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This paper studies the effect of Casimir force on the pull-in instability of electrostatically

actuated torsional nano/micro actuators. Dependence of the actuator’s pull-in angle
and pull-in voltage on several design parameters are investigated and it is found that
Casimir force can considerably reduce the stability limits of the torsional actuators.
Nonlinear equilibrium equation is solved numerically and analytically using straight
forward perturbation expansion method. It is observed that a fourth-order perturbation
approximation can precisely model the behavior of a torsional actuator. The results of
this paper can be used for safe and stable design of torsional nano/micro actuators.

Keywords: Torsional nano/micro actuators; electrostatic actuation; Casimir force;
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1. Introduction

Electronic devices in micro and nano scales have experienced lots of progress re-

cently. Their low manufacturing cost, durability, light weight, small size, batch pro-

duction, low energy consumption and compatibility with integrated circuits, makes

them attractive.1,2 Successful nano/micro electro-mechanical system (N/MEMS)

devices rely on well developed fabrication technologies as well as the knowledge of

device behavior.3
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A review on modeling electrostatic MEMS can be found in Ref. 4. The impor-

tant roles of N/MEMS in optical systems, initiated the development of a new class

of systems called micro-opto-electro-mechanical systems (MOEMS). These systems

include a wide variety of devices such as micro scanning mirrors,5 digital micromir-

ror devices (DMD),6 optical cross connects,7,8 etc. Torsional nano/micro actuators

play key roles in MOEMS. Many researches have been done on these devices.9 For

example, Degani et al.10 presented a novel displacement iteration pull-in extraction

(DIPIE) scheme for the problem of electrostatic torsion micro actuators. Zhang

et al.
11 explained the characteristics of an electrostatically actuated micromirror

based on parallel plate capacitor model. They investigated snap down phenomenon

in these devices. Switching response of the micro actuators have been studied by

Bhaskar et al.12 Khatami and Rezazadeh13 investigated dynamic response of a tor-

sional micromirror to electrostatic force and mechanical shock.

Intermolecular surface forces, which mainly include Casimir and van der Waals

(vdW) forces, play key roles in MOEMS design.14 vdW force is the interaction force

between neutral atoms and its difference from covalent and ionic bondings is that

it is caused by correlations in the fluctuating polarizations of nearby particles.15

Casimir force is understood as the long range analog version of the vdW force, re-

sulting from the propagation of retarded electromagnetic waves and its effect has to

be considered in distance ranges from a few nano-meters up to a few micrometers.16

As a result, investigating the effect of Casimir force on nano/micro actuators can

be extremely important in their design.

Tahami et al.17 discussed pull-in phenomena and dynamic response of a capac-

itive nano beam switches under effect of electrostatic and Casimir forces. Casimir

effect on the pull-in parameters of nano-meter switches has been studied by Lin and

Zhao.18 They19 also studied nonlinear behavior of nano scale electrostatic actuators

with Casimir force. Ramezani et al.20,21 investigated the two point boundary value

problem of the deflection of a nano cantilever subjected to Casimir and electrostatic

forces using analytical and numerical methods to obtain the instability point of the

nano beam. Modeling and simulation of electrostatically actuated nano switches un-

der the effect of Casimir forces have been investigated by Mojahedi et al.22 Sirvent

et al.
23 theoretically studied pull-in control in capacitive micro switches actuated

by Casimir forces using external magnetic fields. Effect of the Casimir force on

the static deflection and stiction of membrane strips in MEMS have been studied

by Serry et al.
24 Gusso and Delben16 analyzed the influence of surface roughness

and temperature on the pull-in parameters of silicon based actuators by consid-

ering Casimir force. Guo and Zhao25 discussed the effect of Casimir force on the

pull-in of electrostatic torsional actuators. In their problem a small angle pertur-

bation could lead to pull-in, but when the actuator is single sided, there would be

two equilibrium points which one of them is stable and the other one is unstable.

In this paper, the behavior of the stable equilibrium point would be investigated

analytically using straight forward perturbation expansion method.
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Perturbation based methods have been widely used to analytically solve the

nonlinear problems in N/MEMS. For example, Moeenfard et al.
26 investigated the

behavior of nano/micromirrors under effect of capillary and vdW forces by using

homotopy perturbation method (HPM). Abdel-Rahman and Nayfeh27 used the

multiple-scale perturbation method to model secondary resonances in electrically

actuated micro beams. Younis and Nayfeh28 used the same method to study the

response of a resonant micro beam to an electric actuation. Moeenfard et al.
29 used

HPM for modeling the nonlinear behavior of Timoshenko micro beams. Mojahedi

et al.
30 applied the same method to simulate the static response of nano switches

to electrostatic actuation and intermolecular surface forces. But so far no analytic

solution has been presented to model the behavior of torsional nano/micro actuators

under the effects of electrostatic actuation and Casimir force.

In this paper, the equations governing the static behavior of torsional

nano/micro actuators are obtained using the minimum total potential energy princi-

ple. Then energy method is used to investigate the stability of torsional nano/micro

actuators equilibrium points and the effect of different design parameters on the

stable equilibrium point is investigated. At the end, tilting angle of a torsional

nano/micro actuator under electrostatic and Casimir forces is calculated analyti-

cally using straight forward perturbation expansion method.

2. Problem Formulation

Here the total potential energy principle is utilized for finding equilibrium equation

of torsional nano/micro actuators under the combined effect of electrostatic and

Casimir force. The total potential energy of the torsional nano/micro actuators

shown in Fig. 1 can be divided into two parts: the potential strain energy of the

torsion beams and the potential energy of applied loads which is equal to the minus

of work done by external forces.31,32

Π = U +Ψ = U −We , (1)

(a) (b)

Fig. 1. Schematic (a) 3D and (b) 2D view of an electrostatically actuated torsional nano/micro
actuator under the effect of Casimir force.
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where Π is the total potential energy of the system, U is the total mechanical and

electrical potential energy of the system, Ψ is the potential energy of applied loads

and We is the work done by external forces (i.e., Casimir force).

When the distance between the nano/micro actuator and the underneath

substrate is within some applicable ranges (approximately between 100 nm and

1000 nm), the Casimir force plays important role in the actuator behavior.16 For

two parallel plates slightly held apart from each other, Casimir force can be modeled

using the following equation.33

F̂Cas =
π2

~c

240D4
, (2)

where F̂Cas is the Casimir force per unit area, c is the speed of light, ~ is the Planck’s

constant divided by 2π and D is the distance between the plates.

Usually the rotation angle of the nano/micro actuators are small (less than 2◦

(Ref. 11)), So the actuator plate and the underneath substrate will remain approx-

imately parallel and Eq. (2) can still be used for modeling the Casimir effect on

the torsional nano/micro actuators. Furthermore, when the rotation angle of the

torsional actuator is small, one can say that tanθ ≈ θ where θ is the rotation angle

of the actuator. So the differential Casimir force exerted to the differential surface

element of the actuator shown in Fig. 1 would be33:

dFCas =
π2

~c

240(h− xθ)4
W · dx , (3)

where h is the initial distance between the actuator and the substrate and W is the

width of the actuator.

For convenient purpose, the normalized rotation angle Θ is introduced as follows.

Θ = θ/θmax , (4)

where θmax is the maximum physically possible rotation angle of the actuator and

is calculated as

θmax = sin−1

(

h

L

)

≈

h

L
. (5)

In Eq. (5), L is the length of the actuator.

Casimir force can be expressed in terms of normalized variable Θ in the following

manner.

dFCas =
π2

~c

240h4
(

1− x
LΘ
)4

W · dx . (6)

The external work done on the actuator by Casimir force is:

WCas
e =

∫∫

dFCas · dς , (7)

where ς is a position parameter as shown in Fig. 1. Obviously for small angles, ς

can be calculated using the following equation.

ς = xθ (8)
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substituting Eqs. (6) and (8) into Eq. (7), one can easily conclude that:

WCas
e =

π2
~cW

240h3L

∫ L

0

∫ Θ

0

x
dΘ′

(

1− x
LΘ

′

)4
dx . (9)

When there exist a potential difference between the actuator plate and the under-

neath electrode, the system acts like a capacitor. The overall capacitance of this

system can be computed by integrating the capacitance of differential capacitors

each of them having a capacity of34:

dC =
ε0W · dx

h− xθ
, (10)

where ε0 is permittivity of free space. By integrating Eq. (10), the total capacitance

of the torsional nano/micro actuators, C would be obtained as follows.

C =

∫ L

0

dC =
ε0W

h

∫ a2

a1

1

1− x
LΘ

dx , (11)

where a1 and a2 are some position parameters defining the start and end point of

the electrode as illustrated in Fig. 1. The potential energy of electrostatic force can

be calculated as34:

UE = −

1

2
CV 2 , (12)

where V is the applied voltage between the actuator and the electrode. The potential

strain energy stored in the torsion beams is:

UM =
1

2
S0θ

2 =
h2

2L2
S0Θ

2 . (13)

In this equation, UM is the potential strain energy of the beams and S0 is the overall

torsional stiffness of the two torsion beams and can be calculated using Eq. (14).

S0 =
2GIp
l

, (14)

where l is the length of each beam as shown in Fig. 1, G is the shear modulus of

elasticity of beams material and Ip is the polar moment of inertia of the beams

cross-section. For a rectangular cross-section beam, Ip is as below9:

Ip =
1

3
tw3

−

64

π5
w4

∞
∑

n=1

1

(2n− 1)5
tanh

(2n− 1)πt

2w
, (15)

where w and t are the width and length of the beam’s cross-section respectively.

The overall potential energy of the system, U is simply obtained by adding the

mechanical and electrical strain energies as follows.

U = UM + UE . (16)

Using equations (1), (12), (13) and (16), the total potential energy of the system,

Π is calculated as follows.

Π =
h2

2L2
S0Θ

2
−

1

2
CV 2

−WCas
e . (17)
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At equilibrium state, Π has no variation,31,32 so the following equation has to be

satisfied.

∂Π

∂Θ
=

h2

L2
S0Θ−

1

2
V 2 ∂C

∂Θ
−

∂WCas
e

∂Θ
= 0 . (18)

Using some algebraic manipulations, equilibrium equation, can be more simplified

as equation (17).

Ξ(Θ, V̄ , λ) = Θ−

V̄ 2

Θ2

(

1

1− βΘ
−

1

1− αΘ
+ ln

(

1− βΘ

1− αΘ

))

−

λ

Θ2

(

1

6
−

3Θ− 1

6(Θ− 1)3

)

= 0 . (19)

In this equation Ξ(Θ, V̄ , λ) is the equilibrium equation, V̄ is defined as the normal-

ized voltage and λ, α and β are calculated as follows.

V̄ = V

√

ε0WL3

2h3S0

, (20)

λ =
π2

~cWL3

240h5S0

(21)

α = a1/L , (22)

β = a2/L . (23)

By performing the second variation operator on Eq. (17) and using equilibrium

equation, it is easily concluded that:

δ2Π =
(δΘ)2h2S0

L2

[

1 +
V̄ 2

Θ3

(

2 + βΘ

1− βΘ
−

2 + αΘ

1− αΘ
+ 2 ln

(

1− βΘ

1− αΘ

)

−

βΘ

(1− βΘ)2
+

αΘ

(1 − αΘ)2

)

+
λ

Θ3

(

1

3
−

3Θ− 2

6(Θ− 1)3
−

Θ(3Θ− 1)

2(Θ− 1)4

)]

> 0 .

(24)

According to minimum total potential energy principle an equilibrium point is

stable when δ2Π > 0 and is unstable when δ2Π < 0.32 So the stability condition is

reduced to:

I(V̄ , λ,Θ, α, β)

= 1 +
V̄ 2

Θ3

(

2 + βΘ

1− βΘ
−

2 + αΘ

1− αΘ
+ 2 ln

(

1− βΘ

1− αΘ

)

−

βΘ

(1 − βΘ)2
+

αΘ

(1− αΘ)2

)

+
λ

Θ3

(

1

3
−

3Θ− 2

6(Θ− 1)3
−

Θ(3Θ− 1)

2(Θ− 1)4

)

> 0 . (25)
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Finding V̄ from Eq. (19) and substituting it into Eq. (25) leads to:

I(λ,Θ, α, β) = 1 +

1−
λ

Θ4

(

1

6
−

3Θ− 1

6(Θ− 1)3

)

1

1− βΘ
−

1

1− αΘ
+ ln

(

1− βΘ

1− αΘ

)

×

(

2 + βΘ

1− βΘ
−

2 + αΘ

1− αΘ
+ 2ln

(

1− βΘ

1− αΘ

)

−

βΘ

(1− βΘ)2
+

αΘ

(1− αΘ)2

)

+
λ

Θ3

(

1

3
−

3Θ− 2

6(Θ− 1)3
−

Θ(3Θ− 1)

2(Θ− 1)4

)

(26)

Figure 2 shows the function I(λ,Θ, α, β) versus Θ at some values of λ.

An equilibrium point is stable if I(λ,Θ, α, β) > 0 and unstable if I(λ,Θ, α, β) <

0. It is observed that at certain value of Θ, which is called Θp, I(λ,Θ, α, β) be-

comes zero. When Θ < ΘP , I(λ,Θ, α, β) is positive and the resulting equilibrium

point would be stable and when Θ > Θp I(λ,Θ, α, β) is negative and the resulting

equilibrium point would be unstable.

At the pull-in state the following equation is satisfied.

I(λ,Θ, α, β) = 0 . (27)

By using equations (19), (26) and (27), ΘP and V̄P where V̄P is the value of V̄

at pull-in state, can be plotted versus β at various value of α and λ as depicted

in Figs. 3 and 4, respectively. Figure 3 shows that by increasing the values of β,

ΘP and V̄P would be decreased. From Fig. 3 it is observed that by increasing α,

normalized pull-in angle is reduced and pull-in voltage is increased. Figure 4 shows

that the values of ΘP and V̄P are decreased when λ is increased.

0.1 0.2 0.3 0.4 0.5 0.6
-2

-1.5

-1

-0.5

0

0.5

1

ΘΘΘΘ

I(
λλ λλ

,ΘΘ ΘΘ
,αα αα

,ββ ββ
)

λλλλ=0.05
λλλλ=0.08
λλλλ=0.11
λλλλ=0.14

Fig. 2. Function I(λ,Θ, α, β) versus Θ at α = 0.2 and β = 0.7.
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λ

Fig. 3. ΘP and V̄ 2

P
versus β at λ = 0.05 and various values of α.

Fig. 4. ΘP and V̄ 2

P
versus β at α = 0.2 and various values of λ.

In Fig. 5, V̄ 2
P has been plotted against λ. It is observed that with increasing λ

pull-in occurs at lower values of V̄ 2
P . In fact this figure shows that Casimir force can

significantly reduce the maximum allowable value for V̄ 2
P and as a result, it would

reduce the stability limits of the torsional nano/micro actuators. In addition it can

be concluded that even in the absence of electrostatic force (i.e., V̄P = 0), Casimir

force can lead to the occurrence of pull-in.

In order to avoid pull-in in electrostatically actuated nano/micro actuators un-

der the effect of Casimir force, the maximum applied voltage should be less than a

certain value and the inequality given in Eq. (26) has to be satisfied.

V <

√

2V̄ 2
Ph

3S0

ε0WL3
. (28)
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Fig. 5. V̄ 2

P
versus λ when α = 0.2 and β = 0.7.

Fig. 6. Stable equilibrium angle versus V̄ 2.

In order to investigate the actuator’s behavior under combined electrostatic and

Casimir loading, Θ has been plotted versus V̄ 2 in Fig. 6.

It is observed that by increasing the value of V̄ the rotation angle of the torsional

nano/micro actuators is increased, but the maximum value of V̄ at pull-in, highly

depends on the value of λ and it is verified that by increasing λ, the maximum

allowable value for V̄ is reduced. Furthermore, it is concluded that at a constant V̄ ,

increasing the values of λ would lead to larger values for stable equilibrium angle.

3. Analytical Solution of Equilibrium Equation

In this part, it is tried to obtain the value of the rotation angle of the torsional

nano/micro actuators analytically in terms of V̄ and λ To this goal, the straight-

forward perturbation expansion method is utilized as follows.
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By using Taylor series expansion, the linear part of the equilibrium equation

can be found as follows.

L(Θ, V̄ , λ) = L1 + L2Θ , (29)

where L(Θ, V̄ , λ) is the linear part of the equilibrium equation and L1 and L2 are

defined as,

L1(V̄ , λ) = −

λ+ V̄ 2(β2
− α2)

2
, (30)

L2(V̄ , λ) = 1−
4

3
λ−

2

3
V̄ 2(β3

− α3) . (31)

The nonlinear part of equilibrium equation is obtained by subtracting Eq. (29) from

the equilibrium equation

N(Θ, V̄ , λ) = V̄ 2N1(Θ) + λN2(Θ) , (32)

where

N1(Θ) =
(β2

− α2)

2
+

2

3
(β3

− α3)Θ −

1

Θ2

(

1

1− βΘ
−

1

1− αΘ
+ ln

(

1− βΘ

1− αΘ

))

,

(33)

N2(Θ) =
1

2
+

4

3
Θ−

1

Θ2

(

1

6
+

3Θ− 1

6(Θ− 1)3

)

. (34)

The normalized voltage V̄ and the normalized Casimir parameter can be scaled as:

V̄ 2 = ϑV̂ 2 , (35)

λ = ϑλ̂ , (36)

where ϑ is a small book-keeping parameter and will be used as perturbation pa-

rameter. Since N(Θ, V̄ , λ) is a homogenous linear combination of V̄ 2 and λ, one

can conclude that

N(Θ, V̄ , λ) = ϑN(Θ, V̂ , λ̂) . (37)

The equilibrium equation can be reconstructed using Eqs. (29) and (32) as follows.

Ξ(Θ, V̄ , λ) = L(Θ, V̄ , λ) +N(Θ, V̄ , λ) . (38)

Using Eqs. (29) and (37), Eq. (38) can be restated as,

Ξ(Θ, V̄ , λ) = L1 + L2Θ+ ϑN(Θ, V̂ , λ̂) . (39)

In the next step, Θ is expanded in terms of ϑ as follows.

Θ = Θ0 + ϑΘ1 + ϑ2Θ2 +O(υ3) (40)
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by substituting Θ from Eq. (40) into Eq. (39) and computing the Taylor series

expansion of the resulting equation, one would get

Ξ(Θ, V̄ , λ) = L1 + L2Θ0 + (L2Θ1 +N(Θ0, V̂ , λ̂))ϑ

+

(

L2Θ2 +Θ1

∂N(Θ0, V̂ , λ̂)

∂Θ0

)

ϑ2 +O(ϑ3) . (41)

By equating the coefficients of all powers of ϑ with zero, the following equations

are obtained.

ϑ0 : L1 + L2Θ0 = 0 , (42)

ϑ1 : L2Θ1 +N(Θ0, V̂ , λ̂) = 0 , (43)

ϑ2 : L2Θ2 +Θ1

∂N(Θ0, V̂ , λ̂)

∂Θ0

= 0 . (44)

These equations can be solved consecutively and the result would be as,

Θ0 = −L1/L2 , (45)

Θ1 = −N(Θ0, V̂ , λ̂)/L2 , (46)

Θ2 = −

Θ1

L2

∂N(Θ0, V̂ , λ̂)

∂Θ0

=
N(Θ0, V̂ , λ̂)

L2
2

∂N(Θ0, V̂ , λ̂)

∂Θ0

. (47)

By substituting the values of Θ0, Θ1 and Θ2 into Eq. (40), the final solution for Θ

is simply obtained as,

Θ=−

L1

L2

− ϑN(−L1/L2, V̂ , λ̂)/L2 + ϑ2N(−L1/L2, V̂ , λ̂)

L2
2

∂N(Θ0, V̂ , λ̂)

∂Θ0

∣

∣

∣

∣

Θ0=−L1/L2

.

(48)

Using Eq. (37), Eq. (48) can be more simplified as follows.

Θ = −

L1

L2

−N(−L1/L2, V̄ , λ)/L2 +
N(−L1/L2, V̄ , λ)

L2
2

∂N(Θ0, V̄ , λ)

∂Θ0

∣

∣

∣

∣

Θ0=−L1/L2

.

(49)

It is observed that as it was expected, the final solution for Θ, is independent of

the value of the book-keeping parameter ϑ.

In Fig. 7 the results of the numerical simulations are compared with those of

analytical perturbation results at different values of λ. It is observed that straight

forward perturbation expansion method can closely approximate the rotation an-

gle of the torsional nano/micro actuators. By increasing the order of perturbation

approximation, the obtained results become more precise, but increasing the order

of the perturbation approximation more than four will not improve the accuracy of

the obtained response appreciably. Therefore, a fourth-order perturbation approxi-

mation can precisely predict the torsional nano/micro actuator behavior under the

combined effects of electrostatic actuation and Casimir force.
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�

Fig. 7. Estimation of nano/micro actuator’s rotation angle using straight forward perturbation
expansion for a torsional actuator with α = 0.1 and β = 0.9 at different values of λ.

4. Conclusion

Effect of Casimir force on the pull-in behavior of electrostatically actuated torsional

nano/micro actuators was investigated in this paper. First static equilibrium equa-

tion was found using the minimum total potential energy principle and stability of

equilibrium points were analyzed. Then a parametric study was performed to study

the dependence of pull-in angle and pull-in voltage of the actuator to its design

parameters. It was observed that the effect of Casimir force may lead to signifi-

cant reduction in the stability limits of the torsional nano/micro actuators. Finally,

straight forward perturbation expansion method was used to analytically model

the behavior of the stable equilibrium angle of the actuator. Comparison between

presented analytical solutions and numerical results show that straight forward

perturbation expansion method can effectively model the torsional nano/micro ac-

tuators behavior under combined electrostatic actuation and Casimir force. The

analytical model presented in this paper can be used in design optimization and

determination of the stable operative range of electrostatic torsional nano/micro

actuators where the gap between the actuator and the underneath electrodes is

small enough for the Casimir force to play a major role in the system.
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