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Abstract

In this article, the static behavior of micromirrors under the effect of capillary force is studied. The dimensionless

equations governing the static behavior and the pull-in state of the micromirror under capillary force are obtained, and

the effects of different geometrical parameters on the pull-in angle of micromirrors are investigated. The static behavior

of micromirrors is studied both numerically and analytically using the homotopy perturbation method. It is observed that

with increasing the instability number defined in this article, the rotation angle of the micromirror is increased and

suddenly the pull-in occurs. The results of the presented model are then verified by comparing them with the results of

finite element simulations performed in the commercial finite element model software ANSYS. The agreement between

the results of finite element model and those of the proposed analytical model shows that homotopy perturbation

method can be used as a fast and accurate tool for predicting mirror’s behavior under capillary force.
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Introduction

Microelectromechanical systems (MEMS) are being
developed for a wide spectrum of applications in vari-
ous aspects of life.1 These devices make the systems
faster, more reliable, cheaper, and capable of incorpo-
rating more complex functions.2 Successful MEMS
devices rely not only on well-developed fabrication
technologies, but also on the knowledge of device
behavior.3

The fact that MEMS devices play important roles in
optical systems caused the development of a new class
of systems called micro-opto-electro-mechanical sys-
tems (MOEMS). MOEMS include a wide variety of
devices including digital micromirror devices,4 optical
switches,5 microscanning mirrors,6 optical cross-con-
nects,7,8 etc. Torsional actuators play an important
role in MOEMS.9 Many research studies have been
done on torsional micro-actuators. For example,
Degani et al.10 presented a novel displacement iteration
pull-in extraction scheme for the problem of electro-
static torsion micro-actuators. They10 showed that
their presented method converges 100 times faster

than the voltage iteration scheme. Xiao and Farmer11

investigated the stability of single-crystal silicon, rect-
angular, electrostatic torsion actuators in a variety of
ambients and configurations. Zhang et al.12 described
the static characteristics of an electrostatically actuated
torsional micromirror based on parallel plate capacitor
model. They extensively studied the snap-down phe-
nomenon in micromirrors. They used numerical
approach for their simulations. Huang et al.9 presented
a general theoretical model using the coupling effect
between the torsion and bending in electrostatic tor-
sional actuators. They also presented experiments to
verify their model which was numerically solved.

The influence of van der Waals (vdW) and
casimir forces on the behavior of MEMS and

Center of Excellence in Design, Robotics and Automation, School of

Mechanical Engineering, Sharif University of Technology, Iran

Corresponding author:

Mohammad Taghi Ahmadian, Center of Excellence in Design, Robotics

and Automation, School of Mechanical Engineering, Sharif University of

Technology, Tehran, Iran.

Email: ahmadian@mech.sharif.edu

Proc IMechE Part C:

J Mechanical Engineering Science

226(9) 2361–2372

! IMechE 2012

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0954406211433112

pic.sagepub.com



nanoelectromechanical systems (NEMS) has also been
extensively studied by many researchers.13–16 Guo and
Zhao15 discussed the effect of vdW and casimir force on
the torsional micro-actuators. Gusso and Delben16

studied the influence of the casimir force on the sili-
con-based actuators. In addition to casimir and vdW
forces, capillary force is one of the most important sur-
face forces that play a crucial role in MEMS. Existence
of a liquid bridge between two objects results in the
formation of capillary force.17 The existence of capil-
lary force even in low relative humidity is experimen-
tally observed.18 Parallel plate MEMS actuators are
conventionally fabricated by forming a layer of a
plate or beam material on the top of a sacrificial layer
of another material and wet etching the sacrificial layer.
So, the capillary force can be easily formed and if it is
large enough, the microbeam or plate will collapse and
adhere to the substrate. Hence, the investigation of the
static deflection of micromirrors under capillary force
seems to be essential.19 Mastrangelo and Hsu20,21 the-
oretically and experimentally studied the stability and
adhesion of thin micromechanical structures under cap-
illary force. Recently, the instability of torsional
MEMS/NEMS actuators under capillary force was
investigated by Guo et al.19 Moeenfard et al.22 pro-
posed an extended Kantorovich method to analyze
static behavior of microplates under the effect of capil-
lary force. In addition, the effects of capillary force on
the static and dynamic behaviors of atomic force micro-
scopes have been widely assessed,23–25 but the static
behavior of micromirrors under the effect of capillary
force around their stable operative range has not yet
been presented.

Perturbation methods have been used to analytically
solve the nonlinear problems in MEMS. Younis and
Nayfeh26 investigated the response of a resonant micro-
beam to an electric actuation using the multiple-scale
perturbation method. Abdel-Rahman and Nayfeh27

used the same method to model secondary resonances
in electrically actuated microbeams. Since perturbation
methods are based upon the assumption that there is a
small parameter in the equations, they have some limi-
tations in problems without the involvement of small
parameters. In order to overcome this limitation, a
new perturbation-based method, namely homotopy per-
turbation method (HPM) was developed by He.28 His
new method takes full advantages of the traditional per-
turbation methods and homotopy techniques.
Homotopy perturbation method has also been used
for solving the nonlinear problems encountered in N/
MEMS. For example, Moeenfard et al.29 used HPM
to model the nonlinear vibration behavior of
Timoshenko microbeams. Mojahedi et al.13 applied
the HPM method to simulate the static response of
nano-switches to electrostatic actuation and

intermolecular surface forces. But so far, no analytic
solution has been presented to model the behavior of
micromirrors under capillary force.

In this article, the equations governing the static
behavior of micromirrors are obtained using Newton’s
first law of motion and the effect of different design
parameters on the pull-in angle of micromirrors is
numerically studied. At the end, the static behavior of
micromirrors is investigated both analytically and
numerically using the presented model and also using
FEM model presented in commercial FEM software,
ANSYS. The analytical results will follow the numerical
ones and can be used as a fast and accurate tool for
predicting mirror’s behavior under capillary force.

Capillary torque on torsional
micromirrors

The micromirror shown in Figure 1 is considered. As it
is shown in this figure, the geometry of the liquid
between the mirror and the substrate is considered to
be known. It has to be noted that in practical situations,
the geometry is more complex and the meniscus result-
ing from the surface tension will form along all sides of
the mirror. In order to simplify the analysis, these
menisci and also the corners that are formed at the

Figure 1. Schematic view of a micromirror under the effect of

capillary force.
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cross-sections of the two menisci have not been consid-
ered in the formulation.

In this sense, the capillary pressure on the micromir-
ror can be computed as:19,20,22

PCap ¼
2� cos �c

z
ð1Þ

where PCap is the capillary pressure, � the surface
energy of the liquid, �c the contact angle between
liquid and solid surfaces, and z the distance between
the point with capillary pressure PCap and the under-
neath substrate. So, assuming that the torsion micro-
beams connected to the mirror do not undergo
bending, the capillary torque applied to the micromir-
ror would be as

MCap ¼ 2� cos �c

Z a2

a1

x p xð Þ � q xð Þð Þ

h� x sin �
dx ð2Þ

where h is the initial distance between micromirror and
the substrate, a1 and a2 some position parameters defin-
ing the start and end points of the liquid, as illustrated
in Figure 1. Since the rotation angle in micromirrors is
usually small, sin � can be closely approximated by �
and equation (2) can be restated as

MCap ¼ 2� cos �c

Z a2

a1

x p xð Þ � q xð Þð Þ

h� x�
dx ð3Þ

The mechanical restoring torque applied to the
micromirror is obtained using the following relation

MMech ¼ �K� ð4Þ

where9

K ¼
2GIp

l
ð5Þ

In this equation, G is the shear modulus of the tor-
sion beams, l the length of each torsion beam, and Ip
the polar momentum of inertia of the rectangular cross-
section expressed as:9

Ip ¼
1

3
rs3 �

64

�5
s4
X1
n¼1

1

2n� 1ð Þ
5
tanh

2n� 1ð Þ�r

2s
ð6Þ

where s and r are the width and length of the cross-
section of the torsion beams, as illustrated in Figure 1.
Using equations (5) and (6), equation (4) is simplified as
follows.

MMech ¼ �
2GIp

l
� ð7Þ

At equilibrium point, the net torque applied to the
micromirror is zero

MCap þMMech ¼ 0 ð8Þ

Using equations (3) and (7), equation (8) is simpli-
fied to the following equation

2GIp

l
� � 2� cos �c

Z a2

a1

x p xð Þ � q xð Þð Þ

h� x�
dx ¼ 0 ð9Þ

By defining the dimensionless parameter � ¼ �=�0,
where �0 ¼ h=L is the maximum physically possible
rotation angle of the mirror, equation (9) can be
restated as follows

= �, �,�,�ð Þ ¼ �� �:M �,�,�ð Þ ¼ 0 ð10Þ

where = is the equilibrium equation, and � and
M �,�,�ð Þ are defined as equations (11) and (12),
respectively

� ¼
2� cos �cWL3

Kh2
ð11Þ

M �,�,�ð Þ ¼
h

WL2

Z a2

a1

x p xð Þ � q xð Þð Þ

h 1� x
L �

� � dx ð12Þ

In these equations, � is called the instability number,
W and L the width and length of the mirror, respec-
tively, and � and � some dimensionless parameters
defined in equations (13) and (14), respectively

� ¼
a1
L

ð13Þ

� ¼
a2
L

ð14Þ

In Table 1, the functions p xð Þ, q xð Þ, and M �,�,�ð Þ

for different designs of micromirrors have been
presented.

Figure 2 shows the effect of changing the geometry
of the mirror on the dimensionless capillary torque
applied to it. It is observed that at equal values of �,
the capillary torque applied to the rectangular mirrors
is larger than that of triangular mirrors. This is due to
the fact that in rectangular micromirrors, the capillary
pressure is applied on a larger surface.

In Figure 3, the functions f �ð Þ ¼ � and
g �ð Þ ¼ �:M �,�,�ð Þ have been plotted versus � at var-
ious values of � for different types of designs of micro-
mirrors presented in Table 1.

It is observed that at low values of �, there exist two
roots for equation (10), where the smaller one is the
stable equilibrium point and the larger one the unstable
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Table 1. The functions p xð Þ, q xð Þ, and M �,�, �ð Þ for different designs of micromirrors.

Shape Drawing pðxÞ qðxÞ Mð�,�, �Þ
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Figure 2. Effect of the change of the geometry of the mirror on the dimensionless capillary torque applied to it.
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Figure 3. Dimensionless elastic restoring torque and capillary torque applied to the different micromirrors.
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equilibrium point. There exists a certain value of � at
which equation (10) has just one root. This value of � is
the � at the pull-in state. For � larger than the value of �
at pull-in, equation (10) does not have any root and
equilibrium cannot be established. So pull-in occurs
when � reaches its maximum value at equilibrium

equation, and as a result at pull-in state, equation
(15) has to be satisfied

@�

@�
¼ 0 ð15Þ
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Figure 6. Estimation of micromirror’s rotation angles using HPM at � ¼ 0:1 and � ¼ 0:9.
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Figure 5. �P versus � at various values of �.
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By calculating � from equation (10) and substituting
it in equation (15), the following equation is obtained
for the pull-in angle of the micromirrors under the
effect of capillary force

� �P,�,�ð Þ ¼ �P
@M �,�,�Pð Þ

@�P
�M �,�,�Pð Þ ¼ 0

ð16Þ

where � �P,�,�ð Þ is the equation governing the pull-in
state of the mirror.

Pull-in angle

By numerically solving equation (16) for different
types of designs of micromirrors presented in Table 1,
the pull-in angle of the micromirror can be found ver-
sus � and �. It has to be noted that �P is always
less than unity and as a result, if the solution of equa-
tion (16) leads to �P 4 1, then it can be concluded
that the mirror touches the underneath sub-
strate before the occurrence of pull-in and �P would
be unity.
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Figure 7. Equilibrium angles of the rectangular mirror versus � for different values of � and �.
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In Figure 4, �P has been plotted against � at various
values of �. It is observed that with increasing the value
of �, the value of �P is decreased. It is also observed
that at a given value of �, increasing the value of �
would lead to smaller values for �P. In other words,
the larger the parameters a1 and a2 shown in Figure 1,
the smaller the pull-in angle of the mirror.

By finding � from equilibrium equation and
substituting the respected value of �P, �P, i.e. the
value of � at pull-in is obtained. In Figure 5, �P is plot-
ted against �. This figure shows that by increasing the

value of � and/or decreasing the value of �, the value of
�P is decreased. Physically, this sentence means that the
smaller the parameter a1 and/or the larger the param-
eter a2, the larger the torque exerted by capillary forces
that results in pull-in.

Equilibrium behavior of micromirror

In this section, analytical solutions are presented for
equilibrium angle of the micromirrors under capillary
force. In special cases, the results are compared
with numerical FEM results of the commercial FEM
software ANSYS.

In order to analytically solve the equilibrium behav-
ior of the mirror, the HPM is utilized. As it was men-
tioned earlier, this method takes full advantage of the
traditional perturbation methods and homotopy tech-
niques. In this method, the unknown parameter is
expanded using an embedded parameter which serves
as a perturbation parameter. Details of the application
of HPM for solving equilibrium equation of micromir-
rors under capillary force can be found in Appendix 1.

In Figure 6, the results of the numerical simulations
are compared with those of analytical HPM results for
all types of mirror designs shown in Table 1.

It is observed that the presented closed-form solu-
tion for � closely approximates the numerical solution,
especially at low values of �. The accuracy of the pre-
sented closed-form solution can be increased with

Figure 9. Meshed configuration of a rectangular micromirror with characteristics given in Table 2 and with h ¼ 56:8 mm in ANSYS.

Table 2. Physical properties of the simu-

lated micromirrors.

Parameter Value

G 66 GPa

� 0:29

L 100 mm

W 100 mm

l 60 mm

r 1:5mm

s 1:55mm

� 7:2� 10�2 NM�1

�c 5�=12

a1 10 mm

a2 90 mm
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increasing the order of the perturbation expansion
used.

In order to investigate the effect of geometrical
parameters on mirror’s behavior under capillary
force, dimensionless rotation angle � has been plotted

versus � in Figures 7 and 8 at various values of � and �
for different mirror designs.

From these figures, it is observed that by increasing
the value of �, the rotation angle of the micromirror is
increased, but the maximum value of � at pull-in,

Figure 10. Deformed configuration of the micromirror under capillary force.
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Figure 11. Equilibrium points of the micromirror shown in Figure 10 and properties given in Table 2, and comparison of the FEM

results with the results of the numerical model and HPM.
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strongly depends on the value of � and it is found that
by increasing �, the maximum allowable value for � is
reduced. Furthermore, it is observed that increasing the
value of �, while keeping � constant would increase the
stability limit of the mirror.

In order to verify the accuracy of the presented
model, a group of rectangular micromirrors with char-
acteristics given in Table 2 and with different values of h

are simulated using the commercial finite element soft-
ware ANSYS. The details of modeling the micromirror
under capillary force using ANSYS are presented in
Appendix 2. Figure 9 shows a sample of this group of
micromirrors with h ¼ 56:8 mm which has been simu-
lated after applying the capillary pressure. In Figure
10, the deflection of the mentioned micromirror under
capillary force is depicted. ANSYS output for the

No
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Substitute the obtained 
equilibrium angle in 

equation (1) to obtain a 
new pressure distribution 

Start

Guess the 
equilibrium angle 

Apply the obtained non-
uniform pressure 
distribution in the 

ANSYS FEM model 

Solve the FEM 
model and find the 
equilibrium angle 

Declare the obtained 
angle from the last 

FEM calculations as the 
equilibrium angle 

End

Find pressure 
distribution using 

equation (1) 

Is the convergence 
criteria satisfied? 

Figure 12. The algorithm used for FEM modeling of micromirror under capillary force using the commercial FEM software ANSYS.
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deflection of the mirror has been measured and nondi-
mensionalized to be able to be compared with the
results of the presented model in this article.
Figure 11 shows that static behavior of micromirrors
obtained from the proposed model agrees well with
finite element results. This agreement shows that the
presented closed-form solution can be used as a fast
and accurate design tool for micromirror fabrication.

Conclusion

The static behavior of micromirrors under the effect of
capillary forces was studied. The dimensionless equa-
tion governing the static behavior of micromirrors
under capillary force was obtained. The pull-in behav-
ior of the mirrors was numerically investigated and the
effect of various geometrical parameters was studied.
The static behavior of micromirrors was investigated
both numerically and analytically using HPM. It was
observed that with increasing the instability number,
the rotation angle of the micromirror is increased and
suddenly the pull-in occurs. A numerical FEM model
was also presented to simulate a group of micromirrors
and the related results were compared with those of
analytical HPM ones. The analytical results were in
good agreement with numerical ones.
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Appendix 1

HPM can be utilized in order to find analytical expres-
sions for � in equilibrium equation. To do so, equation
(10) is divided to a linear and a nonlinear part. Using
the Taylor series expansion, the equilibrium equation
can be decomposed into a linear L �, �,�,�ð Þ and a
nonlinear N �, �,�,�ð Þ part as follows

� �, �,�,�ð Þ ¼ L �, �,�,�ð Þ þN �, �,�,�ð Þ ð17Þ

In this equation, L �, �,�,�ð Þ and N �, �,�,�ð Þ are
the linear and nonlinear terms of the Taylor series
expansion of � �, �,�,�ð Þ, respectively. Obviously,
N �, �,�,�ð Þ can be obtained by subtracting
L �, �,�,�ð Þ from � �, �,�,�ð Þ. For example, for rec-
tangular micromirrors shown in Table 1, L �, �,�,�ð Þ

and N �, �,�,�ð Þ are obtained as follows

L �, �,�,�ð Þ ¼ �
�

2
�2 � �2
� �

þ 1�
�

3
�3 � �3
� �� �

�

ð18Þ

N �, �,�,�ð Þ ¼
�

�
�� �þ

1

�
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1� ��

1� ��

� �� �

þ �
1

2
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� �
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1
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�3 � �3
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�

� � ð19Þ

Now, the homotopy form is constructed as

�I �, �,�,�,Pð Þ ¼ L �, �,�,�ð Þ þ P:N �, �,�,�ð Þ ¼ 0

ð20Þ

where �I �, �,�,�,Pð Þ is the homotopy form and P
an embedded parameter. Furthermore, � is expanded as

� ¼ �0 þ P�1 þ P2�2 þ P3�3 þ � � � ð21Þ

By substituting equation (21) into homotopy form
and finding the Taylor series expansion of the resulting

equation with respect to P, the following equation is
obtained

�I �, �,�,�,Pð Þ ¼ L �0, �,�,�ð Þ

þ �1
@L �0, �,�,�ð Þ

@�0
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0

�
P3 þ � � � ¼ 0

ð22Þ

By equating coefficient of each power of P with zero,
the following equations are obtained

L �0, �,�,�ð Þ ¼ 0 ð23Þ

�1
@L �0, �,�,�ð Þ

@�0
þN �0, �,�,�ð Þ ¼ 0 ð24Þ

�2
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@�0
þ�1
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@�0
¼ 0 ð25Þ
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2
�2

1

@2N �0, �,�,�ð Þ

@�2
0

¼ 0 ð26Þ

Equations (23) to (26) can be iteratively solved
for finding �0, �1, �2, and �3, respectively. Now,
according to HPM, by substituting P ¼ 1 and �0, �1,
�2, and�3 into equation (21), the value of� is obtained.
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Appendix 2

In order to model the micromirror’s behavior under
capillary force using FEM calculations, the geometry
of the mirror is modeled in ANSYS and meshed using
the SOLID 186 element. The torsion beams supporting
the microbeams are considered to be clamped. Since the
capillary pressure underneath the mirror is a nonlinear
function of the unknown equilibrium angle of the
mirror, it is impossible to find and apply the capillary
pressure to the mirror in the first step. To overcome
this problem, an equilibrium angle is guessed and sub-
stituted in equation (1) to find the pressure distribution
due to the capillary force. Then, this pressure

distribution is applied to the mirror and the deflection
of the mirror and its equilibrium angle is calculated
using ANSYS FEM calculations. The obtained equili-
brium angle is again used in equation (1) to find a new
pressure distribution and this process is continued until
it converges to a specific equilibrium angle. In this arti-
cle, if the change in the equilibrium angle in two con-
secutive iterates is less than 1%, the problem is
considered to have converged. The convergence of the
presented procedure is so fast that in most cases two to
three iterates are sufficient for finding a precise
response. Figure 12 shows the schematic view of the
algorithm used for FEM modeling of micromirror
under capillary force.

2372 Proc IMechE Part C: J Mechanical Engineering Science 226(9)


