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A novel and facile wet chemical method is presented to synthesize zinc oxide nanoparticles (NPs) under
ambient atmosphere and temperature. Keggin type heteropolyoxometalate (H3[PW;,040]) was used as
stabilizer and the effect of stirring time and amount of H3[PW;,040] (HPW) were studied. XRD and
TEM techniques were applied for the morphological and structural characterizations of NPs. Size of nano-
particles were determined using TEM, Scherrer’s formula as well as effective mass approximation. The
results of these three methods are in good agreements and revealed single hexagonal zincite type crys-
talline with average particle size in the range of 3-15 nm. Photoluminescence behavior of the prepared
sample shows a strong orange to red emission centred at about 620-635 nm, a green emission at around
550 nm and broad UV emission at around 400 nm.

© 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.

1. Introduction

Zinc oxide is an important semiconductor with a relatively high
excitation binding energy (60 meV) and a wide direct band gap
(3.37 eV). The tailoring of this metal oxide to the desired shape
has attracted extensive attention, due to its various shape-induced
functions. This high excitation binding energy allows excitonic
transitions at room temperature, leading to high radiative recom-
bination efficiency for spontaneous emission as well as lower
threshold voltage for emission. Zinc oxide NPs (NPs) have received
wide attention due to their specific chemical, electrical, surface and
microstructural properties. These nanoparticles with the features
of large volume to surface area ratio, high ultraviolet absorption
and long life-span [1] proved to have greater potential for being
used as gas sensor [2], solar cell [1], photocatalyst degradation
[3,4] relative to TiO, NPs [5]. They have also been employed as effi-
cient catalysts for liquid phase hydrogenation [6], chemical absor-
bent [7], and UV absorber in cosmetics and anti-virus agent [8].
The physical and microstructural properties of ZnO can be modi-
fied by changing the synthetic method [9,10].

ZnO NPs can be synthesized via various methods such as sol-gel
processing [11,12], mechanical milling [13], homogeneous precip-
itation [14], spray pyrolysis [15], organometallic synthesis [16],
thermal decomposition of organic precursors [17], supercritical-
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water processing [18], RF plasma synthesis [19], direct precipita-
tion [20], vapor transport process [21], self assembling [22],
microemulsion synthesis [23], microwave irradiation [24], hydro-
thermal processing [25], thermal evaporation [26], mechanochem-
ical synthesis [27], and wet chemical methods [28-31]. Regarding
these versatile applications and having various preparation meth-
ods in hand, introduction of the new and more facial synthetic
routes and as well as modification on nanosized ZnO with new
techniques are still in much demands.

Polyoxometalates (POMs) are a class of inorganic metal-oxygen
cluster compounds with unique molecular structure, chemical
characters and electronic versatility [32]. Previously, most studies
on POMs were mainly focused on their catalytic and photochemi-
cal properties [33-35]. Several properties of POMs such as simulta-
neous stabilization and reduction ability, designate them as
suitable reagents for the synthesis of NPs, have been recently
reported [36-38]. It is known that by changing the pH and temper-
ature of the environment, the structure, size, and stability of the
colloidal nanoparticles can be changed [39]. We have come to
the conclusion that ZnO NPs are stabilized by HPW. However, this
phenomenon is rather complex. It is suggested that different
factors such as number of protons, spherical structure and bron-
sted acidity of HPW, as well as pH are significantly determinative.
The external circumstances such as additives and solvent composi-
tion can also be effective [40].

In this study, a novel method to synthesize zinc oxide nanopar-
ticles with wet chemical method under ambient atmosphere and
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temperature, using the tungstophosphoric acid (HPW) as the most
famous and important types of POMs, as stabilizer, is presented.
We believe this method is well worthwhile being considered as a
promising option for the large scale production of ZnO NPs.

2. Experimental
2.1. Synthesis methodology

Zinc acetate dehydrate (Zn(Ac),-2H,0), Dimethylsulfoxide
(DMSO0), Ethanol (analytical grade), Potassium hydroxide (KOH),
and Keggin type heteropolyacid (H3[PW,049]) were purchased
from Merck KGA and used as received. Zinc acetate dihydrate solu-
tion (0.2 M) was dissolved in 20 mL DMSO under vigorous stirring
to form a clear solution. A solution of KOH (1.2 M) in 10 mL ethanol
was then added to the above solution drop wise under moderate
stirring condition until it becomes uniformly white. In each exper-
iment, the required amounts of H3[PW;,040] (HPW) was added
and stirring time was continued for mixing the stabilizer thor-
oughly. The white precipitates were separated, using centrifuga-
tion technique and then washed several times with DI water and
ethanol, respectively, to remove all impurities and then dried at
60 °C for 8 h. The dried synthesized ZnO NPs were used for further
characterizations.

2.2. Measurements and analysis

The morphology of the prepared nanoparticles was determined
by transmission electron microscope (TEM, LEO-912AB) with an
acceleration voltage of 120 kV. Copper mesh was used for TEM
analysis.

Analysis of crystal structure and crystal size has been carried
out by X-ray diffraction. The prepared ZnO NPs were characterized
by X-ray diffraction (XRD) (Bruker D8 Advance) using Cu Ko radi-
ation (4 = 1.5406 A). The size of crystals was calculated via Scher-
rer’s formula using full-width at half-maximum (FWHM) of XRD
patterns [41]:

094
~ B cosO

(1)

where 1 is wave length of X-ray source, p is FWHM in radians, and 6
is Bragg’s diffraction angle.

UV-vis absorption study has been performed using Avantes
Avaspec-3648 single beam spectrophotometer. Methanol was used
for dispersing zinc oxide NPs. Size of NPs can be calculated by con-
verting the energy corresponding to the excitation absorption peak
in terms of particle size using the effective mass approximation
[42]:

E=E, + h*n? <l+l>
me my

~ (1.8¢%)
4me'gyR

+ Smaller term (2)

where E is band gap of synthesized particles, E, is bulk band gap of
ZnO (3.3 eV), R is radius of the particle, m, is effective mass of elec-
tron (0.28m,), m,, is effective mass of the hole (0.49m,), ¢ is dielec-
tric constant of material (9.1), &, is permittivity of free space, and h
is Planck’s constant.

Photoluminescence (PL) evaluation has been done at room
temperature, using Perkin Elmer (LS-45) Luminescence
Spectrophotometer.

3. Results and discussion

Prior to discuss the parameters in preparation of ZnO NPs, it is
preferred to consider their morphology and crystal structure. Fig. 1
shows the XRD pattern of prepared samples at different stirring

times with 0.2 g HPW. These peaks at scattering angles (26) corre-
spond to the reflection from: 100, 002,101,102, 110, 103, and
112 crystal planes. Hence, one can conclude they possess a hexag-
onal zincite type crystalline.

The expanded peaks in XRD pattern indicate ultra-fine nature of
the crystallites. The average crystal sizes estimated from Scherrer’s
formula using FWHM are in the range of 3-6 nm. From Fig. 1, it is
clear, with proceeding the stirring time from 30 min to 1 h, the
peaks become sharper, indicating the complete formation of crys-
tal structure. It is also worthwhile to mention that there are no dis-
tinct changes observed with further increasing the stirring time
from 1 to 9 h.

3.1. Effect of HPW amount

To investigate, the effect of HPW amount, a series of experi-
ments was performed at 1h stirring. Fig. 2 shows the UV-vis
absorption spectra of the prepared samples with different amounts
of HPW.

From Fig. 2 it can be seen that there is a gradual “blue shift” in
the UV absorption spectra with increasing the HPW amount, indi-
cating that the size of ZnO NPs have been decreased. Fig. 3 also
shows variation of UV absorption peak with different amounts of
HPW.

From the mass approximation using Eq. (2), the corresponding
size of NPs can be obtained. Table 1 shows the evaluated sizes.
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Fig. 1. XRD pattern of ZnO nanoparticles prepared at different stirring times.
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Fig. 2. Effect of HPW amount on UV-vis absorption spectra of prepared samples.
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Fig. 3. Variation of UV absorption peak with the amount of HPW.

Table 1
Approximate size of ZnO nanoparticles obtained from the mass approximation.

HPW amount (g) UV absorption peak (nm) Approximate size of NPs (nm)

0.05 348 15-20
0.1 338 3-4
0.2 337 3-4
0.3 334 ~3
0.4 328 <3

0.5 328 <3

With respect to Fig. 3 and Table 1, it can be seen that with
increasing the amount of HPW up to 0.4 g, the size of NPs are de-
creased and further increase in the amount of HPW becomes
ineffective.

3.2. TEM analysis

Fig. 4 provides representative TEM images of the ZnO NPs syn-
thesized with 0.4 g HPW at 1 h stirring time. Although the particles
are agglomerated, which is due to the lack of any stabilizing surfac-
tants in the present method, they are almost distinguishable from
each other. Formation of Zn-O-Zn bonds among NPs, due to the
existence of water molecules, leads to hard agglomeration that re-
stricts the applications of ZnO NPs. It is found that for reducing
hard agglomeration of particles, removal of water in the precursors
is a key process that can be done using various methods [43]. For
successful applications of nanomaterials and to enhance surface

chemical and physical properties, coating of nanoparticles is also
the key technological route.

From Fig. 4, we can see that, the produced NPs exhibits almost
uniform size and spherical morphology with an average diameter
of about 5 nm, which is in good agreement with the results of
UV-vis absorption spectra.

3.3. FTIR spectra

The FTIR spectrum of the synthesized ZnO powders (Fig. 5)
showed main absorption bands assigned for the O-H stretching
of hydroxyl group at about 3422 cm~! and Zn-O stretching bond
at about 450 cm™ .

The peak at 1629 cm™! is attributed to H-O-H bending vibra-
tion, which is caused by small amount of water existing in the final
product. The peaks at 1085, 950 and 828 cm ™' are respectively as-
signed to an inner P-O,~W bond, an external W = O, bond and W-
0,-W bridges (where O, is the oxygen in P-0 tetrahedron, Oy is the
bridging oxygen of two octahedral sharing a corner, and O, is the
bridging oxygen of two octahedral sharing an edge), indicating
the presence of HPW on the surface of ZnO NPs. However, no dif-
fraction peaks of HPW can be detected in XRD pattern of the ZnO
powders (Fig. 1), which may be due to the very small amounts of
HPW adsorbed on the surface of the prepared ZnO powders [44].
The stability of the structure of HPW in the reaction mixture has
been checked by FTIR spectroscopy. At the end of the reaction, FTIR
spectrum of reaction mixture (Fig. 6) showed all of the character-
istic bonds of HPW as described above. Note that, in Fig. 6, the
peaks at 1584, 1400, 1338 and 620 cm™! are attributed to the
DMSO which was removed after several washing (Fig. 5).

3.4. Photoluminescence properties

Fig. 7 shows a room temperature PL spectrum of the ZnO
sample prepared using 0.4g HPW for 1h stirring, excited at
350 nm. Since this sample had the smallest particle size among
the other samples, only, its PL spectrum is reported. From Fig. 7,
a strong orange to red emission is centred at about 620-635 nm.
This strong emission may be caused by the surface/interface de-
fects in the structure of ZnO NPs due to combination of deeply
trapped holes to shallowly trapped electrons [45] or zinc anti-sites
and oxygen [29]. The UV near band edge emission at around
390 nm (UV emission), which attributed to free excitation recom-
bination, is not clearly observed in this PL spectra and only a broad
and weak peak is observed in this region. The broad PL peak at
around 400 nm is attributed to zinc vacancies [29]. This assign-
ment has also been reported previously [46,47]. Many types of

Fig. 4. TEM images of prepared ZnO NPs with 0.4 g of HPW at 1 h stirring time.
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Fig. 5. FT-IR spectrum of prepared ZnO NPs with 0.4 g of HPW at 1 h stirring time.
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Fig. 6. FT-IR spectrum of the reaction mixture before washing.
A green emission at around 550 nm is also observed which is
635 known to be a deep level emission caused by impurities, oxygen
620 vacancies and the structural defects in the crystals such as zinc
- S50 interstitials [48]. The green band emission corresponds to the sin-
; gly ionized oxygen vacancy in ZnO and excess oxygen on the sur-
& face of these NPs, which might be in the form of OH™ ions
_g resulting from the recombination of photo-generated hole with
K single ionized charge state of this defect is also noticed. The weak
E green emission also implies that there are few surface defects in
& ZnO nanoparticles [29].
400
4. Conclusion
240 el 0 0 e = A novel, rapid and facile wet chemical method has been pre-
Wavelenght (nm)

Fig. 7. Room temperature PL spectrum of the sample prepared with 0.4 g of HPW at
1 h stirring time.

intrinsic and extrinsic defects with different ionization states could
be responsible for the visible PL in ZnO NPs [45].

sented to synthesize zinc oxide NPs by using HPW as a stabilizer.
It was found that HPW is an effective stabilizer for the purpose.
The effect of HPW amounts was also studied. XRD and TEM of
NPs were used for morphological and structural characterizations.
Size of nanoparticles was determined using TEM, Scherrer’s for-
mula and effective mass approximation. The results of three differ-
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ent techniques show that the average sizes of NPs are in the range
of 3-15 nm. Photoluminescence behavior of the prepared sample
show a strong orange to red emission centred at about 620-
635 nm, a green emission at around 550 nm, and the broad UV
emission at around 400 nm which is attributed to free excitation
recombination.
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