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This paper applies the homotopy perturbation method to the simulation of the static
response of nano-switches to electrostatic actuation and intermolecular surface forces.
The model accounts for the electric force nonlinearity of the excitation and for the fring-
ing field effect. Using a mode approximation in the Galerkin projection method, the
nonlinear boundary value differential equation describing the statical behavior of nano-
switch is reduced to a nonlinear algebraic equation which is solved using the homotopy
perturbation method. The number of included terms in the perturbation expansion for
achieving a reasonable response has been investigated. Three cases have been specifi-
cally studied. These cases correspond to when the effective external force is the electro-
static force, the combined electrostatic and Casimir force and the combined electrostatic
and van der Waals force. In all three cases the pull-in characteristics has been investi-
gated thoroughly. Results have been compared with numerical results and also analytical
results available in the literature. It was found that HPM modifies the overestimation
of N/MEMS instability limits reported in the literature and can be used as an effective
and accurate design tool in the analysis of N/MEMS.

Keywords: Nano-switches; Casimir force; van der Waals force; homotopy perturbation
method; pull-in instability.

1. Introduction

Nanoelectromechanical systems (NEMS) which are a smaller version of micro-
electromechanical systems (MEMS), are sensors, actuators, devices and systems
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with critical dimensions of the order of nanometers.1 N/MEMS devices finds
variety of applications such as micropumps,2 micromirrors,3 microphones,4,5

microresonators,6 random access memory,7 nanotweezers for miniaturized robotics,8

super-sensitive sensors9,10 and devices for high-frequency operation and fast switch-
ing in communication networks.1

Technology of N/MEMS has experienced a lot of progress in testing and fabri-
cating new devices recently. Their low manufacturing cost, batch production, light
weight, small size, durability, low energy consumption and compatibility with inte-
grated circuits, makes them even more attractive.11,12

Typical MEMS devices employ a parallel beam capacitor with variable capacity
in which one beam is actuated electrically and as a result, this flexible microbeam
deflects towards the rigid substrate, which is followed by capacitive changes.13

Similar mechanisms are used in NEMS devices. For example one can indicate at
carbon-nanotube based cantilever switches which are fundamental building blocks
for the design of NEMS applications, such as nanotweezers and some other nanoscale
actuators.1

The input voltage has an upper limit beyond which the restoring force of the
micro/nano structure can no longer resist the electrostatic force, and consequently
the structure spontaneously collapses. This behavior is known as pull-in instability,
and the upper limit of input voltage is called pull-in voltage.

Determination of the static deflection and the pull-in voltage are critical in the
design process of microsystems, to determine the sensitivity, instability and the
dynamics of devices.14 Several studies have investigated the static pull-in behavior
of microbeams. Ijntema and Tilmans15 have considered the static and dynamic
responses of a microbeam under the actuation of the electrostatic force. Tilmans and
Legtenberg6 have studied microbeams using the Rayleigh–Ritz method, to generate
an analytical expression for the pull-in voltage. Choi and Lovell16 have calculated
the static deflection of a microbeam using a shooting method. Their model accounts
for both the electrostatic force and the midplane stretching. Abdel-Rahman et al.14

have utilized a nonlinear model of a microbeam including the electrostatic force,
mid-plane stretching and applied axial load. They used a shooting method to solve
the static problem.

Comparing to MEMS switches, the operation of NEMS switches is different
because of the importance of the intermolecular surface forces such as van der
Waals and Casimir forces which can be neglected at micrometer scale. Even in
the absence of electrostatic actuation, when the gap between cantilever tube and
the rigid substrate is very small the pull-in phenomenon can occur because of the
intermolecular forces.17–20

The intermolecular surface forces are especially significant when the nanobeams
are working in vacuum without the effect of capillary forces and the separations
between movable components are in the sub-micrometer range.21 For separations
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much less than the plasma wavelength (for a metal) or much less than the absorption
wavelength (for a dielectric) of the material constituting the surfaces (typically
below 20 nm), the retardation, which is a result of the finite propagation speed of
the electromagnetic field, is not significant.22 In this case, the intermolecular force
between two surfaces is simplified as the van der Waals attraction.23 The Casimir
force arises from the polarization of adjacent material bodies, separated by distances
of less than a few microns.24

Van der Waals force and Casimir force can both be connected with the existence
of zero-point vacuum oscillations of the electromagnetic field.25–27 The microscopic
approach to the modeling of both van der Waals and Casimir forces can be for-
mulated in a unified way using Quantum Field Theory.22,25,27 It is found that
the Casimir force is generally effective at larger separation distances between the
bodies than the van der Waals force. Whereas the Casimir force between semi-
infinite parallel plates is inversely proportional to the fourth power of the gap,
van der Waals force is inversely proportional to the third power of the gap. The
dependence of these forces on the dielectric properties of the plates and the fill-
ing medium is studied in detail in Ref. 25. It is important to note that van der
Waals and Casimir forces cannot in general be considered to simultaneously act in
MEMS, since they describe the same physical phenomenon at two different length
scales.

Effect of van der Waals force on the pull in instability of electrostatically actu-
ated rectangular microplates has been studied by Batra et al.28 Lin and Zhao29

adopted a one degree of freedom mass spring model to study the influence of Casimir
force on the nonlinear behavior of nanoscale electrostatic actuators. Dequesnes
et al.1 studied the pull-in voltage characteristics of several nanotube electrome-
chanical switches, such as double-wall carbon nanotubes suspended over a graphitic
ground electrode. They proposed parametrized continuum models for coupled elec-
trostatic and van der Waals energy domains. They compared the accuracy of the
continuum models with atomistic simulations. Their numerical simulations based
on continuum models closely match the experimental data reported for carbon-
nanotube-based nanotweezers.

Ding et al.21 presented an analysis of Casimir effect with surface roughness,
conductivity and temperature corrected on the deformation of a membrane strip
structure. They provided a way of designing a membrane strip with high resistance
to collapse. Ramezani et al.19,30 investigated the two point boundary value problem
of the deflection of nano-cantilever subjected to Casimir and electrostatic forces
using analytical and numerical methods to obtain the instability point of the nano-
beam. They computed the pull-in parameters of the beam under combined effects
of electrostatic and Casimir forces. In their analytical approach, the nonlinear dif-
ferential equation of the model was transformed into the integral form by using the
Green’s function of the cantilever beam. Then, closed-form solutions were obtained
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by assuming an appropriate shape function for the beam deflection to evaluate the
integrals. They20 used the same method to investigate the influence of van der
Waals force on the pull-in voltage and deflection of nanomechanical switches using
a distributed parameter model. The fringing field effect was also taken into account
in their model.

Although the Static deflection and Pull-in instability of nanocantilevers has been
investigated by many researchers, most of the methods used for this purpose are
numerically cumbersome. Analytical approaches are usually more appealing than
numerical one because of conveniences for parametric studies and accounting for
the physics of the problem. Also analytical solutions give a reference frame for
verification and validation of the numerical approaches.

The current paper uses the homotopy Perturbation method to investigate static
deflection and pull-in parameters of nanocantilevers due to the combined effects of
electrostatic and intermolecular forces. He31 features a survey of some recent devel-
opment in asymptotic techniques, which are valid not only for weakly nonlinear
equations, but also for strongly ones. He32 introduced the HPM as a relatively new
method that is still evolving. This new perturbation technique, namely homotopy
perturbation method does not depend upon the assumption of small parameters.33

He33 illustrated the well-known duffing equation as an example and found that even
with using a first order approximation, the maximal relative error of the period is
less than 7% even when the parameter ε approaches infinity. His new method takes
full advantages of the traditional perturbation methods and homotopy techniques.34

Blendez et al.35 solved the nonlinear differential equations which govern the nonlin-
ear oscillation of a simple pendulum and showed that even only one iteration leads
to the relative error of less than 2% for the approximated period even for amplitudes
as high as 130◦. Blendez et al.36 found improved approximate solutions to conser-
vative truly nonlinear oscillators using He’s homotopy perturbation method. They
found that for the second order approximation the relative error in the analytical
approximate frequency is approximately 0.03% for any parameter values involved.

As it is seen in the literature of the HPM, this method overcomes the limita-
tions of classical perturbation methods and at the same time provides an accurate
prediction of the behavior of the nonlinear systems. So here, it has been used for
the first time to analyze the nonlinear boundary value problem of nanocantilever’s
static behavior under the effects of electrostatically actuation and intermolecular
forces.

2. Problem Formulation

A common approach to nanoscale simulation is to use molecular dynamics (MD).
However, MD simulations require the computation of all atoms of the system. The
time step in MD simulations is typically of the order of 0.1 fs for a stable integration
scheme. MD simulations involving more than a million atoms are very expensive and
the dynamics of the system can only be probed for a few picoseconds. Therefore, MD
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simulations may not be easily used in an integrated design process or for design
optimization.1 Dequesnes et al.1 proposed parametrized continuum models for the
coupled electrostatic and van der Waals energy domains and compared the accu-
racy of the continuum models with atomistic simulations. Their numerical simu-
lations based on continuum models closely match the experimental data reported
for carbon-nanotube based nanotweezers. So in this paper a continuum model is
implemented to model the static behavior of cantilever type nano-switches.

Following a continuum model Ramezani et al.23 presented the following nonlin-
ear boundary value model for static deflection of cantilever type nano-switch shown
in Fig. 1 under the combined effects of electrostatic actuation and intermolecular
forces.
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where E is the effective young modulus of the nanobeam, I is the second area
moment of the inertia, ŵ is the beam deflection, x̂ is the coordinate along the
length, ρ is density, b is the width of the beam, h is the beam thickness, t̂ is time, A

is the Hamaker constant, � = 1.055 × 10−34 J.s is Planck’s constant divided by 2π,
c is the speed of light, d is the initial gap between the solid and flexible electrode
and ε is the vacuum permittivity. The first term in the right hand side of equation
(1) describes the van der Waals force, the second term represents the Casimir force,
and the third and fourth terms describes the electrostatic force and its fringing field

Fig. 1. Cantilever type nano-switch.
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effect respectively. The index n is 0 when the effective intermolecular force is van
der Waals force and is unity when the effective intermolecular force is Casimir force.
Since this paper investigates the static deflection of the nano-switches, the inertia
term, i.e. the second derivative of ŵ with respect to t̂ is neglected. Guo and Zhao37

studied the stability of the torsional actuators considering van der Waals effects.
In their model, when dealing with the static equilibrium problem, the resultant
of the electrostatic and the van der Waals torques counterbalance with the elastic
restoring torque. Here a similar situation occurs. In the absence of inertia term,
when intermolecular surface forces are taken into consideration, the resultant of
these forces with the electrostatic actuation force, reaches a balance with the elastic
restoring force of the beam. So, by neglecting inertia terms, equation (1) can be
nondimensionalized in the form of equation (2).
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In these equations L represents the beam length.
The associated boundary conditions for solving equation (2) are

w(0) = 0 (9)

∂w

∂x

∣∣∣∣
x=0

= 0 (10)

∂2w
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x=1

= 0 (11)

∂3w

∂x3

∣∣∣∣
x=1

= 0 (12)

Now using the first mode shape of the nanocantilever, the deflection of the
nanoswitch is assumed to be as equation (13).

ws(x) = aφ(x) (13)
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where φ(x) is the first mode shape of the nanocantilever and a is some unknown
coefficient. For cantilever beams φ(x) can be stated as follows.

φ(x) = coshβx − cosβx − (cosh β + cosβ)
(sinh β + sinβ)

(sinh βx − sinβx) (14)

For the first mode of the cantilever beam β = 1.87510. Following the Galerkin’s
decomposition method, by substituting equation (13) into equation (2) and integrat-
ing the residual over the nanoswitch nondimensionalized domain by weight φ(x),
one may arrive at equation (15).
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In this equation, K is defined as
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∫ 1

0
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d4φ(x)

dx4
dx (16)

The equation (15) can be decomposed to linear and nonlinear parts.
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where
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Now the homotopy form is constructed as follows.

H(a, P ) = (1 − P )[L(a) − L(a′)] + P [L(a) + N(a)] = 0 (20)

or in a more simplified manner

L(a) − L(a′) + P [N(a) + L(a′)] = 0

P ∈ [0, 1]
(21)

Here P is an imbedding parameter which serves as perturbation parameter and a′

is the initial guess. It is obvious that as P increases from 0 to 1, the solution of
equation (21) varies from the solution of the linear equation to the exact solution
of equation (15). To apply the perturbation technique, one can assume that the
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solution of Eq. (21) can be expressed as a series in P as

a = a0 + Pa1 + P 2a2 + · · · (22)

It would be desirable to expand the nonlinear part of the equation (21) in Taylor
series as equation (23).
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Substituting equations (22) and (23) into equation (21) and equating the coefficients
of like powers of P , one obtains the following system of algebraic equations which
can be solved consecutively.

P 0 : L(a0) − L(a′) = 0
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...

(24)

With solving these equations, coefficients ai can be found as
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Now letting the perturbation parameter P equals unity, a is obtained as
equation (26).

a = a0 + a1 + a2 + · · · (26)

And the static deflection of the nanobeam can be obtained from ws(x) = aφ(x).
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3. Results and Discussion

For obtaining acceptable results, the number of included terms in the perturbation
expansion of a has to be investigated. For this purpose Table 1 has been prepared.
This Table 1 shows that in the worst condition (i.e. when the applied voltage is
around pull-in voltage) including more than seven terms in the perturbation expan-
sion of a would not make a considerable change in the obtained response.

In Figs. 2 and 3, the deflection of nanobeam has been calculated using different
orders in the perturbation approximation. It is observed that a six order approxi-
mation is acceptable for a highly precise response.

Figure 4 compares the results of HPM, numerical approach and previously
reported analytical approaches20 for the maximum deflection of the nanobeam in
the absence of electric actuation when the effective intermolecular force is van der
Waals force. As it can be seen, our analytical approach can gives better insight to
the behavior of the system.

In Fig. 5, Similar comparison, has been made, when the effective intermolecu-
lar force is the Casimir force. This figure is another evident of the effectiveness

Table 1. Maximum deflection of nanobeam when n = 1, α4 = 0.2 and d/b = 1.

Number of included α2V 2 = 0 α2V 2 = 0.225 α2V 2 = 0.475 α2V 2 = 0.725 α2V 2 = 0.825
terms in the
perturbation

expansion of a

2 0.0253 0.0820 0.1551 0.2532 0.3459
3 0.0270 0.0829 0.1573 0.2599 0.3699
4 0.0272 0.0830 0.1578 0.2621 0.3833
5 0.0272 0.0831 0.1579 0.2630 0.3929
6 0.0272 0.0831 0.1579 0.2634 0.4007
7 0.0272 0.0831 0.1579 0.2636 0.4073

Fig. 2. Nanobeam deflection at α2V 2 = 0.725 when n = 1, α4 = 0.2 and d/b = 1 using different
orders of approximation for a.
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Fig. 3. Nanobeam deflection near pull-in voltage when n = 1, α4 = 0.2 and d/b = 1 using
different orders of approximation for a.
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Fig. 4. Maximum deflection of the nanobeam in the absence of electric actuation when the effec-
tive intermolecular force is van der Waals force.

and accuracy of the HPM in dealing with strongly nonlinear boundary value
problems.

Figures 4 and 5 also show that even when there is no electric actuation with
increasing the values of α3 and α4 which can be accomplished by increasing the
length of nanobeam, pull-in can still occur due to intermolecular forces. The max-
imum beam length around which the pull-in occur due to intermolecular forces
is called freestanding length. Figures 4 and 5 serve as a tool for computing the
freestanding length of nanobeams.

Maximum deflection of the nanobeam under the effect of electric actuation,
including fringing field effect in the absence of intermolecular forces has been inves-
tigated in Fig. 6. Again it is clear that HPM gives better prediction of the systems
behavior especially around the pull-in instability of the nanoswitch.
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Fig. 5. Maximum deflection of the nanobeam in the absence of electric actuation when the effec-
tive intermolecular force is Casimir force.
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Fig. 6. Maximum deflection of the nanobeam under the effect of electric actuation and considering
fringing field effect, in the absence of intermolecular forces when d/b = 0.8.

Figure 7 shows the effect of the parameter d/b, which is a measure of the fringing
field effect on the pull-in and voltage deflection characteristics of the nano-switch.
It is observed that with increasing the value of d/b, the value of the pull-in voltage
decreases. This matter can be seen more clearly in Fig. 8.

Figure 9 shows the voltage deflection characteristics of a nano-switch under the
combined effect of van der Waals force and electrostatic actuation for two different
values for d/b and α3.

In order to gain a more comprehensive understanding of the effect of van der
Waals force, in Fig. 10 voltage-deflection curves of the nano-switch has been plotted
for various values of α3. With comparison of different curves in Fig. 10, one may con-
clude that in the analysis of NEMS, α3 play an undeniable role. Figure 10 also shows
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Fig. 7. Maximum deflection of the nanobeam under the effect of electric actuation, for various
values of d/b.

Fig. 8. Effect of fringing field on the pull-in characteristics of the nano-switch.

that with increasing the parameter α3, the value of the pull-in voltage decreases.
This has been shown in Fig. 11. Further more Fig. 11 greatly clarifies the impor-
tance of the fringing fields in the analysis of NEMS which neglecting its effect can
make considerable errors for pull-in characteristics of the nano-switch.

The same discussions can be made when the effective intermolecular force is
the Casimir force. Figure 12 shows the voltage deflection characteristics of a nano-
switch under the combined effect of Casimir force and electrostatic actuation for
two different values for d/b and α4.

In Fig. 13 voltage-deflection curves of the nano-switch has been plotted for
various values of α4. This figure shows the important role of parameter α4 in the
analysis of NEMS.
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30.1, 0.4d b α= = 31, 0.6d b α= =

Fig. 9. Voltage deflection characteristics of a nano-switch under the combined effects of van der
Waals force and electrostatic actuation.

0.1d/b =  1d b =

Fig. 10. Voltage-deflection curves of the nano-switch for various values of α3.

One can use Fig. 13 to plot the value of the parameter α2V
2 at the pull-in

state at different values of α4. The results have been shown in Fig. 14. Tong et al.38

investigated the stability of nanodevices in the presence of Casimir and electrostatic
forces. They calculated the pull-in parameters of the system and showed that for
plates separated within the range of nanometer in distance, the Casimir effect can
influence the stability of the device significantly. Figure 14 proves the same matter
for nanobeams. Figure 14 also implies that when the effective intermolecular force
is the Casimir force, fringing field effect cannot be ignored in the analysis of NEMS.
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0.1d b = 1d b =

Fig. 11. Effect of the parameter α3 on the value of α2V 2 at pull-in.

40.1 0.4d b α= = 41 0.6d b α= =

Fig. 12. Voltage-deflection characteristics of a nano-switch under the combined effects of Casimir
force and electrostatic actuation.

From different figures in this paper one may easily conclude that HPM is an
effective tool for analyzing N/MEMS devices. This method overcomes shortcomings
of the previously reported Green function method,19,20,23,30 which when dealing
with distributed parameter models, usually overestimates instability of N/MEMS.

4. Conclusion

The current paper makes use of the HPM to analyze static deflection and pull-in
characteristics of nano-switches under the effect of electrostatic and intermolecular
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0.1d b = 1d b =

Fig. 13. Voltage-deflection curves of the nano-switch for various values of α4.

0.1d b = 1d b =

Fig. 14. Effect of the parameter α4 on the value of α2V 2 at pull-in.

surface forces. Using a Galerkin projection method, the nonlinear boundary value
differential equation was reduced to a nonlinear algebraic equation which was solved
by applying HPM. Three cases have been specifically investigated. These cases cor-
respond to when the effective external force is the electrostatic force, the combined
electrostatic and Casimir force and the combined electrostatic and van der Waals
force. In all cases the pull-in characteristics has been investigated thoroughly. In
most cases the results has been compared with numerical results and also with pre-
viously reported analytical results available in the literature. It was found that HPM
modifies the overestimation of N/MEMS instability limits reported in the literature
and can be used as an effective and accurate design tool in design optimization.
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