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This  paper  presents  analytical  solutions  for  the  nonlinear  problem  of  electrostatically  actuated  torsional
micromirrors  considering  the  bending  of  the  torsional  beams.  First  the  energy  method  is  used for finding
the  equilibrium  equations.  Then  the  explicit  function  theorem  is utilized  for  finding  the  equations  gov-
erning  the  instability  mode  of  the  mirror.  These  equations  are  then  solved  using  Homotopy  Perturbation
Method  (HPM)  for  the especial  case  of  ˛  =  0  where  ˛ is  a small  nondimensional  geometrical  parameter
defining  the starting  point  of  the  underneath  electrodes.  Then  straight  forward  perturbation  method  is
applied  for finding  the pull-in  angle  and  pull-in  displacement  of  the micromirror  for  the  general  case
of  ˛  /=  0.  The  presented  results  which  were  in  excellent  agreement  with  numerical  simulations  show
that  neglecting  the  bending  effect  in  electrostatic  torsion  micro  actuators  can  lead  to  several  hundred
percent  of  overestimation  of the  stability  limits  of the  device.  In  order  to  study  the voltage-angle  and
voltage-displacement  behavior  of  the  micromirror,  equilibrium  equations  are  solved  using  HPM.  Pre-
sented results  are  in good  agreement  with  numerical  simulations  and also  with  experimental  findings.

© 2012  Elsevier  GmbH.  All  rights  reserved.

. Introduction

Recently, lots of progress has been experienced in the technology of testing and fabricating new devices in N/MEMS. Their low manu-
acturing cost, batch production, light weight, small size, durability, low energy consumption and compatibility with integrated circuits,

akes them even more attractive [1,2].
Emerging role of N/MEMS in optical systems caused the creation of a new class of MEMS  devices known as MicroOptoElectroMechanical

ystems (MOEMS). As examples of MOEMS, micromirrors and electrostatic torsional micro actuators can be mentioned. Four types of
icromirrors have been reported in the literature, deformable micromirror [3], movable micromirror [4],  piston micromirror [5],  and

orsional micromirror [6] where the torsional micromirror is the most interesting among them [7].  Torsional micromirrors have found wide
pplications in the small dimensional systems. For example they are the essential element of spatial light modulators [8],  digital projection
isplays [6] and optical crossbar swiches. Due to the diverse application of micromirrors in N/MEMS technologies, many researchers tried
o investigate micromirrors behavior. Toshiyoshi and Fujita [9] developed a new type of compact micromirror used as an optical switch by
ilicon micromachining technique and investigated the voltage-rotation behavior of the micromirror. Degani et al. [10] studied the pull-in
n electrostatic torsion actuators using polynomial algebraic approach. Behavior of their fabricated micromirrors were in good agreement

ith their presented model. Zhang et al. [11] presented normalized equations governing the micromirrors voltage dependent behavior.
heir presented model matched well with their experimental measurements. Degani and Nemirovsky [12] presented a new approach for
he direct calculations of the pull-in parameters of electrostatic actuators using a lumped two degree of freedom pull-in model. Huang
t al. [7] presented a general theoretical model using the coupling effect between the torsion and bending which characterizes the static
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025

roperties of the electrostatic torsional micromirror, especially its pull-in behavior. Their presented model shows that bending effect in
orsional micro-actuators has undeniable effects on the statical behavior of the micromirrors.

In modeling the micromirror’s behavior, primary simulation tools approach the pull-In state by iteratively adjusting the voltage
pplied across the actuator electrodes. The convergence rate of this scheme gradually deteriorates as the pull-in state is approached.
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Fig. 1. Schematic view of a torsional micromirror.

he convergence of this method is inconsistent and requires many mesh and accuracy refinements to assure reliable predictions. As a
esult, the design procedure of electrostatically actuated MEMS  devices can be time-consuming [13]. Degani et al. [13] presented a novel
isplacement iteration pull-in extraction (DIPIE) scheme for the problem of electrostatic torsion micro-actuators. They showed that their
resented method converges 100 times faster than the voltage iteration scheme. They [14] presented experimental and theoretical study
n the effect of various geometrical parameters on the electromechanical response and pull-in parameters of torsion micro actuators.
hey also proposed a novel rapid solver for extracting the pull-in parameters of the torsion actuator. Their proposed solver was based on
ewton-Raphson scheme and their presented DIPIE algorithm.

On the other hand perturbational based methods have been widely used for modeling nonlinear problems in the diverse field of
cience and technology including N/MEMS. For example Younis and Nayfeh [15] investigate the response of a resonant microbeam to
n electric actuation using the multiple-scale perturbation method. Abdel-Rahman and Nayfeh [16] used the same method to model
econdary resonances in electrically actuated microbeams. Since perturbation methods are based upon the assumption that there is a
mall parameter in the equations, they have some limitations in problems without involvement of small parameters. In order to overcome
his limitation a new perturbational based method, namely Homotopy Perturbation Method (HPM) was  developed by He et al. [17]. His
ew method takes full advantages of the traditional perturbation methods and homotopy techniques. HPM has also been used for solving
he nonlinear problems encountered in N/MEMS. For example, Moeenfard et al. [18] used HPM to model the nonlinear vibrational behavior
f Timoshenko micobeams. Mojahedi et al. [19] applied the HPM method to simulate the static response of nano-switches to electrostatic
ctuation and intermolecular surface forces.

In the current paper energy methods are utilized for finding the equations governing the voltage-deflection and voltage-rotation of
lectrostatically actuated micromirrors and also for finding the equations governing the pull-in state and instability mode (i.e. torsion or
ending) of the mirror. Then HPM is used to investigate the instability mode in the special case of  ̨ = 0 where  ̨ = 0 is small geometrical
arameter defining the size and position of the underneath electrodes. This solution is used in a straight forward perturbation approach
or finding the instability mode in the general case of � /= 0. HPM is employed to analytically study the voltage dependent behavior of the

irror. The presented analytical results are in good agreement with the experimental and numerical results.

. Problem formulation

The micromirror shown in Fig. 1 is considered. When there exist a potential difference between the mirror plate and one of the
nderneath electrodes, the systems acts like a capacitor. The capacitance of this system can be computed by integrating the capacitance
f capacitance of differential capacitors each of them having a capacity of [14]:

dC = εL · dx

h0 − ı − x�
(1)

here ε is the permittivity of the permittivity of the free space, L is the length of the micromirror, h0 is the initial distance between the
irror and the electrode, ı is the deflection of the supporting torsion beams and � is the torsion angle of the mirror. Using Eq. (1),  one can

onclude:

C =
∫ a2/2

a1/2

dC = εL

�max

1
�

ln

(
1 − � − ˛�

1 − � − ˇ�

)
(2)

here �max = 2h0/a is the maximum rotation angle of the micromirror, a is the width of the micromirror and ˛, ˇ, � and � are nondimen-
ionalized parameters defined as:

˛ = a1

a
(3)

ˇ = a2

a
(4)

� = ı

h0
(5)
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025

� = �

�max
(6)
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here a1 and a2 are some geometrical parameters defining the size and position of the electrodes as illustrated in Fig. 1. The electrical
otential energy stored in the system is:

UElec = 1
2

C · V2 = εL

2�max

V2

�
ln

(
1 − � − ˛�

1 − � − ˇ�

)
(7)

here UElec is the potential electrical energy stored in the system. Furthermore the mechanical strain energy stored in the torsion beams
an be calculated as:

UMech = 1
2

S0�2 + 1
2

K0ı2 = 1
2

S0�2
max�2 + 1

2
K0h2

0�2 (8)

here S0 and K0 are the effective torsional and lateral stiffness of the supporting torsion beams respectively and can be calculated as:

S0 = 2GIp
l

(9)

P0 : L1
(

�0, �0
)

= 0

P0 : L2
(

�0, �0
)

= 0
(10)

n these equations, l is the length of each torsion beam, G and E are the shear modulus of elasticity and young’s modulus of the beams
aterial, respectively, Ip is the polar moment of inertia of the beams cross section and Ib is the second moment of inertia of the inertia of

he beams cross section around its neutral axis. For beams with rectangular cross section, Ip and Ib are [7]:

Ip = 1
12

wt3 (11)

Ip = 1
3

tw3 − 64
�5

w4
∞∑

n=1

1

(2n  − 1)5
tanh

(2n − 1)�t

2w
(12)

here t and w are the length and width of the beam’s cross section, respectively.
Know the co-energy of the torsional actuator can be generally written as [12]:

U∗ = UElec − UMech (13)

r in more detail:

U∗ = εL

2�max

V2

�
ln

(
1 − � − ˛�

1 − � − ˇ�

)
− 1

2
S0�2

max�2 − 1
2

K0h2
0�2 (14)

t equilibrium points, the co-energy exhibits a local extremum and so its derivative with respect to � and � must be zero.

∂U∗

∂�
= 0 (15)

∂U∗

∂�
= 0 (16)

hich leads to the following equilibrium equations.

	1(�,  �)  = Kb� −
V2
(

(1/1 − � − ˇ�) − (1/1 − � − ˛�)
)

�
= 0 (17)

	2(�,  �)  = Kt� −
V2
(

((1 − �)/(1 − � − ˇ�)) − ((1 − �)/(1 − � − ˛�) + ln((1 − � − ˇ�)/(1 − � − ˛�))
)

�2
= 0 (18)

here

Kb = 2K0h2�cr

εL
(19)

Kt = 2S0�3
cr

εL
(20)

sing the implicit function theorem and the equilibrium equations, one can easily show that the local maximum is reached when∣∣∣∣∣∣∣
∂2U∗

∂�2

∂2U∗

∂�∂�

∂2U∗

∂�∂�

∂2U∗

∂�2

∣∣∣∣∣∣∣ = 0 (21)
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025

egani and Nemirovsk [12] showed that by eliminating the voltage in Eq. (21) and equilibrium equations, these equations can be further
implified to

∂UMech

∂�

∂C

∂�
− ∂UMech

∂�

∂C

∂�
= 0 (22)

dx.doi.org/10.1016/j.ijleo.2012.06.025
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(
∂2UMech

∂�2

∂C

∂�
− ∂UMech

∂�

∂2C

∂�2

)  (
∂2UMech

∂�2

∂C

∂�
− ∂UMech

∂�

∂2C

∂�2

)
−
(

∂2UMech

∂�∂�

∂C

∂�
− ∂UMech

∂�

∂2C

∂�∂�

)2

= 0 (23)

sing some algebraic manipulations, Eqs. (22) and (23) can be restated as Eqs. (24) and (25) respectively.

f1
(

�,  �, ˛
)

= 1
1 − � − ˛�

− 1
1 − � − ˇ�

− 
�

�2

(
˛�

1 − � − ˛�
− ˇ�

1 − � − ˇ�
+ ln

(
1 − � − ˛�

1 − � − ˇ�

))
= 0 (24)

f2(�, �,  ˛) = 1
�3

(
1

1 − � − ˇ�
− 1

1 − � − ˛�
+ �

(1 − � − ˛�)2
− �

(1 − � − ˇ�)2(
3ˇ�

1 − � − ˇ�
− 3˛�

1 − � − ˛�
+ ˛2

(1 − � − ˛�)2
− ˇ2

(1 − � − ˇ�)2

)

−
�2

�4

(
1

1 − � − ˇ�
− 1

1 − � − ˛�
+ ˛�

(1 − � − ˇ�)2
− ˇ�

(1 − � − ˇ�)2

)
= 0

)2

(25)

here


 = K0h2
0

�2
maxS0

(26)

. Analytical modeling of pull-in

.1. Special case of  ̨ = 0

When  ̨ = 0, using some algebraic manipulations, equilibrium equations can be more simplified as

1
�2

(
−
� (1 − �)

(
1 − � − ˇ�

)
ln
(

1 − �

1 − � − ˇ�

)
− ˇ�

(
−
� + 
�2 + �2

))
= 0 (27)

1
�2

(
−3ˇ(2ˇ�� − ˇ� + 3�2 − 4� + 1) (1 − � − ˇ�)2ln

(
1 − �

1 − � − ˇ�

)
− ˇ2� (−3 + 7 ˇ� − 4ˇ2�2 + 15� − 21�2

−25ˇ��  + 9�3 + ˇ(18 + 
ˇ)��2 + 8ˇ2��2
)

= 0 (28)

ow, HPM is utilized for solving Eqs. (27) and (28). So, these equations are divided to a linear and a nonlinear part. The linear part of these
quation can be simply obtained using a Taylor series expansion of Eqs. (27) and (28) around (�, �)  = (0,  0).

L1(�,  �)  = −ˇ� + 1
2


ˇ2� (29)

L2(�,  �)  = 1
2

ˇ3 − 3
2

ˇ4� − 2ˇ3� (30)

here L1(�,�)  and L2(�,�)  are the linear parts of Eqs. (27) and (28), respectively. Obviously the nonlinear part of these equations can be
btained by subtracting the linear part from the main equation. In other words

N1(�,  �) =
(

−
�(1 − �)(1 − � − ˇ�)ln((1 − �)/(1 − � − ˇ�)) − ˇ�(−
� + 
�2 + �2)
�2

)
+ ˇ� − 1

2

ˇ2� (31)

N2(�,  �) = −3ˇ(2ˇ�� − ˇ� + 3�2 − 4� + 1)(1 − � − ˇ�)2

�2
ln
(

1 − �

1 − � − ˇ�

)

−
ˇ2� (−3 + 7 ˇ� − 4ˇ2�2 + 15� − 21�2 − 25ˇ��  + 9�3 + ˇ(18 + 
ˇ)��2 + 8ˇ2��2

)
�2

− ˇ3

2
+ 3ˇ4

2
� + 2ˇ3�

(32)

here N1(�, �)  and N2(�,  �)  are the nonlinear parts of Eqs. (27) and (28), respectively. Now the Homotopy form is constructed.

L1(�,  �)  + PN1(�, �)  = 0 (33)

L2(�,  �)  + PN2(�, �)  = 0 (34)

n these equations, P is an embedded parameter. When P = 0 Eqs. (33) and (34) converts to a linear equation, and when P = 1 they convert to
he Eqs. (27) and (28), respectively. In the next step, the independent variables � and � are expanded using the embedded parameter P.

� = �0 + P�1 + P2�2 + · · · (35)
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
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� = �0 + P�1 + P2�2 + · · · (36)

y substituting Eqs. (35) and (36) into Eqs. (33) and (34) and finding the Taylor series expansion of the resulting equation with respect to
, the following equations are obtained.

dx.doi.org/10.1016/j.ijleo.2012.06.025
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 = 9 for micromirrors with  ̨ = 0.

L1(�0, �0) +
(

�1
∂L1(�0, �0)

∂�0
+ �1

∂L1(�0, �0)
∂�0

+ N1(�0, �0)

)
P

+
(

1
2

�2
1

∂2L1(�0, �0)

∂�2
0

+ �1�1
∂2L1(�0, �0)

∂�0∂�0
+ �2

∂L1(�0, �0)
∂�0

+ 1
2

�2
1

∂2L1(�0, �0)

∂�2
0

+ �2
∂L1(�0, �0)

∂�0
+ �1

∂N1(�0, �0)
∂�0

+ �1
∂N1(�0, �0)

∂�0

)
P2 + · · · = 0

(37)

L2(�0, �0) +
(

�1
∂L2(�0, �0)

∂�0
+ �1

∂L2(�0, �0)
∂�0

+ N2(�0, �0)

)
P

+
(

1
2

�2
1

∂2L2(�0, �0)

∂�2
0

+ �1�1
∂2L2(�0, �0)

∂�0∂�0
+ �2

∂L2(�0, �0)
∂�0

+ 1
2

�1
2 ∂2L2(�0, �0)

∂�2
0

+ �2
∂L2(�0, �0)

∂�0
+ �1

∂N2(�0, �0)
∂�0

+ �1
∂N2(�0, �0)

∂�0

)
P2 + · · · = 0

(38)

quating the coefficients of each power of P with zero in Eqs. (37) and (38), leads to the following sets of equations:

P0 : L1(�0, �0) = 0

P0 : L2(�0, �0) = 0
(39)

P1 :

(
∂L1(�0, �0)

∂�0

)
�1 +

(
∂L1(�0, �0)

∂�0

)
�1 = −N1(�0, �0)

P1 :

(
∂L2(�0, �0)

∂�0

)
�1 +

(
∂L2(�0, �0)

∂�0

)
�1 = −N2(�0, �0)

(40)

P2 : �2

(
∂L1(�0, �0)

∂�0

)
+ �2

(
∂L1(�0, �0)

∂�0

)
= − 1

2
�2

1
∂2L1(�0, �0)

∂�2
0

− �1�1
∂2L1(�0, �0)

∂�0∂�0
− 1

2
�2

1
∂2L1(�0, �0)

∂�2
0

− �1
∂N1(�0, �0)

∂�0
− �1

∂N1(�0, �0)
∂�0

P2 : �2

(
∂L2(�0, �0)

∂�0

)
+ �2

(
∂L2

(
�0, �0

)
∂�0

)
= − 1

2
�2

1
∂2L2(�0, �0)

∂�2
0

− �1�1
∂2L2(�0, �0)

∂�0∂�0
− 1

2
�2

1
∂2L2(�0, �0)

∂�2
0

− �1
∂N2(�0, �0)

∂�0
− �1

∂N2(�0, �0)
∂�0

(41)

qs. (39)–(41) can be solved iteratively for finding (�i, �i), 0 ≤ i ≤ 2. Then � and � are obtained by substituting P = 1 and (�i, �i), 0 ≤ i ≤ 2
n Eqs. (35) and (36), respectively. The accuracy of the obtained results can be further improved by using higher perturbation expansions
n Eqs. (37) and (38).

In Figs. 2 and 3 the pull-in angle and pull-in displacement of the micromirror is plotted against  ̌ for  ̨ = 0. It is observed that a fifth
rder perturbation expansion gives sufficiently precise results. In addition, one can conclude that ignoring the bending effect of torsion
eams can lead to significantly large errors up to several hundred percent in the pull-in angle especially at low values of ˇ. Comparing
igs. 2 and 3, shows that at small values of 
 which is the sign of low bending strength of the torsion beams, the dominant instability mode
f the micromirror is the bending mode, while at large values of 
 , the dominant instability mode, is the torsion mode. It is also observed
hat at low values of ˇ, the bending instability mode is strengthened.

General case of  ̨ ≥ 0
Since the value of  ̨ is usually small, it can be used as perturbation parameter. Doing so, � and � are expanded as:
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025

� = �′
0 + ˛�′

1 + ˛2�′
2 + O(˛3) (42)

� = �′
0 + ˛�′

1 + ˛2�′
2 + O(˛3) (43)
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Fig. 3. The values of � and � at pull-in versus  ̌ at 
 = 9 for micromirrors with  ̨ = 0.

hese equations are then substituted in Eqs. (24) and (25) and the Taylor series expansion of the resulting equations with respect to  ̨ are
hen obtained which results in Eqs. (44) and (45), respectively.

f1(�′
0, �′

0, 0) +
(

�′
1

∂f1
(

�′
0, �′

0, 0
)

∂�′
0

+ �′
1

∂f1
(

�′
0, �′

0, 0
)

∂�′
0

+
∂f1
(
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y setting the coefficients of each power of  ̨ with zero the following sets of equations are obtained:
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Fig. 4. The values of � and � at pull-in versus  ̌ at 
 = 9 for micromirrors with  ̨ = 0.1.
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Fig. 5. The values of � and � at pull-in versus ˇ at 
 = 9 for micromirrors with ˛ = 0.2.

he solution of Eq. (46) is the solution of Eqs. (27) and (28) for the special case of  ̨ = 0 whose solution was obtained in the in the previous
tep. So �′

0 and �′
0 are already known. Then Eqs. (47) and (48) can be solved iteratively for finding sets of (�i, �i), 1 ≤ i ≤ 2. The accuracy

f the obtained results can be further improved by using higher order perturbation expansions.
In Figs. 4–6,  the pull-in angle and pull-in displacement of micromirrors with different nonzero values of  ̨ is presented. It can be seen

hat the convergence of the perturbation method is so fast that even a second order perturbation expansion is sufficient for obtaining
 highly precise response. Obviously, the lower the value of ˛, the faster the perturbed response converge. Again, just like the special
ase of ˛ = 0, neglecting the bending effect can cause several hundred percent error in the pull-in angle and pull-in displacement of the
icromirror.
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025

Fig. 6. The values of � and � at pull-in versus  ̌ at 
 = 9 for micromirrors with  ̨ = 0.3.
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Table 1
Parameters of the micromirror under investigation.

Property Symbol Value

Shear modulus of elasticity G 66 Gpa
Poison ratio of the torsional beams material (polysilicon) � 0.29
Micromirror width a 100 �m
Micromirror length L 100 �m
Torsional beam length l 65 �m
Torsional beam width w 1.55 �m
Torsional beam thickness t 1.5 �m
Electrode parameter a 6 �m

4

e

o
r

n
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t

e
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i
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1
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w

r

1

Electrode parameter a2 84 �m
Initial  distance between the micromirror and the underneath electrodes h 2.75 �m

. Voltage dependent behavior of micromirror

In this section, HPM is utilized for finding analytic solutions of voltage dependent behavior of micromirror. For this purpose, the Taylor
xpansion is utilized to find the linear part of Eqs. (17) and (18).

L′
1(�,  �)  = −V2(  ̌ − ˛) + (Kb − 2V2(  ̌ − ˛))� − V2(ˇ2 − ˛2)� (49)

L′
2(�,  �)  = −V2 (ˇ2 − ˛2)

2
− V2(ˇ2 − ˛2)� +

(
Kt − 2

3
(ˇ3 − ˛3)V2

)
� (50)

bviously the nonlinear parts of Eqs. (49) and (50) are obtained by subtracting L′
1(�,  �)  from 	1(�, �)  and L′

2(�,  �) from 	2(�, �)
espectively.

N′
1(�,  �) = 	1(�, �)  − L′

1(�, �)  (51)

N′
2(�,  �) = 	2(�, �)  − L′

2(�, �)  (52)

ow the homotopy form is constructed using the embedded parameter P:

L′
1(�,  �)  + P · N′

1(�, �)  = 0 (53)

L′
2(�,  �)  + P · N′

2(�, �)  = 0 (54)

urthermore, the independent variables (i.e. � and �)  are expanded as:

� = �0 + P�1 + ... (55)

� = �0 + P�1 + ... (56)

y substituting Eqs. (55) and (56) into Eqs. (53) and (54) and finding the Taylor series expansions of the resulting expressions with respect
o P, the following equations are obtained.

L′
1(�0, �0) +

(
�1

∂L′
1(�0, �0)

∂�0
+ �1

∂L′
1(�0, �0)

∂�0
+ N′

1(�0, �0)

)
P + O(P2) = 0 (57)

L′
2(�0, �0) +

(
�1

∂L′
2(�0, �0)

∂�0
+ �1

∂L′
2(�0, �0)

∂�0
+ N′

2(�0, �0)

)
P + O(P2) = 0 (58)

quating the coefficient of each power of P is Eqs. (57) and (58) with zero leads to:

P0 : L′
1(�0, �0) = 0

P0 : L′
2(�0, �0) = 0

(59)

P1 : �1
∂L′

1(�0, �0)
∂�0

+ �1
∂L′

1(�0, �0)
∂�0

= −N′
1(�0, �0)

P1 : �1
∂L′

2(�0, �0)
∂�0

+ �1
∂L′

2(�0, �0)
∂�0

= −N′
2(�0, �0)

(60)

quations (59) and (60) can be solved iteratively for finding �i and �i, 0 ≤ i ≤ 1. By substituting P = 1 and �i and �i, 0 ≤ i ≤ 1 in Eqs. (55)
nd (56), � and � are obtained. The accuracy of the given solution can be further improved by using higher order perturbation expansions
n Eqs. (55) and (56). For verification purpose, a micromirror with characteristics given in Table 1 is considered.

In Fig. 7 the results of the presented model has been compared with numerical results and with experimental findings of Huang et al.
7]. It is observed that even a first order perturbation approximation precisely follow the numerical results especially at voltages less than
6V and the analytical results obtained from a fifth order perturbation expansion has almost no error. In addition, it can be seen that the
Please cite this article in press as: H. Moeenfard, M.T. Ahmadian, Analytical modeling of bending effect on the torsional response of
electrostatically actuated micromirrors, Optik - Int. J. Light Electron Opt. (2012), http://dx.doi.org/10.1016/j.ijleo.2012.06.025

nalytical and numerical results well follow the experimental results. Fig. 7 also shows that disregarding the effect of bending in modeling
ould induce significant errors in the results.

In Fig. 8, the analytical results of dimensionless deflection � is compared with those of numerical findings. Again, it is seen that analytical
esults closely follow numerical ones.
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Fig. 7. Voltage-angle behavior of torsional micromirrors, comparison of experimental, numerical and analytical results.
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Fig. 8. Voltage-displacement behavior of the torsional micromirror, comparison of numerical and analytical results.

. Conclusion

In the current paper, analytical solutions were presented for modeling the bending of the torsional beams in electrostatically actuated
icromirrors. Energy method was employed to obtain equilibrium equations. Furthermore, the instability mode of the micromirror was
odeled using the implicit function theorem. The model was  then solved using the combination of HPM and straight forward perturbation

xpansion. The presented results were in excellent agreement with numerical simulations. Results revealed that neglecting the effect of
ending in electrostatic torsion micro actuators can cause several hundred percent overestimation of the stability limits of the device. HPM
as used to study the voltage-angle and voltage-displacement behavior of the micromirror. Presented results were in good agreement
ith numerical simulations and experimental findings. The design tool presented in this paper can be used for efficient, accurate and time

onsuming modeling of micromirrors and their design optimization.
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