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SUMMARY

This paper proposes a new approach for estimating the robust domain of attraction (RDA) and directional
enlargement of the DA for dynamical systems. The proposed method analyzes stability of dynamical sys-
tems by Markov modeling and employs invariant measure as the stability indicator. Markov chains analysis
focuses on asymptotic behaviors of systems and ignores the transient ones. The proposed method expresses
the problem of estimating RDA and directional enlargement of DA as an infinite dimensional linear problem.
The resulting linear problem is converted to a finite dimensional optimization problem using approximated
Markov transition function. As a novel application, the directional enlargement of DA is used in order
to increase the critical clearing time of power systems. The efficiency of proposed methods is shown via
simulations. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we study the dynamic behavior of systems using Markov modeling. Two advantages
of using Markov models for extracting dynamical behaviors are the following:

(i) Often, the statistical properties of the Markov model have closed forms and are easily
numerically computable.

(ii) Using Markov chains, one can remove transient effects and only compute the asymptotic
behavior of systems. So it takes less time than direct analysis of system orbits.

To transform the domain of attraction (DA) estimation to a finite dimensional optimization problem,
the state space is divided into a number of subspaces, and the average of the probability of the state
transition matrixes of these subspaces is calculated. A measure is required to indicate the aforemen-
tioned calculated average. The most popular measure used is the probability invariant measure. This
measure is obtained using the distribution of the typical long trajectories of the system. In recent
years, invariant measure has played an important role in the characterization of dynamical systems.
It is an approximate tool to determine behaviors of dynamical systems. It is effectively used for
detecting invariant sets or cyclic behavior of nonlinear systems [1].
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Our work contains three main results.

(i) We propose a new algorithm to approximate the invariant measure from Markov
transition matrix.

(ii) We focus on computing and analyzing robust DA (RDA) of uncertain nonlinear systems. As
most physical systems have uncertain parameters, finding RDA that guarantees the stabil-
ity for different values of uncertainty is important and of most interest. Calculating actual
RDA remains an unsolved problem; however, the following solutions are suggested for it in
recent literatures.

1. Estimating RDA via parameter dependant Lyapunov function (LF) [2, 3].
2. Finding a common LF to prove robust local stability [2].
3. Robust domain of attraction estimation through generalized Zubove’s method.

All the aforementioned methods have limitations. Parameter dependant LF is applicable
only for time-invariant uncertainties. In addition, there is no general LF structure. In most
literature, quadratic LF is used leading to a conservative estimation of DA. Although RDA
of systems with, probably time varying, uncertainty can be estimated through common LF,
finding such a common LF in general is impossible. In the third method, the viscosity solu-
tion of straightforward generalization of classical Zubove’s equation is used to characterize
RDA of a nonlinear system with time varying perturbations [4]. To solve the Zubove’s equa-
tion, method of characteristic is used. This method requires the solution of the nonlinear
system, and in fact the knowledge of DA, which is in general impossible [5].

Our work overcomes these limitations using invariant measure as an approximating tool.
Although the model with finite number of subspaces employed in this work has less infor-
mation than the original system, this simplification allows computing some dynamical prop-
erties such as finding invariant sets, enlarging DA, and estimating RDA for a large class of
nonlinear systems effectively.

(iii) We propose a method for directional DA enlargement. In systems with large DA, distur-
bance is not a serious problem and its affect is usually removed with typical controllers. But
in power systems with bounded DA, increasing critical fault clearing time, the maximum
allowable time to clear the fault and keep the system stable, is very important. Methods of
increasing critical clearing time of power systems can be classified into two main groups: (i)
decreasing the length of fault trajectories by using fast voltage regulators, breaking resistors
[6], and/or line reclosing[7]; and (ii) designing controllers to enlarge DA of post-fault system
[6,8]. Different methods have been proposed to enlarge DA. Some of these methods expand
DA but not along specific directions [9,10] and others enlarge DA directionally for a special
class of nonlinear systems [11].

This work contains four sections. In Section 2, needed definitions are summarized. Introducing
the main idea of this work which is describing stability analysis according to Markov model of a
system, DA directional extension, and RDA estimation by means of Markov chains and invariant
measure are the subjects of Section 3. And finally, the results are simulated in Section 4.

2. PRELIMINARIES

Let � be an n-dimensional open rectangular set in Rn, equipped with Lebesgue measure � on
� -algebra of Borel sets B.�/ and T be a measurable nonsingular transition operator [1] on the
measurable space .�,B,�/ such that

X.kC 1/D T .X.k/ / T W�!�, ��Rn

X.k/D Œx1.k/, : : : , xn.k/�
T , xi .kC 1/D Ti .X.k//

(1)

It is assumed that system (1) has isolated equilibrium points. The following definitions relate
to system (1).
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ROBUST DOMAIN OF ATTRACTION AND DIRECTIONAL ENLARGEMENT 23

Definition 1 (State-space partitioning)
A is a state-space partitioning for � if it divides � into sets (cells) Ai i D 1, : : : ,N such that they
satisfy the following two conditions.

N[
iD1

Ai D�

ı

Ai \
ı

Aj D � 8i ¤ j

where
ı

Ai is the interior of Ai and � is the empty set.

Definition 2 (Center of a partition)
Let A be a state-space partitioning for � � Rn. For simplicity, we suppose rectangular partitions
as Ai D Œl1i , h1i � � : : : � Œlni , hni � i D 1,..,N . The center of each partition Ai is a point like

Ci D Œc1i , : : : , cni �T , where cj i D
hji�lji

2
.

Definition 3 (Long-term orbit)
For the discrete nonlinear system (1), the set ¹X.k/ 2�j X.k/ D T .X.k � 1/ / D : : : D
T k.X.0/ / k D 0, 1, : : :º is called the long-term orbit of (1) with initial condition X.0/.

Definition 4 (Asymptotic stable equilibrium point [12])
Xe 2� is an asymptotic stable equilibrium point of the discrete nonlinear system (1) if

(i) Xe is a fixed point with respect to transition operator T such that T k.Xe/DXe for all k 2 N.
(ii) All orbits ¹X.k/º starting sufficiently near Xe stay near Xe and converge to Xe , as k!1.

Definition 5 (Domain of attraction)
Consider the nonlinear system (1). The DA of an asymptotic stable equilibrium point Xe is
DAXe D ¹X.k/ 2�j lim

h!1
T h.X.k//DXeº.

Definition 6 (Robust domain of attraction)
Consider an uncertain nonlinear system, with an isolated equilibrium stateXe , of the following form

X.kC 1/D TU .X.k/,ˇ/ TU W��B!�, ��Rn, B �Rp

TU .Xe ,ˇ/DXe 8ˇ 2 B
(2)

where ˇ 2 B is an uncertainty vector, B is a measurable compact set in Rp , and TU is
a nonsingular uncertain transition operator. The RDA of system (2) is defined as RDAXe D
¹X.k/ 2�j lim

h!1
T hU .X.k/,ˇ/DXeI 8ˇ 2 Bº.

Obviously, TU .Xe ,ˇ/ D Xe 8ˇ 2 B implies that in this paper, a class of nonlinear systems is
considered which has at least one isolated equilibrium point that is not sensitive to the variation
of parameters.

Definition 7 (Fault running vector)
Consider a nonlinear system with its state at its stable equilibrium point Xe . Call it pre-disturbance
system. Consider further occurrence of a disturbance so large that, if not removed, moves the state
of the system out of the DA of Xe , thus resulting in instability. The trajectory of the state of the
system due to this disturbance, provided it is not removed, passes the closure of the DA of Xe
at a point Xc . We are considering only the specific class of disturbances that if removed in time
leaves the structure of the system unchanged. Therefore, the system after the in time removal of
disturbance, post-disturbance system, is stable and will converge to the same pre-disturbance stable
equilibrium pointXe . For such systems, we define the fault running vector as the vector in the direc-
tion of the straight line connectingXe toXc (See Figure 1 that shows the fault running vector for the
Van der Pol oscillator).
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Figure 1. Fault running vector is in the direction of the line that contacts Xe to Xc . Dashed curve: state
trajectory of distributed system; black curve: domain of attraction of pre-disturbance Van der Pol system.

An example of such a nonlinear system is the power system with a self-healing fault (distur-
bance) where the pre-fault and post-fault systems have the same structure and equilibrium state and
where the trajectory of the fault-on system, if the fault is not removed in time, passes the DA of the
equilibrium state.

3. MAIN RESULTS

We focus on the discrete dynamical system of equation (1). Results for the continuous-time systems
can be deduced from the discrete ones. As we are concerned with estimating DA of systems (certain
or uncertain), we should analyze their long-term orbits. Doing so is not practically possible in many
systems because it takes a long time and may lead to computer round-off error. Therefore, in this
paper, we use the method of Markov modeling of dynamical systems to remove the transient effects
and calculate only the asymptotic behavior.

In the next part, we review some properties and theorems that are necessary for stability analysis
of nonlinear systems via Markov models.

3.1. Stability analysis of Markov chains

Considering (1), X.k C 1/ can be exactly obtained from X.k/ so we can construct a Markov chain
for this system as follows [13].

�X0 D
°
�kj �k DX.k/D T

k.X.0//, 06 k < nC 1
±

(3)

Definition 8
Let X 2 � and A � �. The n-step transition function, denoted by pn.X ,A/, is the probability
that a Markov chain �X0 starting from an arbitrary point like X0 D X remains in the set A after
n steps [12].

Proposition 1
For Markov chain (3), Markov transition function is proposed as P.X ,A/D lim

n!1
pn.X ,A/.

Proof
See [12, chapter 1, page 3]. �
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ROBUST DOMAIN OF ATTRACTION AND DIRECTIONAL ENLARGEMENT 25

In the sequel (proposition 2), we show that the uniformly distributed P.X ,A/ depends only on
A. For analysis of the stability of the proposed Markov chain, we consider Theorem 1.

Theorem 1
The existence of a fixed point like Xe , which is asymptotically stable in the set A � �, is exactly
equal to the existence of a nonzero unique solution for the following invariant equation.

m.A/D

Z
�

P.X ,A/ dm.A/

Proof
See [12, chapter 1, page 20, asymptotic stability definition]. �

In the aforementioned theorem,m 2M andM is the set of all probability Lebesgue measures on
the topological space �.

Lemma 1
Closure of the DA of the equilibrium point Xe of the nonlinear system (1), DAXe ��, is the union
of the members of support of probably measure m and obtained from following equation

DAXe D SUPP ¹mº

where SUPP ¹mº D [¹Aj m.A/D
R
�

P.X ,A/ dm.A/¤ 0º.

Proof
According to Theorem 1, every member of SUPP ¹mº is asymptotically stable so it is contained in
DAXe so it yields DAXe D SUPP ¹mº. As A is a close set SUPP, ¹mº is also close. �

3.2. Estimating domain of attraction

3.2.1. Proposed method for estimating domain of attraction. It is not practically possible to esti-
mate DA of system (1) using Lemma 1 because it leads to an infinite dimensional problem in space
M . In other words, because DA � �, we should calculate P.X ,A/ D lim

n!1
pn.X ,A/ for every

X 2 � which leads to an infinite dimensional problem. So, we use the idea of [10] and partition
the state space�(according to Definition 1). Assuming that P.X ,A/ has a uniform distribution, we
calculate probability of transition of subspaces instead of calculating the probability of transition for
every point X 2�. So in the sequel, we convert the infinite dimensional problem of estimating DA,
proposed in Lemma |1, to a finite dimensional one. To investigate the stability of state partitions,
we use the discrete-time Markov chain that is a Markov process �n having a countable number
of states An [13].

Definition 9 (Markov transition matrix)
Consider nonlinear system (1). For state-space partitioning A of �, the N �N Markov transition
matrix P is defined as

P .n1,n2/ D
h
p
.n1,n2/
ij

i
D
�
prob

�
X.n2/ 2 Aj

ˇ̌
X.n1/ 2 Ai

��
I
X
j

p
.n1,n2/
ij D 1 (4)

Definition 10 (State probability vector)
The state probability vector for state-space partitioning A in nth transition is defined as #.n/ D
.#1.n/, : : : . ,#N .n//, where #i .n/ is the probability of Markov chain to exist in Ai state in the nth

transition [12]. In other words, #i .n/D prob ŒX.n/ 2 Ai � and
NP
iD1

#i .n/D 1 8n [13].
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In this paper, we assume the Markov chain related to system (1) to be

(i) A time-homogeneous Markov chain (or stationary Markov chains). This is a Markov chain
for which p.n1,n2/

ij only depends on mD n2 � n1 [13], so we have

P .n1,n2/ D
h
p
.n1,n2/
ij

i
D
h
p
.m/
ij

i
D prob ŒX.nCm/ 2 Aj

ˇ̌
X.n/ 2 Ai �I 8n 2N

(ii) An irreducible chain which means that it is possible to get to any state .Aj / from any state
.Ai /.

(iii) Aperiodic or have at least one aperiodic state. The state i is said to be aperiodic if it returns
to itself at irregular times or in the other words

gcd¹njprobŒX.nC 1/ 2 Ai jX.0/ 2 Ai � > 0º D 1

where gcd is the greatest common divisor.

The aforementioned assumptions contain a large class of nonlinear systems. For these systems, the
following definitions are considered

Definition 11 (n-step Markov transition matrix)
n-Step Markov transition matrix for a homogenous Markov process is defined as

P .n/ D
h
p
.n/
ij

i
D prob .X.kC n/ 2 Aj =X.k/ 2 Ai / (5)

Proposition 2
For uniformly distributed P.X ,A/, p.1/ij can also be presented as

p
.1/
ij D

m.T �1.Aj /\Ai /

m.Ai /
i , j D 1, : : : ,N (6)

Proof
See [10]. �

Proposition 3
For a homogeneous process, we have

(i)

P .n/ D P n (7)

(ii)

#.n/D #.0/P .n/ D #.0/P n D #.n� 1/P (8)

Proof

(i) For a time-homogeneous Markov chain, we have n1 < n2 < n3 W p
.n3�n1/
ij DP

r

p
.n2�n1/
ir p

.n3�n2/
rj (See Equations (16–110) of [13]).

Substituting n2 � n1 D k and n3 � n2 D n yields p.nCk/ij D
P
r

p
.k/
ir p

.n/
rj which is equal to

P .nCk/ D P .k/P .n/. This consequently yields P .n/ D P .n�1/P D P .n�2/P 2 D P n.
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DOI: 10.1002/oca



ROBUST DOMAIN OF ATTRACTION AND DIRECTIONAL ENLARGEMENT 27

(ii) From Equations (7–48) or (16–109) of [13], we have
P
i

#i .k/p
.k,n/
ij D #j .n/. For a time-

homogeneous stationary Markov chain, this yields #.n/ D #.n� k/P .k/. For k D 1, this is
equal to #.n/D #.n� 1/P . �

Proposition 4
For a stationary Markov process, the state probability vector # does not depend on n and is called a
stationary distribution (or invariant measure) vector.

Theorem 2 (Perron–Frobenius theorem)
For irreducible and aperiodic Markov chains, there exist a unique invariant measure vector # . In
addition, P .n/ converges to a rank-one matrix in which each row is the stationary distribution
# that is

lim
n!1

P .n/ D 1#

where 1 is the column vector with all entries equal to 1.

Proof
See[13]. �

Theorem 3
The (closure of) DA of nonlinear system (1) with N state partitioning A can be estimated from the
support of invariant measure vector # . Where # is calculated from the following equations.

# D P# I# D .#1, : : : .,#N /
NX
iD1

#i D 1
(9)

Proof

Propositions 3 and 4 imply that # D P# , where
NP
iD1

#i D 1 and # D .#1, : : : .,#N / is unique (see

Perron–Frobenius theorem). In addition, as #i is the probability that the Markov chain exists in state
Ai , we can conclude that #i is a stability weight. In other words, #i D 0 shows that orbits do not
exist in Ai and leave this state so DA includes states with nonzero invariant measure or equally DA
is the support of # . �

3.2.2. Proposed analytic form of Markov matrix. Considering Theorem 3, to estimate DA, we
should calculate Markov matrix. There are different numerical algorithms to calculate P matrix
from equation (6) [see chapter 6 of reference 10]. In the sequel, we provide a new analytic formula
to determine P which is more accurate; moreover, we use this analytic form to estimate RDA.

Proposition 5
Some useful properties of the (probability) Lebesgue measure m and characteristic function � are
as follows.

(a) m.A\B/D
R
A

�B.X/dX D
R
B

�A.X/dX .

Proof
From [14], we have �.A\B/ D �.A/.�.B/, which yields

m.A\B/D

Z
�

�A\B.X/dX D

Z
�

�A.X/. �B.X/dX D
Z
A

�B.X/dX D

Z
B

�A.X/dX

(b) �T�1.A/.X/D �A. T .X/ /.

�
Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:21–40
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Proof
Because T is nonsingular, we have

�T�1.A/.X/D 1,X 2 T �1.A/, T .X/ 2 A

, ŒT1.X/, : : : ,Tn.X/�
T 2 A, �.A/.T .X//D 1

�

Lemma 2
For nonlinear system (1), with state-space partitioning A, the Markov matrix can be represented by
the following analytic form

pij D

R
�

nQ
qD1

H Œ .Tq � lqj /..hqj � Tq/�
nQ
kD1

H Œ .xk � lki /..hki � xk/ � dX

SDj
(10)

where

SDj D

nY
kD1

.hkj � lkj / , dX D dx1 : : : dxn

H.x/D

8<
:
1 x > 0

0.5 x D 0
0 x < 0

And the state space portioning A is chosen as Ai D Œl1i , h1i �� : : :� Œlni , hni � i D 1,..,N .

Proof
From proposition 5a, the P matrix as defined in Proposition 2 can be expressed as

pij D
m.T �1.Aj /\Ai /

m.Ai /
D

R
�

�T�1.Aj /.X/. �Ai .X/dXR
�

�Ai .X/ dX

Therefore, from Proposition 5b, we have

pij D

R
�

�Aj .T .X// . �Ai .X/dXR
�

�Ai .X/ dX
(11)

According to the characteristic function definition [13], an acceptable �Ai .X/ for Ai set is

H

 
nY
kD1

Œ .xk � lki /..hki � xk/�

!
(12)

Substituting (12) in (11) completes the proof. �

3.3. Robust domain of attraction estimation

In this section, we generalize the stability Theorem 1, defined in the previous section, for
RDA estimation.

Although finding the exact RDA is a difficult problem, different ways are proposed in literatures
to estimate it. Some of these methods choose arbitrary values for uncertainty and estimate DA for
these fixed values and estimate RDA from the intersection of these DA sets. These methods are not
reliable because they just study DA variations for special values in uncertainty bound. On the other

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:21–40
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hand, as these methods are based on intersecting DAs, they usually use simple LFs for estimating
DA [2]. The Lyapunov-based algorithms, which use quadratic structures obtain a conservative esti-
mate of RDA and the other algorithms such as those using generalized Zubove’s method [4] are
only applicable for a special class of nonlinear systems.

According to Theorem 3, we propose a new method for RDA approximation, which is convenient
for a large class of nonlinear systems (with time-homogeneous aperiodic chains).

Theorem 4
Consider nonlinear system (2) with uncertain parameter ˇ, then the support of #ˇ provides the
estimated closure of RDA, where #ˇ is obtained through the following optimization formulation.

#ˇ D Inf
ˇ2B

# .ˇ/

s.t . #.ˇ/D P.ˇ/#.ˇ/
NX
iD1

#i .ˇ/D 1

(13)

and P.ˇ/ is calculated from Lemma 2 substituting T by TU .

Proof
Definition 6 easily implies that

RDAXe D
\
ˇ2B

DAXe .ˇ/ (14)

whereDAXe .ˇ/ is the closure of the DA of system (2), if we suppose a fixed value for ˇ. According
to Theorem 3 and Lemma 1 for a fixed ˇ, we have a solution as

DAXe .ˇ/D SUPP.#.ˇ//, #.ˇ/D P.ˇ/#.ˇ/,
NX
iD1

#i .ˇ/D 1 (15)

where #.ˇ/ is a vector of invariant measures. In addition, from 14 and 15, it is clear that

RDAXe D
\
ˇ2B

SUPP.#.ˇ//D
\
ˇ2B

¹Ai j #i .ˇ/¤ 0º D
\²

Ai j inf
ˇ2B

#i .ˇ/¤ 0

³

D SUPP

�
inf
ˇ2B

#.ˇ/

�
(16)

In other words, RDAXe D SUPP #ˇ . �

According to Theorem 4, we propose an analytic formula to find RDA. According to (16), Ai
is contained with RDA if #i .ˇ/ has a nonzero global minimum on B . This global minimum is
numerically found using the proposed method of [15]. The advantage of our proposed method is
that we express the problem of estimating RDA in the form of a simple optimization problem which
is useful for a large class of nonlinear systems.

3.4. Directional extension of domain of attraction

Considering the following system with equilibrium state Xe D 0, the goal is determining an optimal
value for controlling parameters ˛ D Œ˛1 : : : ˛h�T to extend the DA of the system along a desired
direction like e D Œe1 : : : en �

T .

PX D f .X ,˛/ f WRn �RC
h

!Rm

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:21–40
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Figure 2. Extending domain of attraction along e (�i D Ci � e is greater than �j D Cj � e/.

Although directional extension of DA is of interest in many applications such as power systems,
finding the controlling parameter(s) to achieve this feat is not very easy. In other words, extending
DA along directions of interest and computing its sensitivity to controlling parameters along these
directions needs an analytic estimate of DA which directly depends on ˛. We do this by Markov
modeling of the following discrete-time system

xi .kC 1/D Ti .X.k/,˛/ i D 1, : : : ,n (17)

Then, we propose Theorem 5 for DA directional extension along the vector e.

Theorem 5
Consider nonlinear system (17) with the controlling parameters ˛ and state-space partitioning A.
Let e be the direction of interest, the optimal ˛’s that lead to DA extension along this desired vector,
found through the following optimization problem

minimize
˛

J.˛/D� j�i j #i .˛/

s.t W

8̂<
:̂
#.˛/D P.˛/#.˛/

NP
iD1

#i .˛/D 1

(18)

where, �i D Ci � eD
nP
jD1

cj i ej , N is the number of state space partitions, and Ci is the center of Ai

as described in Definition 2.

Proof
As shown in Figure 2, �i D Ci � e leads to increasing �i in Ai s along e. So, to minimize J.˛/,
we should find optimal control parameters that maximize #i .˛/ with greater �i or in other words
maximize #i .˛/ of partitions along e. According to Theorem 3, this is equal to DA enlargement
along e. �

In this paper, we effectively use directional extension of DA for increasing critical clearing time
of nonlinear systems such as power systems. Literatures that are increasing critical clearing time are
extending DA globally [9, 10]. But in this work, we find the fault running vector by simulating the
faulted system and extend DA along this vector according to Theorem 5. Numerical results verify
the efficiency of the proposed idea.

4. NUMERICAL EXAMPLES

This part contains three numerical examples. In Section 4.1, DA of the equilibrium point of a
Van der Pol system is estimated through Theorem 3. We focus on estimating RDA according to
Theorem 4, in Section 4.2. Section 4.3 is about directional extension of DA, using Theorem 5. To
show the problem formulation more precisely, we propose a numerical algorithm in Appendix 1.

Copyright © 2012 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2014; 35:21–40
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4.1. Domain of attraction estimation

In this part, we apply our method for two different classes of nonlinear systems. We estimate the
DA of a Van der Pol oscillator (which has a bounded DA) and compare the estimated region with
the approximated area obtained from [1], and we apply the method on system (20) to prove the
capability of estimating unbounded DAs.

Consider the following discrete Van der Pol system with bounded DA

x1ŒkC 1�D .�x2Œk�/Ts C x1Œk�

x2ŒkC 1�D ¹x1Œk�� .1� .x1Œk�/
2/x2Œk�ºTs C x2Œk�

(19)

where Ts is the sampling time.
To estimate DA, the invariant measure vector # D .#1, : : : . ,#N / should be determined from (9).

Before solving (9), it is necessary to find Markov transition matrix P D Œpij �N�N . According to
Appendix 1,

(i) We choose � D Œ�3, 3� � Œ�3, 3� and N D N1.N2 D 1024 which yields 	1 D 	2 D 0.187,
Ai D Œl1i , h1i � � Œl2i , h2i � i D 1,.., 1024,l1i D �3 C 0.187 remaider

�
i
32

�
, l2i D

�3C 0.187quotient
�
i
32

�
, h1i D l1i C 0.187 and h2i D l2i C 0.187.

(ii) Substituting (19) in (25) and choosing M1 DM2 D 30 and TS D 1, P matrix is obtained as

P D Œpij �, pij D

30P
m1D0

30P
m2D0

ŒhT .m1 ,m2 , i , j /.hX .m1 ,m2 , i , j /�

SD=0.04

where

hT .m1 ,m2 , i , j /DH
� �
T1 .X

m1,m2/� l1j
�

.
�
h1j � T1 .X

m1,m2/
��

�H
�
T2 .X

m1,m2/� l2j
�

.
�
h2j � .T2 .X

m1,m2//
�

T1 .X
m1,m2/D�x

m2
2 C x

m1
1 , T2 .X

m1,m2/D x
m1
1 �

�
1� x

m1
2

1

	
x
m2
2 C x

m2
2

hX .m1 ,m2 , i , j /DH
� �
x
m1
1 � l1i

�
.
�
h1i � x

m1
1

��
H

� �
x
m2
2 � l1i

�
.
�
h1i � x

m2
2

��
x
mk
1 D 0.2 .mk , xmk2 D 0.2 .mk

SD D 0.187 2

To find invariant measure vector, we use ‘Linprog’ instruction of Matlab as # D
linprog .Zeros.N , 1/, A, B , Aeq , Beq/ with the following chosen values for the matrixes

Aeq D

2
66664

1 1 1 : : : 1

p11 � 1 p12 p13 : : : p1N
p21 p22 � 1 p23 : : : p2N

...
...

...
...

pN1 pN2 pN3 : : : pNN � 1

3
77775
NC1�N

Beq D

2
6664
1

0
...
0

3
7775
NC1 �1

Because the invariant measure vector # is positive, A and B are defined as

AD

66664
�1 : : : 0
...

. . . 0

0 0 �1

77775
N�N

B D

2
64
1
...
1

3
75
N�1

Also, ‘Cool Colormap’ is applied and Figure 3 is plotted by ‘Surfc’ instruction.
In Figure 3, actual DA and estimated DA of the aforementioned system have been displayed. The

invariant measure of each partition, varies between zero and one, is defined through Theorem 3 and
specified with color toolbars. In Figure 3, we also compare the estimated DA obtained from our
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(a) (b)

Figure 3. (a) Our estimation: The estimated domain of attraction of Van der Pol system for N D 32 � 32
partitions is illustrated through color bar and the actual domain of attraction is shown in black curve.
(b) Estimated region of [1]: The estimated domain of attraction of Van der Pol system for N D 64 � 64

partitions.

proposed method with another estimated region that is illustrated in [1]. The comparison shows that
although [1] uses a finer partitioning, which leads to more complicated calculations, our estimated
region is more accurate.

Most of the existing estimation methods, such as Lyapunov-based ones [2, 3], are not convenient
for systems with unbounded DA. We show that the proposed method can effectively be used for
such systems. The results of estimating the unbounded DA of system (20) are shown in Figure 4.
From Figures 3 and 4, one concludes that it is better to choose � such that it contains DA (see
Figure 3(a)). Note that, DAXe � � is not a necessary condition and does not affect the estimation
accuracy (see Figure 4). So, it is sufficient only to consider Xe 2�.

To estimate the system, described in equation (20), we set parameters as � D Œ�5, 5� � Œ�5, 5�,
N1 D N2 D 35, 
1 D 
2 D 0.28, Ai D Œl1i , h1i � � Œl2i , h2i � i D 1,.., 1225, l1i D
�5C0.28 remaider

�
i
35

�
, l2i D�5C0.28 quotient

�
i
35

�
and h1i D l1iC0.28, h2i D l2iC0.28

the estimation method is the same as that of the previous part.

x1ŒkC 1�D .x2Œk�/Ts C x1Œk�

x2ŒkC 1�D

�
�x2Œk�� x1Œk�C

1

16
. x1Œk�/

5

�
Ts C x2Œk�

(20)

Figure 4. The estimated domain of attraction of the system with unbounded domain of attraction for
N D 35 � 35 partitions is illustrated through color bar and the actual domain of attraction is shown in

black curve.
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4.2. Robust domain of attraction estimation

Consider the following system

x1ŒkC 1�D
�
�x1Œk�C .x2Œk�/

2C ˇ.�2.x2Œk�/� 2.x2Œk�/
2/
�
Ts C x1Œk�

x2ŒkC 1�D ..3x1Œk�� 2x2Œk�C x1Œk�x2Œk�/C ˇ.�2x1Œk�C 2x2Œk�// Ts C x2Œk�
(21)

with uncertain parameter ˇ 2 Œ0, 1�.
This system is an example of [2] which estimates the RDA of polynomial systems with parameter

dependent LFs. In Figure 5(a), the green space is the actual RDA in which stability is guaranteed
for different values of ˇ, and the dashed line is the estimated RDA by [2]. Figure 5(b) is the esti-
mated RDA obtained from Theorem 4. According to part (i) of Appendix 1, RDA estimation is the
same as estimating DA, as described in part 4.1. We set � D Œ�2, 2� � Œ�2, 2�, N1 D N2 D 40,
	1 D 	2 D .1, Ai D Œl1i , h1i � � Œl2i , h2i � i D 1, .., 1600,l1i D �2C 0.1 remaider

�
i
40

�
, l2i D

�2C 0.1 quotient
�
i
40

�
, h1i D l1i C 0.1 and h2i D l2i C 0.1.

Markov matrix in RDA estimation problem is a function of parameter ˇ and is computed
from equation (27). To decrease complexity of cost function #.ˇ/ of equation (13), we choose
M1 DM2 D 10 and easily construct P.ˇ/ matrix

P D Œpij �, pij D

10P
m1D0

10P
m2D0

ŒhT .m1 ,m2 , i , j ,ˇ/.hX .m1 ,m2 , i , j /�

SD=.16

where

hT DH
� �
T1 .X

m1,m2 ,ˇ/� l1j
�

.
�
h1j � T1 .X

m1,m2 ,ˇ/
��

�H
�
T2 .X

m1,m2 ,ˇ/� l2j
�

.
�
h2j � .T2 .X

m1,m2 ,ˇ//
�

T1 .X
m1,m2 ,ˇ/D

�
x
m2
2

�2
� x

m1
1 C ˇ

�
�2x

m2
2

�
1C x

m2
2

��
C x

m1
1

T2 .X
m1,m2 ,ˇ/D 3xm11 � 2x

m2
2 C x

m1
1 x

m2
2 C ˇ

�
�2x

m1
1 C 2x

m2
2

�
C x

m2
2

hX .m1 ,m2 , i , j /DH
� �
x
m1
1 � l1i

�
.
�
h1i � x

m1
1

��
H

� �
x
m2
2 � l2i

�
.
�
h2i � x

m2
2

��
x
mk
1 D 0.4 .mk , xmk2 D 0.4 .mk
SD D 0.01

(a) (b)

Figure 5. (a) Actual robust domain of attraction of the system for ˇ 2 Œ0, 2� is shown in green space and
estimated region with Lyapunov function is shown in dashed curve. (b) The estimated robust domain of
attraction for N D 40 � 40 partitions in comparison with actual robust domain of attraction is shown in

black curve.
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#.ˇ/ is obtained from solving optimization problem (13). To solve this problem, we use ‘fmincon’
instruction. Invariant vector, a function of ˇ, is minimized as follows

fmincon.#.ˇ/,A, b,Aeq,Beq#.ˇ/D P.ˇ/#.ˇ//

where Aeq D Œ1 1 : : : . 1 �NC1�1 Beq D Œ1�1�1 demonstrates
NP
iD1

#i .ˇ/ D 1. A and B are defined

as follows to indicate #i .ˇ/> 0 i D 1, : : : ,N .

AD

66664
�1 : : : 0
...

. . . 0

0 0 �1

77775
N�N

B D

2
64
0
...
0

3
75
N�1

According to Figure 6, for such system, both methods define an acceptable estimate of DA, but as in
Lyapunov-based methods, estimated DA is usually limited to quadratic structures of LF, this method
is not applicable for systems with non-quadratic DAs and the result is very conservative. To show it
more precisely, we introduce another test system defined in (22). Values of parameters (�, N, . . . )
have been stated in the figure description and estimating steps are as in system (21). Figure 6 shows
that the Lyapunov-based answer is not as appropriate as the previous one. In comparison with the
results of Lyapunov-based methods, our proposed method does not depend on system structure and
if we use a finer partitioning, we will obtain a more accurate answer.

The more popular methods of estimating RDA use common LFs to prove robust local stability
[2], estimating RDA via parameter dependent LFs [2, 3] and RDA estimation through generalized
Zubove’s method [4]. These methods have limitations that we overcome through our proposed
method. For example, in Lyapunov-based algorithms, RDA of systems with probably time vary-
ing uncertainty can be estimated through common LF but finding such a common LF in general is
impossible. Parameter dependent LF is applicable only for time-invariant uncertainties. In addition,
there is not a general LF structure and most literatures use quadratic LF, which leads to a conserva-
tive estimation of DA as we mentioned in Figures 5 and 6. On the other hand, to find RDA through
generalized Zubove’s method, the viscosity solution of straightforward generalization of classical
Zubove’s equation is used. This method is concerned with exact determination of DA [5]. To solve
Zubove’s equation, method of characteristic is used, but this method requires solution of nonlinear
system and in fact the knowledge of DA which is mostly impossible.

Another disadvantage of parameter dependent Lyapunov-based methods is that the stability is not
exactly guaranteed in estimated region. For example, in Figure 5(a), one may choose a ˇ which has

(b)(a)

Figure 6. (a) Actual robust domain of attraction of the system for ˇ 2 Œ0.1, 2� is shown in green space and
estimated region with Lyapunov function is shown in dashed curve. (b) The estimated robust domain of
attraction for N D 35 � 35 partitions in comparison with actual robust domain of attraction is shown in

black curve.
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not been previously considered in the intersection but using it leads to a different estimated RDA.
Our proposed method overcomes this limitation by considering all values of parameter ˇ.

In comparison with estimation algorithms proposed in [2–5], one disadvantage of Markov mod-
eling is that the estimated RDA (as it can be seen in Figure 5(b)) includes real RDA so in boundary
partitions stability is not guaranteed. To overcome this limitation and have a more accurate estimate
of RDA, we suggest refining any partition sets which has measure greater than 1

N
, where N is the

number of initial partitions.

x1ŒkC 1�D
�
�x2Œk�C x1Œk�..x1Œk�/

2C .x2Œk�/
2 � 1/

�
Ts C x1Œk�

x2ŒkC 1�D
�
ˇ .x1Œk�C x2Œk�..x1Œk�/

2C .x2Œk�/
2 � 1//

�
Ts C x2Œk�

(22)

4.3. Directional extension

Consider the following system with the controlling parameter ˛.

x1ŒkC 1�D .�x2Œk�/Ts C x1Œk�

x2ŒkC 1�D
®
x1Œk�� ˛.1� .x1Œk�/

2/x2Œk�
¯
Ts C x2Œk�

(23)

The proposed idea of Theorem 5 is applied to determine the appropriate ˛ that extends the DA of
the system along a desired direction Ee. Using Theorem 5, ˛ D 3.231 is obtained as the optimal
controlling parameter. In Figure 7(a), the extended DA along Ee1 D Œ1 Ei 4 Ej �T is compared with
the initial DA and Figure 7(b) illustrates the invariant measure of state-space partitioning which is
obtained as follows.

(i) We choose � D Œ�3, 3� � Œ�6, 6�, N1 D N2 D 24 which yields 	1 D 0.25,	2 D 0.5,
Ai D Œl1i , h1i � � Œl2i , h2i � i D 1,.., 242, l1i D �3 C 0.25remaider

�
i
24

�
, l2i D �6 C

0.5quotient
�
i
24

�
, h1i D l1i C 0.25 and h2i D l2i C 0.5.

(ii) Substituting (23) in (27) and choosing M1 D 12, M2 D 24, P matrix is obtained as

P D Œpij �, pij D

30P
m1D0

30P
m2D0

ŒhT .m1 ,m2 , i , j ,˛/.hX .m1 ,m2 , i , j /�

SD=0.25

(a) (b)

Figure 7. (a) Comparison of the initial domain of attraction (dashed curve) and the extended one along
Ee1 D Œ1 Ei 4 Ej �T for ˛ D 3.231. (b) The invariant measure of partitions for ˛ D 3.231.
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where

hT DH Œ .T1.X
m1,m2 ,˛/� l1j /..h1j � T1.X

m1,m2 ,˛//�

�H ŒT2.X
m1,m2 ,˛/� l2j /..h2j � .T2.X

m1,m2 ,˛//�

T1.X
m1,m21 /D�x

m2
2 C x

m1
1 , T2.X

m1,m2/D x
m1
1 � ˛

�
1� x

m1
2

1

	
x
m2
2 C x

m2
2

hX .m1 ,m2 , i , j /DH
� �
x
m1
1 � l1i

�
.
�
h1i � x

m1
1

��
H

� �
x
m2
2 � l2i

�
.
�
h2i � x

m2
2

��
x
mk
1 D 0.5 .mk , xmk2 D 0.5 .mk
SD D 0.125

(iii) We solve optimization problem (18) to find ˛. The optimal controlling parameter and its
related invariant vector can be easily computed from the following instruction.

fmincon.J.˛/D�j�i j #i .˛/,A, b, Aeq, Beq#.˛/D P.˛/#.˛//

where Aeq D Œ1 1 : : : . 1 0 �NC1�1 Beq D Œ1�1�1. Because invariant measure vector # and
˛ are positive, A and B are defined as

AD

66664
�1 : : : 0
...

. . . 0

0 0 �1

77775
NC1�NC1

B D

2
64
0
...
0

3
75
NC1 �1

where the output of ‘fmincon’ instruction is Œ# I˛�T vector.

4.4. Increasing critical clearing time of power system

In this part, we show that directional enlargement of DA can effectively be used for increasing
critical clearing time of power systems.

Consider the following two-area four-machine power system. Specifications of this system are
defined in Appendix 2. We suppose the exciter gains as controlling parameters of system with nom-
inal value kA D Œ200 200 200 200 �. Using power system toolbox (PST), written by Graham
Rogers, we plot the faulted system flows (see Figure 8). The original paper about PST was writ-
ten by J. H. Chow [16]. The fault running vector of system after three different faults is defined
in Table I.

(a) (b) (c)

Figure 8. Faulted power system flows (a) short circuit of the fifth bus; (b) short circuit of the sixth bus; and
(c) Open circuit of lines 5–6.

Table I. Fault running vector of system.

Fault type Fault running vector

Short circuit of the fifth bus e1 D Œ 0.39 � 0.85 � 0.35 �
Short circuit of the sixth bus e2 D Œ 0.3 0.6 0.74 �
Open circuit of lines 5–6 e3 D Œ �0.24 � 0.85 � 0.46 �
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Table II. Optimal controlling parameter for extending domain of
attraction along fault running vectors.

Fault running vector Optimal value of exciter gain

e1 kA�1 D Œ91 90 91 90�
e2 kA�2 D Œ88 86.5 88 86.5�
e3 kA�3 D Œ102 122.8 102 122.8�

Table III. Improvement of critical clearing time.

Critical clearing time (s)

For Nominal exciter gain For optimal exciter gain

Short circuit of the fifth bus 0.0012 0.0033
Short circuit of the sixth bus 0.0012 0.0036
Open circuit of lines 5–6 0.21 0.342

For each type of faults, we use Theorem 5 to extend DA along fault running vector related
to that fault. The numerical steps are the same as stated in part 4.3. The optimal gain for each
fault is defined in Table II. Finally, in Table III, the critical clearing time which is obtained from
nominal value of exciter gain is compared with the increased clearing time obtained from optimal
controlling parameters.

5. CONCLUSIONS

In this work, we propose a new method for estimating the RDA. Although this work is based on the
average quantities of state space and therefore does not use the exact information of real system, it
is able to effectively find estimated RDA by solving just a simple optimization problem. Another
advantage of this work is its capability of estimating RDA for a large class of nonlinear systems
(systems with time-homogeneous aperiodic chains).

In addition, we apply the method for directional enlargement of the DA and find the opti-
mal controlling parameters by solving an optimization problem. The method is applied for
increasing critical clearing time of power systems by enlarging DA of power system along fault
running vector.

One disadvantage of using Markov modeling for DA estimation is that the estimated DA includes
real DA; so in boundary partitioning, the stability is not guaranteed. To overcome this limitation, we
suggest refining any partition sets which has great invariant measure. Proposing a new algorithm for
addressing such boundary partitions will be considered in our future work.

APPENDIX 1

In the sequel, we propose a numerical algorithm to find the answers to problems which were demon-
strated in Section 4. For simplicity, the algorithm is applied for two-dimensional systems but it can
similarly be used for n dimensional systems.

For all examples of Section 4, step (i) is similar. The other steps are a bit different so we divide
these steps to three individual parts from (a) to (c), which are, respectively, used for estimating DA,
estimating RDA, and directional extension of DA.

Let��R2 be a rectangular set, containing real DA. One can consider� as�D Œl1, h1��Œl2, h2�.
� should be chosen such thatXe 2�, whereXe is an isolated stable equilibrium point of the system
and estimating its DA is considered.
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(i) Divide � to rectangular cells Ai D Œl1i , h1i �� Œl2i , h2i � i D 1,..,N .
Divide Œl1, h1� to N1 subintervals denoted by Œl1k , h1k� k D 1, : : : ,N1 and Œl2, h2� to N2

subintervals defined by Œl2l , h2l � l D 1, : : : ,N2. Construct Ai partitions such that

l1i D l1C	1.remainder

�
i

N1

�
, l2i D l2C	2.quotient

�
i

N1

�
h1i D l1i C	1, h2i D l2i C	2

where 	j D
hj�lj
Nj

j D 1, 2.
(ii) Calculate the Markov transition matrix

Let Ai D Œl1i , h1i �� Œl2i , h2i � and Aj D Œl1j , h1j �� Œl2j , h2j � be two partitions in�. The
Markov transition matrix, which is illustrated in Definition 9, is calculated from Lemma 2
as follows:

1. Calculate the Markov transition matrix for estimating DA

pij D

R
�

2Q
qD1

H Œ .Tq.X/� lqj /..hqj � Tq.X//�
2Q
kD1

H Œ .xk � lki /..hki � xk/� dX

SD
(24)

where

SD D	1.	2 , dX D dx1.dx2

To calculate pij easily, we convert the aforementioned integral into the following
summation

pij D

M1P
m1D0

M2P
m2D0

 
2Q
qD1

H Œ .Tq.X
m1 ,m2/� lqj /..hqj �Tq.X

m1 ,m2//�
2Q
kD1

H Œ .x
mk
k
� lki /..hki �x

mk
k
/ �

!

SD .
M1
h1�l1

.
M2
h2�l2

(25)

where Xm1,m2 D Œx
m1
1 x

m2
2 �T , xmk

k
D hk�lk

Mk
.mk

2. Calculate the Markov transition matrix for estimating RDA

pij .ˇ/D

R
�

2Q
qD1

H Œ .Tq.X ,ˇ/� lqj /..hqj �Tq.X ,ˇ//�
2Q
kD1

H Œ .xk � lki /..hki �xk/ �dX

SD
(26)

This easily implies that

pij .ˇ/D

M1P
m1D0

M2P
m2D0

 
2Q
qD1

HŒ.Tq.X
m1 ,m2 ,ˇ/� lqj /..hqj �Tq.X

m1 ,m2 ,ˇ//�
2Q
kD1

HŒ .x
mk
k
� lki /..hki �x

mk
k
/�

!

SD .
M1
h1�l1

.
M2
h2�l2

(27)

3. Calculate the Markov transition matrix for extending DA
Replace ˇ by ˛ and follow part b.

(iii) Find invariant measure vector

1. Find invariant measure vector for DA estimation problem
To find invariant measure vector, equation (9) from Theorem 3 should be solved. There
are different MATLAB instructions to solve such problems. In this paper, we rewrite
equation (9) in the form of the following optimization problem and use ‘Linprog’
instruction to solve it (the problem formulation is described in details in part 4.1).

min C T #

s.t . # D P# I# D (#1, . . . . ,#N )
NX
iD1

#i D 1,C D Œ0 : : : 0�T1�N

(28)
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Figure 9. Power system with four machines.

Figure 10. Block diagram of the exciter.

2. Find invariant measure vector for RDA estimation problem
To calculate invariant measure vector, we solve equation (13) from Theorem 4 with
‘Fmincon’ instruction (see problem formulation in part 4.2 for more details).

3. Find optimal control parameter
Solution of optimal control problem which is defined in Theorem 5 is similar to part b.

(iv) Estimating DA or RDA

1. Estimating DA
According to Lemma 1, we have DAXe D

S
¹Ai W #i ¤ 0º. As shown in the fig-

ures, we use ‘Surfc’ MATLAB instruction to demonstrate invariant measure of each
state partition.

2. Estimating RDA

Theorem 4 yields RDAXe D
T²

Ai j inf
ˇ2B

#i .ˇ/¤ 0

³
which is easily shown by Surfc.

APPENDIX 2

As a case study, we use the two-area four-machine system introduced in [17] (see Figure 9).
Excepting damping coefficients, all generators’ parameters are equal and indicated in 100 MVA and
20 KV bases.

Rai D .0025pu,Xdi D 1.8 pu,Xqi D 1.7 pu,X 0di D 0.3 pu,X 0qi D 0.55 pu,

T 0doi D 8 sec, T 0qoi D .4 sec, Hgi D 6.5 sec, Dg D Œ9, 10, 12, 11�

We choose exciters as follows. Figure 10 is the block diagram of the exciter (IEEE Type AC4A)
and its parameters values are as follows.

TRi D .01 sec, TAi D .01 sec,TBi D 10 sec,TCi D 1 sec,KAi�nominal D 200 i D 1, 2, 3, 4

Vr max D 5 pu,Vr min D�5 pu
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