppose a function 𝑓 : 𝑋 → 𝑌 satisfies (5) for all 𝑥, 𝑦 ∈ 𝑋 . Then trivially 𝑓 is even. Now, using mathematical
induction, we are going to show that

𝑓(
𝑘∑

𝑖=1

𝑥𝑖) +
𝑘∑

𝑗=1

𝑓((
𝑘∑

𝑖=1,𝑖 ∕=𝑗

𝑥𝑖)− 𝑥𝑗)) = 4
𝑘∑

𝑖=1

𝑓(𝑥𝑖) + (𝑘 − 3)𝑓(
𝑘∑

𝑖=1

𝑥𝑖) (7)

for any 𝑘 ≥ 3. For 𝑘 = 3, see the proof of Theorem 1 [2]. Suppose (7) is holds for 𝑘 − 1, we prove that (7) is valid for 𝑘.
Let 𝑥1, 𝑥2, ..., 𝑥𝑛 ∈ 𝑋 be given. By the assumption of induction and the fact that 𝑓 is even, we have

𝑓(
𝑘∑

𝑖=1

𝑥𝑖) +
𝑘∑

𝑗=1

𝑓((
𝑘∑

𝑖=1,𝑖 ∕=𝑗

𝑥𝑖)− 𝑥𝑗)) = 𝑓(
𝑘∑

𝑖=1

𝑥𝑖) +
𝑘−2∑
𝑗=1

𝑓(
𝑘∑

𝑖=1

𝑥𝑖 − 𝑥𝑗)

+𝑓(𝑥1 + ...+ 𝑥𝑘−2 − 𝑥𝑘−1 + 𝑥𝑘) + 𝑓(𝑥1 + ...+ 𝑥𝑘−2 + 𝑥𝑘−1 − 𝑥𝑘)

= 𝑓(𝑥1 + ...+ 𝑥𝑘−2 + (𝑥𝑘−1 + 𝑥𝑘)) +
𝑘−2∑
𝑗=1

𝑓(
𝑘∑

𝑖=1

𝑥𝑖 − 𝑥𝑗)

+𝑓(𝑥1 + ...+ 𝑥𝑘−2 − (𝑥𝑘−1 + 𝑥𝑘))− 𝑓(𝑥1 + ...+ 𝑥𝑘−2 − (𝑥𝑘−1 + 𝑥𝑘))

+𝑓(𝑥1 + ...+ 𝑥𝑘−2 − 𝑥𝑘−1 + 𝑥𝑘) + 𝑓(𝑥1 + ...+ 𝑥𝑘−2 + 𝑥𝑘−1 − 𝑥𝑘)

= 4
𝑘−2∑
𝑖=1

𝑓(𝑥𝑖) + 4𝑓(𝑥𝑘−1 + 𝑥𝑘) + ((𝑘 − 1)− 3)𝑓(𝑥1 + ...+ (𝑥𝑘−1 + 𝑥𝑘))

+𝑓(𝑥1 + ...+ 𝑥𝑘−2 − 𝑥𝑘−1 + 𝑥𝑘) + 𝑓(𝑥1 + ...+ 𝑥𝑘−2 + 𝑥𝑘−1 − 𝑥𝑘)

−𝑓(𝑥1 + ...+ 𝑥𝑘−2 − (𝑥𝑘−1 + 𝑥𝑘))

= 4
𝑘−2∑
𝑖=1

𝑓(𝑥𝑖) + 4𝑓(𝑥𝑘−1 + 𝑥𝑘) + ((𝑘 − 1)− 3)𝑓(𝑥1 + ...+ (𝑥𝑘−1 + 𝑥𝑘))

+𝑓((𝑥𝑘−1 − 𝑥𝑘)− (𝑥1 + ...+ 𝑥𝑘−2)) + 𝑓((𝑥𝑘−1 − 𝑥𝑘) + (𝑥1 + ...+ 𝑥𝑘−2))

−𝑓(𝑥1 + ...+ 𝑥𝑘−2 − (𝑥𝑘−1 + 𝑥𝑘))

= 4
𝑘−2∑
𝑖=1

𝑓(𝑥𝑖) + 4𝑓(𝑥𝑘−1 + 𝑥𝑘) + ((𝑘 − 1)− 3)𝑓(𝑥1 + ...+ (𝑥𝑘−1 + 𝑥𝑘))

+2𝑓(𝑥𝑘−1 − 𝑥𝑘) + 2𝑓(𝑥1 + ...+ 𝑥𝑘−2)− 𝑓(𝑥1 + ...+ 𝑥𝑘−2 − (𝑥𝑘−1 + 𝑥𝑘))

= 4

𝑘−2∑
𝑖=1

𝑓(𝑥𝑖) + 2𝑓(𝑥𝑘−1 + 𝑥𝑘) + ((𝑘 − 1)− 3)𝑓(𝑥1 + ...+ (𝑥𝑘−1 + 𝑥𝑘))

+4𝑓(𝑥𝑘−1) + 4𝑓(𝑥𝑘) + 2𝑓(𝑥1 + ...+ 𝑥𝑘−2)− 𝑓(𝑥1 + ...+ 𝑥𝑘−2 − (𝑥𝑘−1 + 𝑥𝑘))

= 4
𝑘∑

𝑖=1

𝑓(𝑥𝑖) + ((𝑘 − 1)− 3)𝑓(𝑥1 + ...+ (𝑥𝑘−1 + 𝑥𝑘)) + 𝑓(𝑥1 + ...+ (𝑥𝑘−1 + 𝑥𝑘))

= 4
𝑘∑

𝑖=1

𝑓(𝑥𝑖) + (𝑘 − 3)𝑓(𝑥1 + ...+ 𝑥𝑘−1 + 𝑥𝑘)

This prove equation (7). Thus (5) and (6) are equivalent.

3 Hyers-Ulam-Rassias stability of the equation (6)
In this section, we assume that 𝑋 and 𝑌 are a normed space and a Banach space, respectively.

Theorem 2 Let 𝑘 ∈ ℕ and 𝜑 : 𝑋 × ...×𝑋︸ ︷︷ ︸
𝑘−𝑡𝑖𝑚𝑒𝑠

:→ [0,∞) be a mapping such that

𝜓(𝑥, 𝑦) =
∞∑
𝑖=0

𝜑(2𝑖𝑥, 2𝑖𝑦, 0, ..., 0)

4𝑖+1
<∞, for all 𝑥, 𝑦 ∈ 𝑋. (8)
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Suppose that the function 𝑓 : 𝑋 → 𝑌 satisfy

∥𝐷𝑓(𝑥1, 𝑥2, ..., 𝑥𝑘)∥ < 𝜑(𝑥1, ..., 𝑥𝑘) (9)

for all 𝑥𝑖 ∈ 𝑋 , 𝑖 = 0, ..., 𝑘. Then there exists exactly one quadratic function 𝑄 : 𝑋 → 𝑌 such that

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 2𝑀𝜓(0, 0) + 2𝜓(𝑥, 𝑥), 𝑥 ∈ 𝑋, (10)

where 𝑀 = 6𝑘−7
2(𝑘−1) and the function 𝑄 is given by

𝑄(𝑥) = lim
𝑛→∞

𝑓(2𝑛𝑥)

4𝑛
, 𝑥 ∈ 𝑋.

Proof. Suppose that 𝜑 satisfies (8). Let 𝑥, 𝑦 be elements of 𝑋 . From (9) we have

∥4(1− 𝑘)𝑓(0)∥ < 𝜑(0, ..., 0) (11)
∥𝑓(−𝑥)− 𝑓(𝑥)− 4(𝑘 − 1)𝑓(0)∥ < 𝜑(𝑥, 0, ..., 0) (12)

These relations imply that
∥𝑓(−𝑥)− 𝑓(𝑥)∥ < 𝜑(𝑥, 0, ..., 0) + 𝜑(0, ..., 0). (13)

Also we get

∥2𝑓(𝑥+ 𝑦) + 𝑓(−𝑥+ 𝑦) + 𝑓(𝑥− 𝑦) + 4𝑓(𝑥)− 4𝑓(𝑦)− 4(𝑘 − 2)𝑓(0)∥
< 𝜑(𝑥, 𝑦, 0, ..., 0) (14)

from (11),(13) and (14), we get

∥𝑓(𝑥+ 𝑦) + 𝑓(𝑥− 𝑦)− 2𝑓(𝑥)− 2𝑓(𝑦)∥
≤ 1

2
∥2𝑓(𝑥+ 𝑦)− 2𝑓(𝑥− 𝑦)− 4𝑓(𝑥)− 4𝑓(𝑦) + 𝑓(𝑦 − 𝑥)− 𝑓(𝑥− 𝑦)− 4(𝑘 − 2)𝑓(0)∥

+
1

2
∥𝑓(𝑦 − 𝑥)− 𝑓(𝑥− 𝑦)∥+ 2(𝑘 − 2)∥𝑓(0)∥

≤ 𝜑(𝑥, 𝑦, 0, ..., 0)

2
+
𝜑(𝑥− 𝑦, 0, ..., 0)

2
+

2𝑘 − 3

2(𝑘 − 1)
𝜑(0, ..., 0). (15)

With 𝜓(𝑥, 𝑦) := 𝜑(𝑥,𝑦,0,...,0)
2 , from (15), we have

∥𝑓(𝑥+ 𝑦) + 𝑓(𝑥− 𝑦)− 2𝑓(𝑥)− 2𝑓(𝑦)∥ < 2𝑘 − 3

(𝑘 − 1)
𝜓(0, 0) + 𝜓(𝑥− 𝑦, 0) + 𝜓(𝑥, 𝑦). (16)

Thus by (16) we get

∥𝑓(2𝑥) + 𝑓(0)− 4𝑓(𝑥)∥ < 2𝑘 − 3

(𝑘 − 1)
𝜓(0, 0) + 𝜓(0, 0) + 𝜓(𝑥, 𝑥). (17)

Now by (11) and (17)

∥𝑓(2𝑥)− 4𝑓(𝑥)∥ < 6𝑘 − 7

2(𝑘 − 1)
𝜓(0, 0) + 𝜓(𝑥, 𝑥), (18)

and by definition of 𝑀 , replacing x by 2𝑛𝑥 and dividing by 4𝑛+1 we have

∥𝑓(2
𝑛+1𝑥)

4𝑛+1
− 𝑓(2𝑛𝑥)

4𝑛
∥ < 𝑀

𝜓(0, 0)

4𝑛+1
+
𝜓(2𝑛𝑥, 2𝑛𝑥)

4𝑛+1
. (19)

Hence for any 𝑚,𝑛 ∈ ℕ,

∥𝑓(2
𝑚𝑥)

4𝑚
− 𝑓(2𝑛𝑥)

4𝑛
∥ < 𝑀

𝑛−1∑
𝑖=𝑚

𝜓(0, 0)

4𝑖+1
+

𝑛−1∑
𝑖=𝑚

𝜓(2𝑖𝑥, 2𝑖𝑥)

4𝑖+1
. (20)
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We conclude from (20), (8) and definition of 𝜓 that the sequence { 𝑓(2𝑛𝑥)
4𝑛 } is a Cauchy sequence in 𝑌 , for all 𝑥 ∈ 𝑋 . The

sequence { 𝑓(2𝑛𝑥)
4𝑛 } converges in 𝑌 for all 𝑥 ∈ 𝑋 , since 𝑌 is complete. So we can define the mapping 𝑄 : 𝑋 → 𝑌 by

𝑄(𝑥) = lim𝑛→∞
𝑓(2𝑛𝑥)

4𝑛 .
Letting 𝑚 = 0 and passing the limit 𝑛→ ∞ in (20), we get

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 2𝑀𝜓(0, 0) + 2𝜓(𝑥, 𝑥), 𝑥 ∈ 𝑋.

From the (8) we get

lim
𝑛→∞

1

4𝑛
𝜓(2𝑛𝑥, 2𝑛𝑦) = lim

𝑛→∞

∞∑
𝑖=𝑛

𝜑(2𝑖𝑥, 2𝑖𝑦, 0, ..., 0)

4𝑖+1
= 0, 𝑥, 𝑦 ∈ 𝑋. (21)

Now using definition of 𝑄 and relations (15) and (21), one can easily show that

𝑄(𝑥+ 𝑦) +𝑄(𝑥− 𝑦) = 2𝑄(𝑥) + 2𝑄(𝑦), 𝑥, 𝑦 ∈ 𝑋.

On the other hand it follows from Theorem (1) that

(4− 𝑘)𝑄(

𝑘∑
𝑖=1

𝑥𝑖) +

𝑘∑
𝑗=1

𝑄((

𝑘∑
𝑖=1,𝑖∕=𝑗

𝑥𝑖)− 𝑥𝑗) = 4

𝑘∑
𝑖=1

𝑄(𝑥𝑖), for all 𝑥𝑖 ∈ 𝑋, 𝑖 = 0, ..., 𝑘.

To prove the uniqueness of 𝑄, let 𝑇 : 𝑋 → 𝑌 be another quadratic mapping satisfying (10). Since 𝑄 and 𝑇 are quadratic
mappings, (21) implies that

∥𝑄(𝑥)− 𝑇 (𝑥)∥ = lim
𝑛→∞

1

4𝑛
∥𝑓(2𝑛𝑥)− 𝑇 (2𝑛𝑥)∥

≤ lim
𝑛→∞

2𝑀𝜓(0, 0)

4𝑛
+ lim

𝑛→∞
2𝜓(2𝑛𝑥, 2𝑛𝑥)

4𝑛
= 0

for all 𝑥 ∈ 𝑋 . So 𝑄 = 𝑇 .

Theorem 3 Let 𝑘 ∈ ℕ and 𝜑 : 𝑋 × ...×𝑋︸ ︷︷ ︸
𝑘−𝑡𝑖𝑚𝑒𝑠

:→ [0,∞) be a mapping such that

𝜓(𝑥, 𝑦) =
∞∑
𝑖=0

4𝑖𝜑(
𝑥

2𝑖+1
,
𝑦

2𝑖+1
, 0, ..., 0) <∞ for all 𝑥, 𝑦 ∈ 𝑋. (22)

Suppose that the function 𝑓 : 𝑋 → 𝑌 satisfy

∥(4− 𝑘)𝑓(

𝑘∑
𝑖=1

𝑥𝑖) +

𝑘∑
𝑗=1

𝑓((

𝑘∑
𝑖=1,𝑖∕=𝑗

𝑥𝑖)− 𝑥𝑗))− 4

𝑘∑
𝑖=1

𝑓(𝑥𝑖)∥ < 𝜑(𝑥1, ..., 𝑥𝑘) (23)

for all 𝑥𝑖 ∈ 𝑋 , 𝑖 = 0, ..., 𝑘. Then there exists exactly one quadratic function 𝑄 : 𝑋 → 𝑌 such that

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 2𝜓(𝑥, 𝑥), for all 𝑥 ∈ 𝑋. (24)

The function 𝑄 is given by
𝑄(𝑥) = lim

𝑛→∞ 4𝑛𝑓(
𝑥

2𝑛
), 𝑥 ∈ 𝑋.

Proof. By (22) one can easily see that 𝜓(0, 0) = 0. Let 𝜓 : 𝑋×𝑋 → 𝑌 be a mapping defined by 𝜓(𝑥, 𝑦) = 𝜑(𝑥,𝑦,0,...,0)
2 ,

for all 𝑥 ∈ 𝑋 . Put 𝑀 := 6𝑘−2
2(𝑘−1) . Similar to the proof of Theorem (2) we have

∥𝑓(2𝑥)− 4𝑓(𝑥)∥ ≤𝑀𝜓(0, 0) + 𝜓(𝑥, 𝑥),

for all 𝑥 ∈ 𝑋 . Then we have
∥𝑓(𝑥)− 4𝑓(

𝑥

2
)∥ ≤𝑀𝜓(0, 0) + 𝜓(

𝑥

2
,
𝑥

2
)
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for all 𝑥 ∈ 𝑋 . Replacing 𝑥 by 𝑥
2𝑛 and multiplying this equation by 4𝑛, we get

∥4𝑛𝑓( 𝑥
2𝑛

)− 4𝑛+1𝑓(
𝑥

2𝑛+1
)∥ ≤ 4𝑛𝑀𝜓(0, 0) + 4𝑛𝜓(

𝑥

2𝑛+1
,

𝑥

2𝑛+1
), (25)

for all 𝑥 ∈ 𝑋 . Then from the (25) we get

∥4𝑚𝑓( 𝑥
2𝑚

)− 4𝑛𝑓(
𝑥

2𝑛
)∥ ≤

𝑛−1∑
𝑖=𝑚

4𝑖𝑀𝜓(0, 0) +
𝑛−1∑
𝑖=𝑚

4𝑖𝜓(
𝑥

2𝑖+1
,
𝑥

2𝑖+1
), (26)

for all 𝑥 ∈ 𝑋 . Therefore we conclude from (25), (22) and definition 𝜓 that the sequence {4𝑛𝑓( 𝑥
2𝑛 )} is a Cauchy sequence

in 𝑌 , for all 𝑥 ∈ 𝑋 . The sequence {4𝑛𝑓( 𝑥
2𝑛 )} converges in 𝑌 , for all 𝑥 ∈ 𝑋 , since 𝑌 is complete . So we can define the

mapping 𝑄 : 𝑋 → 𝑌 by 𝑄(𝑥) = lim𝑛→∞ 4𝑛𝑓( 𝑥
2𝑛 ), for all 𝑥 ∈ 𝑋 .

Letting 𝑚 = 0 and passing the limit 𝑛→ ∞ in (25) we get

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 2𝜓(𝑥, 𝑥) for all 𝑥 ∈ 𝑋.

The rest of the proof is similar to the proof of Theorem (2).
The following corollary is a generalization of results of [2] which refine these results.

Corollary 4 Suppose 𝑘 ∈ ℕ, 𝜖 ∈ ℝ and 𝑓 : 𝑋 → 𝑌 satisfies the inequality

∥𝐷𝑓(𝑥1, ..., 𝑥𝑘)∥ ≤ 𝜖

𝑘∑
𝑖=1

∥𝑥𝑖∥𝑝, (27)

for some 2 ∕= 𝑝 ∈ ℝ and all 𝑥, 𝑦, 𝑧 ∈ 𝑋 . Then there exists a unique quadratic function 𝑄 : 𝑋 → 𝑌 such that

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 4𝜖
∥𝑥∥𝑝

∣4− 2𝑝∣ . (28)

Proof. Define 𝜑 : 𝑋 × ...×𝑋︸ ︷︷ ︸
𝑘−𝑡𝑖𝑚𝑒𝑠

→ [0,∞) by 𝜑(𝑥1, ..., 𝑥𝑘) = 𝜖
∑𝑘

𝑖=1 ∥𝑥𝑖∥𝑝. If 𝑝 < 2, then with the notations of Theorem

2, we have

𝜓(𝑥, 𝑦) : =

∞∑
𝑖=0

𝜑(2𝑖𝑥, 2𝑖𝑦, 0, ..., 0)

4𝑖+1

=
𝜖

4
(∥𝑥∥𝑝 + ∥𝑦∥𝑝)

∞∑
𝑖=0

1

2𝑖(2−𝑝)

=
𝜖

2𝑝 − 4
(∥𝑥∥𝑝 + ∥𝑦∥𝑝) <∞.

So by Theorem 2, there exists a unique 𝑄 : 𝑋 → 𝑌 such that

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 2𝑀𝜓(0, 0) + 2𝜓(𝑥, 𝑥) =
4𝜖∥𝑥∥𝑝
2𝑝 − 4

. (29)

Now if 2 < 𝑝 <∞, then with the notations of Theorem 3,

𝜓(𝑥, 𝑦) := 𝜖

∞∑
𝑖=0

4𝑖(∥ 𝑥

2𝑖+1
∥𝑝 + ∥ 𝑦

2𝑖+1
∥𝑝)

=
𝜖

2𝑝
(∥𝑥∥𝑝 + ∥𝑦∥𝑝)

∞∑
𝑖=0

4𝑖

2𝑖𝑝

= 𝜖(∥𝑥∥𝑝 + ∥𝑦∥𝑝) 1

2𝑝 − 4
.

By Theorem 3, there exits a unique 𝑄 : 𝑋 → 𝑌 such that

∥𝑓(𝑥)−𝑄(𝑥)∥ ≤ 2𝜓(𝑥, 𝑥) =
4𝜖∥𝑥∥𝑝
2𝑝 − 4

(30)

Now (29) and (30) implies (28), and this completes the proof.

IJNS email for contribution: editor@nonlinearscience.org.uk



M. Janfada, R. Shourvarzi: On Solution and Hyeres–Ulam–Rasstas Stability of a Generalized Quadratic Equation 237

References
[1] J. Aczel and J. Dhombers. Functional Equations in Several Variables. Cambridge Univ. Press, Cambridge. 1989.
[2] J.-H. Bae, K.-W. Jun and S.-M. Jung. On the stability of a quadratic functional equation. Kyungpook Math. J.

43(2003):415-423.
[3] C. Borelli and G. L. Forti. On a genereal Hyers-Ulam stability result Internat. J. Math. Math. Sci.18(1995):229-236.
[4] P. W. Cholewa. Remarks on the stability of functional equations. Aequationes Math. 27(1984):76-86.
[5] J.-Y. Chung. Stability of a generalized quadratic functional equation in Schwartz distributions. Acta Mathematica

Sinica, 25(2009)(9):1459-1468.
[6] S. Czerwik. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg

62(1992):59-64.
[7] Z. Gajda. On stability of additive mappings. Internat. J. Math. Math. Sci. 14(1991): 431-434.
[8] P. Gavruta. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math.

Anal. appl. 184(1994):431-436.
[9] A. Grabiec. The generalized Hyers-Ulam-Rassias stability of a class of functional equations. Publ. Math. Debrecen

48(1996):217-235.
[10] D. H. Hyers. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27(1941):222-224.
[11] D. H. Hyers, G. Isac and Th. M. Rassias. Stability of Functional Equations in Several Variables. Birkh�̈�uer, Base l.

1998.
[12] S.-M. Jung. On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal.

Appl., 222(1998):126-137.
[13] S.-M. Jung. On the Hyers-Ulam-Rassias stability of a quadratic functional equation. J. Math. Anal. Appl.,

232(1999):384-393.
[14] S.-M. Jung. Quadratic functional equations of Pexider type. Internat. J. Math. Math. Sci., 24(2000): 351-359.
[15] S.-M. Jung. Stability of the quadratic equation of Pexider type. Abh. Math. Sem. Univ. Hamburg, 70(2000):175-190.
[16] S.-M. Jung. Hyers-Ulam-Rassias stability of Functional Equations in Mathematical Analysis. Hardonic Press Inc.

Palm Harbor, Florida. 2001.
[17] Pl. Kannappan. Quadratic functional equations and inner product spaces. Result. Math, 27(1995):368-372.
[18] B. D. Kim. On Hyers-Ulam-Rassias stability of functional equations. Acta Mathematica Sinica, 24(2008)(3):353-

372.
[19] A. K. Mirmostafaee and M.S. Moslehian. Fuzzy almost quadratic functions. Results in Math. 52(2008): 161-177.
[20] M. Mirzavaziri and M.S. Moslehian. A fixed point approach to stability of a quadratic equation. Bull. Braz. Math.

Soc. 37(2006)(3):361-376.
[21] M. S. Moslehian, K. Nikodem and D. Popa. Asymptotic aspect of the quadratic functional equation in multi-normed

spaces. J. Math. Anal. Appl. 355(2009)(2):717-724.
[22] M. S. Moslehian. Orthogonal stability of the Pexiderized quadratic equation. J. Differ. Equations. Appl. 11(2005):

999-1004.
[23] C. Park. Generalized quadratic mappings in several variables. Nonlinear Anal.TMA. 57(2004):713-722.
[24] C. Park. On the stability of the quadratic mapping in Banach modules. J. Math. Anal. Appl., 276(2002):135-144.
[25] Th. M. Rassias. Functional Equations and Inequalities. Kluwer Academic, Dordrecht. 2000.
[26] Th. M. Rassias. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978): 297-300.
[27] Th. M. Rassias. On the stability of the quadratic functional equation and its applications. Studia Univ. Babes-Bolyai.

43(1998):89-124.
[28] Th. M. Rassias. On the stability of functional equations and a problem of Ulam. Acta Appl. Math., 62(2000):23-130.
[29] F. Skof. Propriet�́� localie approssimazione dioperatori. Rend. Sem. Mat. Fis. Milano. 53(1983):113-129.
[30] S.M. Ulam. Problems in Modern Mathematics. Wiley, New York. 1964.
[31] S. M. Ulam. A collection of Mathematical Problem. Interscience Tracts in Pure and Applied Mathematics, Inter-

cience Pubisher, New York. 1960.
[32] D. H. Zhang and H. X. Cao. Stability of functional equations in several variables. Acta Mathematica Sinica,

23(2007)(2):321-326.

IJNS homepage: http://www.nonlinearscience.org.uk/


