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Abstract The current paper presents a two degree of freedom model for the problem of micromirrors under
capillary force. The principal of minimum potential energy is employed for finding the equilibrium equations
governing the deflection and the rotation of the micromirror. Then, using the implicit function theorem, a
coupled bending–torsion model is presented for pull-in characteristics of micromirrors under capillary force
and the concept of instability mode is introduced. It is observed that with increasing ratio of bending and
torsion stiffness, the dominant instability mode changes from bending mode to the torsion mode. In order
to verify the accuracy of the coupled model, static behavior of a group of micromirrors is investigated both
analytically using the presented model and numerically using the commercial finite element software ANSYS.
It is observed that results of the coupled model match well with the results of finite element simulations, but
they both deviate considerably from the results of the pure torsion model. The presented coupled model can
be used for safe and stable design of micromirrors under capillary force.

1 Introduction

The technology of MEMS devices has experienced lots of progress. Their low manufacturing cost, batch
production, light weight, small size, durability, low energy consumption and compatibility with integrated
circuits make them extremely attractive [1,2]. Successful MEMS devices rely not only on well-developed
fabrication technologies but also on the knowledge of device behavior, based on which a favorable structure of
the device can be forged [3]. The important role of MEMS devices in optical systems has initiated the develop-
ment of a new class of MEMS called MicroOptoElectroMechanical Systems (MOEMS), which mainly include
micromirrors and torsional microactuators. These devices have found a variety of applications such as digital
micromirror devices (DMD) [4], optical switches [5], micro scanning mirrors [6] and optical cross-connects
[7,8].

The existence of a liquid bridge between two objects results in a capillary force [9]. Their existence even
in low relative humidity is observed experimentally [10]. Parallel plate MEMS actuators are conventionally
fabricated by forming a layer of a plate or beam material on the top of a sacrificial layer of another material
and wet etching the sacrificial layer. In this process, a capillary force can be easily formed and in the case of
poor design, the structure will collapse and adhere to the substrate. Thus, investigating the effect of capillary
force on micromirrors is extremely important in their design and fabrication.
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The effect of capillary force on MEMS devices has been investigated by many researchers. Mastrangelo
and Hsu [11,12] studied the stability and adhesion of thin micromechanical structures under capillary force,
theoretically and experimentally. Moeenfard et al. [13] studied the effect of capillary force on the static pull-in
instability of fully clamped microplates. The effects of capillary force on the static and dynamic behav-
ior of atomic force microscopes (AFM) are widely assessed [14–16]. Recently, the instability of torsional
MEMS/NEMS microactuators under capillary force was investigated by Guo et al. [17], but in their model,
the bending effect of the supporting torsion beams was not considered. On the other hand, Huang et al. [18]
showed that torsion models for a micromirror cannot accurately predict the stability limits of electrostatically
actuated micromirrors. In this paper, it will be shown that the same concern exists for the micromirrors under
the effect of capillary force, and neglecting the bending effect can lead to a considerable error in the prediction
of stable limits of micromirrors under capillary force.

2 Problem formulation

2.1 Coupled bending–torsion model

The micromirror shown in Fig. 1 is considered. The capillary pressure underneath the mirror is [13]

PCap = 2γ cos θc

h − z − xθ
, (1)

where γ is the surface energy of the liquid, θc is the contact angle between liquid and solid surface, h is
the initial distance between the mirror and the underneath substrate, z is the vertical deflection of the torsion
beams, and θ is the rotation angle of the mirror. Capillary pressure can be expressed in terms of dimensionless
variables in the following manner:

PCap = h

W L
.

η

1 − � − x
L �

, (2)

where η = 2γ cos θcW L/h2 is called instability number, and W and L are the width and length of the mi-
cromirror, respectively, and � = z/h and � = θ/θ0 are normalized parameters with respect to h and the
maximum physically possible rotation angle θ0 = h/L of the micromirror.
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Fig. 1 Schematic view of a micromirror under the effect of capillary force
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The differential capillary force applied to a differential surface area W dx of the mirror shown in Fig. 1 can
be calculated from the capillary pressure as:

dFCap = PCapW dx = h

L

η

1 − � − x
L �

dx . (3)

The total external work done on the micromirror by the capillary force is:

We =
∫ ∫

dFCapdξ, (4)

where ξ = z + xθ is a position parameter shown in Fig. 1. Using Eq. (3) and dξ = dz + xdθ for a given
element position x , i.e., dx = 0, in Eq. (4) gives

We = 1

2
η�, (5)

where

� (�, �) = 2h2

L

l2∫

l1

⎛
⎝

�∫

0

1

1 − �′ − x
L �

d�′ +
�∫

0

1

1 − � − x
L �′

1

L
xd�′

⎞
⎠ dx

= 2h2

⎛
⎝

�∫

0

− ln 1−�′−β�
1−�′−α�

�
d�′ +

�∫

0

−�′ (β − α) + (� − 1) ln 1−�−β�′
1−�−α�′

�′2 d�′
⎞
⎠ . (6)

In Eq. (6), l1 and l2 are the start and end point of the capillary bridge underneath the mirror as illustrated in
Fig. 1, and α = l1/L and β = l2/L are the normalized values of l1 and l2, respectively. The potential energy
stored in the torsion beams due to the rotation θ and deflection z is

U = 1

2
S0θ

2 + 1

2
K0z2 = 1

2
S0θ

2
0 �2 + 1

2
K0h2�2, (7)

where S0 and K0 are the overall torsional and vertical stiffness of the two torsion beams and can be calculated
from the length l of each torsion beam, the shear modulus G and Young’s modulus E , the polar moment of
inertia Ip and the second moment of inertia Ib of the beam’s cross-section as

S0 = 2G Ip

l
, K0 = 24E Ib

l3 . (8)

For beams with rectangular cross-section, Ib and Ip can be computed according to [18]:

Ib = 1

12
wt3, Ip = 1

3
tw3 − 64

π5
w4

∞∑
n=1

1

(2n − 1)5
tanh

(2n − 1) π t

2w
, (9)

where t and w are the length and width of the beam’s cross-section, respectively. The total potential energy
[19] of the system is:

� = U − We. (10)

At equilibrium state, the variation of � vanishes, i.e.,

δ� = ∂�

∂�
δ� + ∂�

∂�
δ� = 0. (11)

With arbitrary variations δ� and δ� for the independent deflection and rotation variables, one finds with
Eqs. (5) and (10) the following equilibrium equations:

�T 1(�, �) = ∂
∏

∂�
= ∂U

∂�
− 1

2
η
∂�

∂�
= 0, (12)

�T 2(�, �) = ∂
∏

∂�
= ∂U

∂�
− 1

2
η
∂�

∂�
= 0. (13)
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Substituting Eqs. (6) and (7) into the equilibrium conditions (12) and (13) yields

�T 1(�,�)/h2 = Kt� + η

�

(
β − α + 1 − �

�
ln

(
1 − � − β�

1 − � − α�

))
= 0, (14)

�T 2 (�,�)/h2 = Kb� + η

�
ln

(
1 − � − β�

1 − � − α�

)
= 0, (15)

where Kt = S0/L2, Kb = K0.
With increasing values of η, the values of � and � are increased. At the pull-in state, η has its maximum

value. Applying the implicit function theorem [20,21] to Eqs. (14) and (15), a unique solution �(η) and � (η)
gets lost, i.e., the pull-in state is reached, when the determinant

∣∣∣∣∣
∂�T 1
∂�

∂�T 1
∂�

∂�T 2
∂�

∂�T 2
∂�

∣∣∣∣∣ = 0. (16)

Applied to Eqs. (14), (15) and after eliminating η, the following equations for the pull-in state are obtained:

ln

(
1 − �p − β�p

1 − �p − α�p

)
− ϒ

�p

�p

(
β − α + 1 − �p

�p
ln

(
1 − �p − β�p

1 − �p − α�p

))
= 0, (17)

(
3(1 − �p)

�p
ln

(
1 − �p − β�p

1 − �p − α�p

)
− (1 − �p)

2(α − β)

(1 − �p − α�p)(1 − �p − β�p)
− 2(α − β)

)

(
ln

(
1 − �p − β�p

1 − �p − α�p

)
+ �p�p(α − β)

(1 − �p − α�p)(1 − �p − �p)

)
(18)

−�p�p

(
(1 − �p)(α − β)

(1 − �p − α�p)(1 − �p − β�p)
− 1

�p
ln

(
1 − �p − β�p

1 − �p − α�p

))2

= 0,

where ϒ = Kb/Kt is a parameter characterizing the stiffness ratio of bending and torsion. The value of η at
the pull-in state

(
�P , �p

)
is calculated from Eq. (13) as

ηP = 2
∂U
∂�
∂�
∂�

∣∣∣∣∣
(�p,�p)

= Ktϒ�P�P

ln
(

1−�p−α�p
1−�p−β�p

) . (19)

It will be shown later that for small ϒ , i.e., bending stiffness is less effective than torsion stiffness, the dominant
instability mode of the micromirror will be the bending mode, otherwise the dominant instability mode will
be the torsion mode.

2.2 Pure torsion model

If bending of the torsion beams is not considered in the formulation, i.e., � = z/h = 0, the total potential
energy (10) is only a function of � and the equilibrium equation can formally be obtained by setting � equal
to zero in Eq. (14):

�T 1(�)/
(
h2 Kt

) = � + η′

�

(
β − α + 1

�
ln

(
1 − β�

1 − α�

))
= 0, (20)

where η′ = η/Kt . The pull-in condition is then reduced to

dη′

d�
= 0. (21)
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Fig. 2 Dependency of the normalized pull-in angle �P and pull-in displacement �P of the micromirror on ϒ at α = 0.2
and β = 0.8
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Fig. 3 Values of η′ = η/Kt at the pull-in point against ϒ at α = 0.2 and β = 0.8

3 Results and discussion

Figure 2 shows the dependency of the normalized pull-in angle �P and normalized pull-in displacement �p
of the micromirror versus ϒ for α = 0.2 and β = 0.8. It is observed that with increasing values of ϒ , the
value of �P asymptotically approaches the value of the pull-in angle predicted by the torsion model and the
value of �P asymptotically approaches 0. Thus, for low values of ϒ , the torsion model deviates considerably
from the bending model; that is why neglecting the bending effect leads to significant errors in predicting the
pull-in angle �P of the mirror.

In Fig. 3, the values of the normalized instability number η′ = η/Kt at the pull-in point are plotted against
ϒ for both torsion and coupled model at α = 0.2 and β = 0.8. This figure implicitly indicates that at small
values of ϒ , the predicted value η′ of the torsion model is significantly higher than that of the coupled model,
and thus the torsion model overestimates the instability limits of the mirror; its related results cannot be trusted
for a safe and stable design.

In order to investigate the effects of α and β on the pull-in response, the pull-in angle �P and pull-in
displacement �P of the micromirror are plotted against α for different values of β for both pure torsion and
coupled model at ϒ = 10. It is observed that with increasing values of α and/or β, pull-in angle �P and
pull-in displacement �P decrease.

In Fig. 5, the related values of η′
p of Fig. 4 are plotted against α. This figure shows that with decreasing

values of α and/or increasing values of β, the stability limit of the micromirror is reduced and pull-in would
occur at lower values of η′. Since curves related to the pure torsion model in Fig. 5 are above the related
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Fig. 4 Effects of α and β on the pull-in angle �p and pull-in displacement �P of the micromirror under capillary force
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Fig. 5 Effects of α and β on the stability limits of the micromirror under capillary force for both torsion and coupled models

Table 1 Properties of the simulated micromirror

Parameter Value

G 66 GPa
υ 0.29
L 100 µm
W 100 µm
l 65 µm
t 1.5 µm
w 1.55 µm
l1 0
l2 70 µm

curve of the coupled model, it is confirmed that the pure torsion model overestimates the stability limits of the
micromirror.

In order to verify the accuracy of the presented model, a group of micromirrors with characteristics given
in Table 1 and with different values of h is simulated using the commercial finite element software ANSYS.
Figure 6 shows a sample of this group of micromirrors with h = 41.6 µm, which has been simulated after
applying the capillary force. ANSYS output for deflection of the mirror has been measured and nondimen-
sionalized to be able to be compare it to the results of the coupled model. Figure 7 shows that η′ − � and
η′ −� characteristics of micromirrors obtained from the coupled model agree well with finite element results,
but they considerably differ from those of the torsion model especially at larger values of η′.
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Fig. 6 a Meshed configuration of a micromirror with characteristics given in Table 1 and with h = 41.6 µm. b Deformed
configuration of the micromirror shown in Fig. 6a under capillary force
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Fig. 7 Equilibrium point of the micromirror shown in Fig. 1 and properties given in Table 1, comparison of the FEM results with
the results of the coupled and pure torsion model

4 Conclusion

In the current paper, the effect of bending of the supporting torsion microbeams on the stability limits of
micromirrors under capillary force is investigated. The results show that when the bending stiffness is
relatively small, the dominant instability mode is the bending mode and under this condition, the torsion
model significantly overestimates the stability limits of the micromirror. Furthermore, it is observed that the
micromirror response to the capillary force is highly dependent on the bending stiffness of the torsion micro-
beams, and the presented model is capable of capturing this dependency. Finally, the accuracy of the presented
coupled model is verified by comparing its results with finite element results obtained from ANSYS. Results
of this paper can be used for a safe, accurate and stable design of micromirrors under wet-etching process
where capillary force plays a major role in the fabrication.
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