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sented results are in good agreement with numerical simulations and also with experimental findings.
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1. Introduction

Recently, lots of progress has been experienced in the technology of testing and fabricating new devices in N/MEMS. Their low manu-
facturing cost, batch production, light weight, small size, durability, low energy consumption and compatibility with integrated circuits,
makes them even more attractive [1,2].

Emerging role of N/MEMS in optical systems caused the creation of a new class of MEMS devices known as MicroOptoElectroMechanical
Systems (MOEMS). As examples of MOEMS, micromirrors and electrostatic torsional micro actuators can be mentioned. Four types of
micromirrors have been reported in the literature, deformable micromirror [3], movable micromirror [4], piston micromirror [5], and
torsional micromirror [6] where the torsional micromirror is the most interesting among them [7]. Torsional micromirrors have found wide
applications in the small dimensional systems. For example they are the essential element of spatial light modulators [8], digital projection
displays [6] and optical crossbar swiches. Due to the diverse application of micromirrors in N/MEMS technologies, many researchers tried
to investigate micromirrors behavior. Toshiyoshi and Fujita [9] developed a new type of compact micromirror used as an optical switch by
silicon micromachining technique and investigated the voltage-rotation behavior of the micromirror. Degani et al. [10] studied the pull-in
in electrostatic torsion actuators using polynomial algebraic approach. Behavior of their fabricated micromirrors were in good agreement
with their presented model. Zhang et al. [11] presented normalized equations governing the micromirrors voltage dependent behavior.
Their presented model matched well with their experimental measurements. Degani and Nemirovsky [12] presented a new approach for
the direct calculations of the pull-in parameters of electrostatic actuators using a lumped two degree of freedom pull-in model. Huang
et al. [7] presented a general theoretical model using the coupling effect between the torsion and bending which characterizes the static
properties of the electrostatic torsional micromirror, especially its pull-in behavior. Their presented model shows that bending effect in
torsional micro-actuators has undeniable effects on the statical behavior of the micromirrors.

In modeling the micromirror’s behavior, primary simulation tools approach the pull-In state by iteratively adjusting the voltage
applied across the actuator electrodes. The convergence rate of this scheme gradually deteriorates as the pull-in state is approached.
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Fig. 1. Schematic view of a torsional micromirror.

The convergence of this method is inconsistent and requires many mesh and accuracy refinements to assure reliable predictions. As a
result, the design procedure of electrostatically actuated MEMS devices can be time-consuming [13]. Degani et al. [13] presented a novel
displacement iteration pull-in extraction (DIPIE) scheme for the problem of electrostatic torsion micro-actuators. They showed that their
presented method converges 100 times faster than the voltage iteration scheme. They [14] presented experimental and theoretical study
on the effect of various geometrical parameters on the electromechanical response and pull-in parameters of torsion micro actuators.
They also proposed a novel rapid solver for extracting the pull-in parameters of the torsion actuator. Their proposed solver was based on
Newton-Raphson scheme and their presented DIPIE algorithm.

On the other hand perturbational based methods have been widely used for modeling nonlinear problems in the diverse field of
science and technology including N/MEMS. For example Younis and Nayfeh [15] investigate the response of a resonant microbeam to
an electric actuation using the multiple-scale perturbation method. Abdel-Rahman and Nayfeh [16] used the same method to model
secondary resonances in electrically actuated microbeams. Since perturbation methods are based upon the assumption that there is a
small parameter in the equations, they have some limitations in problems without involvement of small parameters. In order to overcome
this limitation a new perturbational based method, namely Homotopy Perturbation Method (HPM) was developed by He et al. [17]. His
new method takes full advantages of the traditional perturbation methods and homotopy techniques. HPM has also been used for solving
the nonlinear problems encountered in N/MEMS. For example, Moeenfard et al. [18] used HPM to model the nonlinear vibrational behavior
of Timoshenko micobeams. Mojahedi et al. [19] applied the HPM method to simulate the static response of nano-switches to electrostatic
actuation and intermolecular surface forces.

In the current paper energy methods are utilized for finding the equations governing the voltage-deflection and voltage-rotation of
electrostatically actuated micromirrors and also for finding the equations governing the pull-in state and instability mode (i.e. torsion or
bending) of the mirror. Then HPM is used to investigate the instability mode in the special case of o =0 where o =0 is small geometrical
parameter defining the size and position of the underneath electrodes. This solution is used in a straight forward perturbation approach
for finding the instability mode in the general case of @ # 0. HPM is employed to analytically study the voltage dependent behavior of the
mirror. The presented analytical results are in good agreement with the experimental and numerical results.

2. Problem formulation

The micromirror shown in Fig. 1 is considered. When there exist a potential difference between the mirror plate and one of the
underneath electrodes, the systems acts like a capacitor. The capacitance of this system can be computed by integrating the capacitance
of capacitance of differential capacitors each of them having a capacity of [14]:

el - dx

€= —5 o M

where ¢ is the permittivity of the permittivity of the free space, L is the length of the micromirror, hy is the initial distance between the
mirror and the electrode, § is the deflection of the supporting torsion beams and 6 is the torsion angle of the mirror. Using Eq. (1), one can
conclude:

a/2
el 1 1-A—-a®
cz/al/2 dC:HmaX@ln (1_A_ﬂ@> (2)

where Omax = 2hg/a is the maximum rotation angle of the micromirror, a is the width of the micromirror and «, 8, A and ® are nondimen-
sionalized parameters defined as:

aq
o= a (3)
_@
B= T (4)
A= % (5)
o- % (6)

Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025



dx.doi.org/10.1016/j.ijleo.2012.06.025

G Model
IJLEO-52393; No.of Pages9

H. Moeenfard, M.T. Ahmadian / Optik xxx (2012) XXxx-xXX 3

where a; and a; are some geometrical parameters defining the size and position of the electrodes as illustrated in Fig. 1. The electrical
potential energy stored in the system is:

1 o, &L V2 1-A-aB®
Ublec = 5C-V _29max(9m(lAﬂ@> )

where U is the potential electrical energy stored in the system. Furthermore the mechanical strain energy stored in the torsion beams
can be calculated as:

Unvech = 3506% + 5 Kob” = 1 00,567 + 1 Koh? A% (®)
where Sy and Ky are the effective torsional and lateral stiffness of the supporting torsion beams respectively and can be calculated as:
5 = 28l .

l
PO . L] (A(), @0) =0 (10)
po: L (Ao, @0) =0

in these equations, [ is the length of each torsion beam, G and E are the shear modulus of elasticity and young’s modulus of the beams
material, respectively, I, is the polar moment of inertia of the beams cross section and I}, is the second moment of inertia of the inertia of
the beams cross section around its neutral axis. For beams with rectangular cross section, Ip and I, are [7]:

1.3
Ip = Wt (11)
13 64 45~ 1 (2n— 1)t
Ip = gtw’ — —gw Zl:(zn_l)stanh 5 (12)
where t and w are the length and width of the beam’s cross section, respectively.
Know the co-energy of the torsional actuator can be generally written as [12]:
U* = UElec - UMech (13)
or in more detail:
. el V2 1-A-ab 1o, o2 1, .9 .9
U* = 29max gln <1 A —,B(")) — ZSoemax@ — jKOhOA (14)
At equilibrium points, the co-energy exhibits a local extremum and so its derivative with respect to A and ® must be zero.
auU*
a4 0 (15)
au*
= 1
79 =0 (16)
which leads to the following equilibrium equations.
VZ2(1/1-A-B8O)-(1/1-A-a®
E(A,0)=K,A - <( / P )@ a/ )) =0 (17)
V2((1-A)/(1-A-BO)—(1-A)/(1-A-a®)+In((1-A-BO)/(1-A—-a®
Ey(A. O)— K6 (( )/ BO)) - (( )/ - )+ In(( BO)/( ) _o (18)
where
_ 2Koh?0cr
Kp = I (19)
K = 2500 (20)
T L
Using the implicit function theorem and the equilibrium equations, one can easily show that the local maximum is reached when
02U* 02U+
T Z7
oA 0093A -0 21)
02U+ 9%u*
0400 002

Degani and Nemirovsk [12] showed that by eliminating the voltage in Eq. (21) and equilibrium equations, these equations can be further
simplified to

% % _o (22)
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i UMech 3£ _ 9Unech 827C i UhMech 8£ _ 9Uech 827C _ i UhMech 3£ _ 9UnMech ¥C ’ -0 (23)
0AZ 9A 0A 0A2 002 0O 00 06?2 JdAd® 0A 0A 0400 |

using some algebraic manipulations, Eqgs. (22) and (23) can be restated as Eqs. (24) and (25) respectively.

B 1 1 A a® BO 1-A-a®)\ _
h (A’@’a)_lez@_lA/S@_@Z(lAa@_lAﬂ@+ln<lA,B(~)))_0 (24)

1

fZ(A’@’a):( 1 1 A A

T-4-p0 1-4-a0  (1_A_abF (1-A_pOY

( 36 300 o? ~ B2 )
1-A-B0 1-A-a0 (1-A-a®P (1-A-pOY

A3

_m2( v 1 . a® _ po o)
04 \1-A-pO 1-A-a® (1_A_BOY (1-A-BOY

(25)

where
Koh%
a 9r2nax50

(26)

3. Analytical modeling of pull-in
3.1. Special case of «=0

When « =0, using some algebraic manipulations, equilibrium equations can be more simplified as

1 1-A

7<—FA(1—A)(1—A—5@)IH(W

2 )_;3@ (—FA+FA2+@2)) -0 (27)

1 2 2 1-4
57 (F3B2BOA - BO+34% ~4A+1)(1- A~ O)’In (m

~256A0 +9A° + (18 + [B)OA? + 882A0?) =0 (28)

) —B2O(=3+7 O —4B2O% + 15A — 21A>

Now, HPM is utilized for solving Eqgs. (27) and (28). So, these equations are divided to a linear and a nonlinear part. The linear part of these
equation can be simply obtained using a Taylor series expansion of Egs. (27) and (28) around (A, ®) = (0, 0).

Ll(A,@):—ﬁ@+%F,82A (29)

L2(A,@)=%ﬁ3—%ﬂ4@—2f33A (30)

where L1(A,®) and L,(A,®) are the linear parts of Egs. (27) and (28), respectively. Obviously the nonlinear part of these equations can be
obtained by subtracting the linear part from the main equation. In other words

_ _ _A_BE _ _A_ _ _ 2, @2
Nl(A’@):< TA(1 = AY1 - A - 8O)In((1 A)/g2 A—BO))—BO(-TA+TA2+6O )) +ﬂ@_%F52A (31)
_ 3B(2BOA — PO +3A2 —4A +1)(1 - A - BOY 1-4
Mol 4, €)= 62 ! (1 —A—ﬂ@)
2O(-3+7 BO—4B20% +15A —21A2 —25BA0 +9A3 + B(18 + TB)OAZ + 8B2AE? 3 4
PO(-3+7 O -4p B B8+ IB) PAR) B 36 e
®2 2 2
(32)
where N1(A, ®) and N»(A, @) are the nonlinear parts of Egs. (27) and (28), respectively. Now the Homotopy form is constructed.
L1(A, ®)+PN{(A,©)=0 (33)
Ly(A, ®)+PNy(A,©)=0 (34)

in these equations, Pis an embedded parameter. When P=0 Egs. (33) and (34) converts to a linear equation, and when P=1 they convert to
the Egs. (27) and (28), respectively. In the next step, the independent variables A and ® are expanded using the embedded parameter P.

A:A0+PA1+P2A2+~- (35)
O = O+ POy +P2O; + - (36)

by substituting Egs. (35) and (36) into Egs. (33) and (34) and finding the Taylor series expansion of the resulting equation with respect to
P, the following equations are obtained.
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Fig. 2. The values of ® and A at pull-in versus B at I"=9 for micromirrors with «=0.

0L (Ao, )

e
+ 6, 90,

0L1(Ao, ©o)
0A

L1(Ao, ®) + (41 +N1(A0»@o))1’

1, 3Li(Ao, Op) 9L1(Ao, Op) 8L1(40. ) , 1 . PLi(Ao, Oo) L1(Ag, Op) INi(Ao, ©0) | o INi(Ao, O0) 1 B
+(5A1 a9 a0, T A 207wl TP e, T oA, O ae, )0 0
(37)
o 0L>(Ao, Oo) - 0La(Ao, Oo) o
Lz(Ao, ()g)+ (A] A +()] a@ﬂ +N2(A0,0o)) P
1 5 8L5(Ao, Op) 32Ly(Ao, B) 0L>(Ao, ©o) +1g ZBZLZ(AOsQO) 3L2(Aoy@o) ONx(Ag, ©o) | o ON2(Ao, o) 12 _
+(§A o MO TS + Ay = 4 S O i3 ot O P24...=0
(38)
equating the coefficients of each power of P with zero in Egs. (37) and (38), leads to the following sets of equations:
PO [41(Ag, Op) =
(39)
PO: L[y(Ag, Op) =
0L1(Ag, ® dL(A ,()
pi . 1(Ao, Op) At 1( 0 0) O1 = —Ni( Ay, Oo)
0A¢
(40)
0Ly (Ao, Op) 0Ly (Ao, Op)
pl - i A+ ’ 1 =—-Ny(Ap, O
( 92, 1 — 30, 2(Ao, Oo)
0L1(Ao, @) 0L1(Ao, @) 1,5 8*Li(Ao, Oo) 92L1(A0, ©0) 1, *L1(Ao, Oo) ON1(Ao, ©o) 3N1(A0s00)
2 . ® — __ A2 _ A __-@®?
P AZ( 94, )+()2( 90, ) 2N o BN V.Y T A R T~ R R 30,
(41)
b a (128000 o [#2(2000) 1 wnanen Pla(do, O0) 1 gy Pla(B0, 00) 5 o4 00) _ g, el Ao. O0)
T 340 2 36, T2 Tz T 04000, 962 T34, 36,

Eqgs. (39)-(41) can be solved iteratively for finding (4;, ®;),0 < i < 2. Then A and ® are obtained by substituting P=1and (4;, ®;),0 <i <2
in Egs. (35) and (36), respectively. The accuracy of the obtained results can be further improved by using higher perturbation expansions
in Eqs. (37) and (38).

In Figs. 2 and 3 the pull-in angle and pull-in displacement of the micromirror is plotted against 8 for «=0. It is observed that a fifth
order perturbation expansion gives sufficiently precise results. In addition, one can conclude that ignoring the bending effect of torsion
beams can lead to significantly large errors up to several hundred percent in the pull-in angle especially at low values of 8. Comparing
Figs. 2 and 3, shows that at small values of I" which is the sign of low bending strength of the torsion beams, the dominant instability mode
of the micromirror is the bending mode, while at large values of I", the dominant instability mode, is the torsion mode. It is also observed
that at low values of g, the bending instability mode is strengthened.

General case of ¢ > 0

Since the value of « is usually small, it can be used as perturbation parameter. Doing so, A and ® are expanded as:

A=Ay+ad +a? A, +0(a?) (42)
O = Oy +aO),| +a?O, +0(a?) (43)
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Fig. 3. The values of ® and A at pull-in versus 8 at 1" =9 for micromirrors with «=0.
these equations are then substituted in Egs. (24) and (25) and the Taylor series expansion of the resulting equations with respect to « are

then obtained which results in Eqs. (44) and (45), respectively.
) ’
a=0

i (Ay, @, 0)
A,

i (Ap, ©4,0) i (Ay, O, )
e, o

Fi(Ap, @), 0) + (A; + O,

L (4. ©;,0) Lo (4. ©;,0) AN 9f1 (A, ©,.0) L1 2f1 (4y. O, )
2 04, 2 36, 194,00, 2 o2 o
12PN (4:00:0) | B (40.6p.2) 1,80 (4. 00.0) o P (4 0. 0) 2 —0 (44
271 IA2 1 dA o 21 9672 1 96, 0o T
a=0
. , 0f2(Ay, ©4,0)  0f2(Ap, O, 0)  3f(Ag, O, o)
f(AG, ©,0) + <A1 34, + 0] 267, + % » o
(A, 0, 0) (A, @, 0) P hH(AY, 0, 0) 1 (A, O, )
* (Az oa, % e, TN Tae, T2 e o
1 02f,(AL, @), 0 02H(AL, @0, a) 1 _50%H(A,,0,,0 L 02fH(AL, 0L, a
+§A/% fZ( 020 )+A,1 fZ(aAo/ao )+§_9,% f2( 020 )+(_9,1 f2(8(90/80 ) O[2+...=O (45)
dA'p 00 00’y 0% a=0
By setting the coefficients of each power of « with zero the following sets of equations are obtained:
a: fi(Ay. ©).0)=0
(46)
o (A, 0,,0)=0
0f1(Ay, O, 0) 9f1(4y, &, 0) (A, 6, o)
1. / 0 o / 0" _ 0> -0
Y B =/ dax ]
=0 (47)
L R(AL, ©),0)  0R(A),©),0) (A, Op.a)
a': A A + 6, 50 =— 3
0 0 o a=0
afi(Ag, 6, 0) af (44, 64, 0) %f1(A, ©,.0) 1 32f1(A}, O, )
2. ’ 0 ) 0 — A 0 _ 2 0
o M %2 T ae, - N a0, 2 3 o
1 8%fi(4;, ©;,0) C2fi1(Ap, O, ) 15 3%fi(A, ©,0) L %f1(Ay, ©), )
-54% 2 -4 / -501 2 -0 /
2 A3 A0 2 002 0040 w0
, (48)
2. 4 B2(40:85.0) o #(40.66.0) o P (45:66.0) 18 (4 8. )
* oA, T e, T T T aage, 2 3
a=0
—1A/2 82f2 (A65 @E]? O) _A 32f2 (Abv @67 O[) B l@/z 32f2 (Aé)v @67 0) _ @/ 32f2 (Abv @/0’ O[)
271 IA2 1 A 0a 20! 9672 1 96, 0a

a=0
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Fig. 4. The values of ® and A at pull-in versus 8 at I" =9 for micromirrors with ¢ =0.1.
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Fig. 5. The values of ® and A at pull-in versus f at I" =9 for micromirrors with o =0.2.

of the obtained results can be further improved by using higher order perturbation expansions.

In Figs. 4-6, the pull-in angle and pull-in displacement of micromirrors with different nonzero values of « is presented. It can be seen
that the convergence of the perturbation method is so fast that even a second order perturbation expansion is sufficient for obtaining
a highly precise response. Obviously, the lower the value of «, the faster the perturbed response converge. Again, just like the special
case of =0, neglecting the bending effect can cause several hundred percent error in the pull-in angle and pull-in displacement of the

micromirror.
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Fig. 6. The values of ® and A at pull-in versus 8 at I" =9 for micromirrors with o =0.3.
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Table 1

Parameters of the micromirror under investigation.
Property Symbol Value
Shear modulus of elasticity G 66 Gpa

Poison ratio of the torsional beams material (polysilicon) v 0.29
Micromirror width a 100 pm
Micromirror length L 100 pm
Torsional beam length l 65 um
Torsional beam width w 1.55 pm
t

Torsional beam thickness 1.5pm
Electrode parameter a, 6 um
Electrode parameter a, 84 um
Initial distance between the micromirror and the underneath electrodes h 2.75 um

4. Voltage dependent behavior of micromirror
In this section, HPM is utilized for finding analytic solutions of voltage dependent behavior of micromirror. For this purpose, the Taylor
expansion is utilized to find the linear part of Eqs. (17) and (18).
L4(4A, 0) = —V*(B - o) + (K = 2V*(B - a))A - V(B — a*)O (49)

2 2
Ly(A, 6) = _vz(ﬂ27"‘) V(B — o)A + (zq - %(ﬁ —a3)V2) ) (50)
obviously the nonlinear parts of Egs. (49) and (50) are obtained by subtracting L} (A, ®) from &1(A, @) and L,(A, O) from Z3(A, ©)
respectively.

Ni(A, ®)=E1(A,O)-Li(A4, O) (51)

Ny(A, ®)=E)(A, ©)-L)(A, O) (52)
now the homotopy form is constructed using the embedded parameter P:

Li(A,®)+P-Ny(A,©)=0 (53)

LL(A,©)+P-Ny(A,©)=0 (54)
Furthermore, the independent variables (i.e. A and ®) are expanded as:

A= Ag+PA;+... (55)

O =0y +POq +... (56)

by substituting Egs. (55) and (56) into Eqgs. (53) and (54) and finding the Taylor series expansions of the resulting expressions with respect
to P, the following equations are obtained.

oL (Ao, ©, oL (A, ©,

L (Ao, O0)+ (4, 21(A0-00) 5 Ia(20-O0) w4 90y P4 0(p2) = 0 (57)
0A¢ 06
oL (Ao, ©, oL (A, ©,

Ly( Ao, Op)+ (2, 22A0-00) 5 Aa(B0-C0) 10 90y P4 0p2) = 0 (58)
YA BION

equating the coefficient of each power of P is Egs. (57) and (58) with zero leads to:
po: L;(Ao,@o)zo

(59)
po : L’Z(Ao, (”)0): 0
aL; (Ao, O aL; (Ao, O
Pl: A4 1(4o O)+(~)1 1{40. Go) = —N;(Ao, O9)
04A¢ 96g (60)

0Ly(Ao, ©) oLy(Ao, ©)
040 BION

Equations (59) and (60) can be solved iteratively for finding A; and ®;, 0 < i < 1. By substituting P=1 and A; and ®;,0 <i < 1in Egs. (55)
and (56), A and ® are obtained. The accuracy of the given solution can be further improved by using higher order perturbation expansions
in Egs. (55) and (56). For verification purpose, a micromirror with characteristics given in Table 1 is considered.

In Fig. 7 the results of the presented model has been compared with numerical results and with experimental findings of Huang et al.
[7]. It is observed that even a first order perturbation approximation precisely follow the numerical results especially at voltages less than
16V and the analytical results obtained from a fifth order perturbation expansion has almost no error. In addition, it can be seen that the
analytical and numerical results well follow the experimental results. Fig. 7 also shows that disregarding the effect of bending in modeling
would induce significant errors in the results.

In Fig. 8, the analytical results of dimensionless deflection A is compared with those of numerical findings. Again, it is seen that analytical
results closely follow numerical ones.

P! : Al +@1

= —N3(Ao, Op)
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Fig. 8. Voltage-displacement behavior of the torsional micromirror, comparison of numerical and analytical results.
5. Conclusion

In the current paper, analytical solutions were presented for modeling the bending of the torsional beams in electrostatically actuated
micromirrors. Energy method was employed to obtain equilibrium equations. Furthermore, the instability mode of the micromirror was
modeled using the implicit function theorem. The model was then solved using the combination of HPM and straight forward perturbation
expansion. The presented results were in excellent agreement with numerical simulations. Results revealed that neglecting the effect of
bending in electrostatic torsion micro actuators can cause several hundred percent overestimation of the stability limits of the device. HPM
was used to study the voltage-angle and voltage-displacement behavior of the micromirror. Presented results were in good agreement
with numerical simulations and experimental findings. The design tool presented in this paper can be used for efficient, accurate and time
consuming modeling of micromirrors and their design optimization.
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